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v In each of Problems 54 through 61, find the general solution ~ 60. x%y" +2xy +4y =0
of the given Cauchy-Euler equation in x > O: 61. 22y — 4xy L6y =0

_ In each of Problems 62 through 65, find the solutién of the
5 55. 2%y +4xy +2y=0 given initial value problem. Plot the graph of the solution and
: 56. 2y . Ay +1.25y = 0 describe how the solution behgves as x — 0.

62. 2)62 " / -3y = O, 1 = 1, 4 D=1
57. xy”——4xy’—-6y=0 y y(1) y(1) .
63. 4xly' 4+ 8xy +17y=0, y1) =2, Y(1)=-3 » |
58‘ xzy”——zy'::o X y y() )’() }

n . 1 .
, 64, 2y —5xy +9y =0, y-1)=2, y(-1)=3
‘ 59, 2y’ —Suyf 49y =0 Y= Sxy' + 9y y=1 y(-1)

54, 2y +xy +4y=0

65. X' 3% +5y=0, yD=1 y@)=-

d

4.4 Mechanical and Electrical Vibrations

In Section 4.1 the mathematical models derived for the spring-mass system, the linearized
er pendulum, and the RLC circuit all turned out to be linear constant coefficient differential

equations that, in the absence of a forcing function, are of the form »
. "+ by +cy=0. 1)
q . ,

To adapt Eq. (1) to a specific application merely requires interpretation of the coefficients
- in terms of the physical parameters that characterize the application. Using the theory and

o methods developed in Sections 4.2 and 4.3, we are able to solve Eq. (1) completely for ail
possible parameter values and initial conditions. Thus Eq. (1) provides us with an important
class of problems that illustrates the hnear theory descrlbed in Section 4.2 and solution
methods developed in Section 4.3.

] Undamped Free Vibrations | .
Recall that the equation of motion for the damped spring-mass system with external
‘i) ~ forcing is
. my" +1f +hy = F(O). @
Equation (2) and the pair of conditionsj
ler o ¥(O) = g, ¥'(0) = vy, ©)

that specify initial position y, and initial velocity v, provide a complete formulation of the
vibration problem. If there is no external force, then F(¢) = 0 in Eq. (2).

Let us also suppose that there is no damping, so that y = 0. This is an idealized conﬁgﬁra—
tion of the system, seldom (if ever) completely attainable in practice. However, if the actual
damping is very small, then the assumption of no damping may yield satisfactory results
over short to moderate time intervals. In this case, the equation of motion (2) reduces to

 m 4y =0. @) )
If we divide Eq. (4) by m, it becomes ’ '
the y '+ woy 0, ' V 5)
<0 where
atx

ws = k/m. T ' (6)
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~'The characteristic equation for Eq. (5)is . -
W+ 0k =0, ©)

and the corresponding characteristic roots are A = + ; @y. It follows that the general solution
of Eq. (5) is '

y = Acos wyt + Bsinwgt. (8)

where A and B are arbitrary constants. Substituting from Eq. (8) into the initial
conditions (3) determines the integration constants A and B in terms of initial position and
velocity, A =y, and B = vy /w,,.

In discussing the solution of Eq. (5), it is convenient to rewrite Eq. (8) in the phase-
amplitude form

 y=Reostwpi—6). | ©)

H

To see the relationship between Eqgs. (8) and (9), use the trigonometric identity for the
cosine of the difference of the two angles, wyt and §, to rewrite Eq. (9) as

¥ = Rcos 6 cos wyt + R sin § sin a)ot.. ‘ (10)
By comparing Eq. (10) with Eq. (8), we find that A, B, R, and & are related by the equations
A = Reosé, B = Rsin . (11)

From these two equations, we see that (R, 8)is simply the polar coordinate representation
of the point with Cartesian coordinates (4, B) (Figure 4.4.1).
Thus . : 7

R= VA2 + B2, (i2)

‘'while § satisfies

cosé = , - SIné = .
VA2 + B2 . VA2 4+ B2

(1ﬁ3)

x
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Let arctan (B/A) be the angle that lies in the principal branch of the inverse tangent function,
that is, in the interval —z /2 < 6 < x /2 (Figure 4.4.2). Then the values of 6 given by

arctan(B/A), if A >0,B > 0 (Ist quadrant)
7 +arctan(B/A), ~ if A < 0 (2nd or 3rd quadrant)
6= 1 27+ arctan(B/A), ifA > 0,B < 0 (4th quadrant)
z/2, ifA=0,B>0
37/2, ifA=0,B<0

\

will lie in the interval [0, 27).

N>

|
-20 -15 -10 -5 5 10 15 - 20 B/A

The principal branch of the arctangent function.

The graph of Eq. (9), or the equivalent Eq. (8), for a typical set of initial conditions is
shown in Figure 4.4.3. The graph is a displaced cosine wave that describes a periodic, or
simple harmonic, motion of the mass. The period of the motion is

T=i)—7;=,2yr<%>l/21 | | (14)

The circular frequency wy = v/k/m, measured in radians per unit time, is called the natural
frequency of the vibration. The maximum displacement R of the mass from equilibrium is
the amplitude of the motion. The dimensionless parameter 6 is called the phase, or phase

_R _________ )

Simple harmonic motion y = R cos (@yt —6).
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EXAMPLE
1

angle. The quantity 5/w, measures the time shift of the wave from its normal position
corresponding to § = (.
Note that the motion described by Eq. (9) has a constant amplitude that does not di-

‘minish with time. This reflects the fact that, in the absence of damping, there is no way
for the system to dissipate the energy imparted to it by the initial displacement and ve-

locity. Further, for a given mass m and spring constant k, the system always vibrates at
the same frequency w,, regardless of the initial conditions. However the initial conditions
do help to determine the amplitude of the motion. Finally, observe from Eq. (14) that T
increases as m increases, so larger masses vibrate more slowly. On the other hand, T de-
creases as k increases, which means that stiffer springs cause the system to vibrate more
rapidly. :

Suppose that a mass weighing 10 1b stretches a spring 2 in. If the mass is displaced an
additional 2 in. and is then set in motion with an initial upward velocity of 1 ft/s, determine
the position of the mass at any later time. Also determine the period, amplitude, and phase
of the motion. '

The spring constant is £ = 10 1b/2 in. = 60 Ib/ft, and the massism =w/g = %g Ib-s2 /ft.

Hence the equation of motion reduces to

Y +192y =0, (15)

and the general solution is
y = Acos(84/31) + Bsin(84/31).

The solution satisfying the initial conditions ¥(0) = é ft and y'(0) = ~i ft/s is

=

= 2cos®V3) - — sin8v3, (16)
‘ 8/3

that is, A = é and B = —1/(8\/5). The natural frequency ‘is @y = V192 = 13.856
radians (rad)/s , so the period is T = 27 /wy = 0.45345 s. The amplitude R and phase §
are found from Eqs. (12) and-(13). We have

R=Ly L 10 oisiean
and since A > 0 and B < 0, the angle § lies in the fourth quadraht,
§ = 2m + arctan(~1/3/4) = 5.87455 rad.

The graph of the solution (16) is shown in Figure 4.4.4.
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sl v =0.182 cos(83 ¢ - 5.875)
0.15

0.1
0.0

=0.182—

O R

i
0.2{0.4
—0.05 |-

01k
-0.15 —
-0.2 |-

T =0.453

An undamped free vibration: y” + 192y = 0, y(0) = é, y(0)=-1.

Damped Free Vibrations

'

If we include the effect of damping, the differential equation governing the motion of the
mass is '

1 my’/ + yy/ +ky=0. an

We are especially interested in examining the effect of variations in the damping coefficient

y for given values of the mass m and spring constant k. The roots of the corresponding
characteristic equation, . '

m\ +yh+k=0, (18)

are

19)

—y £/y? -4k
Ay = VYT e Wm=_y_<_1i 1_4k_m>,

2m 2m 7?

There are three cases to consider, depending on the sign of the discriminant v — dkm. -

1. Underdamped Harmonic Motion (y? — 4km < 0). In this case, the roots in Eq. (19)

Al — 241/2
are complex numbers y + iv with = —y /2m<0Oand v = E———-—i——y—)— > (. Hence
the general solution of Eq. (18 1s , A
‘ y=e "™ (Acosvi + B sin v1). 20)

2. Criticaily Damped Harmonic Motion (y2 — 4km = 0). In this case,

M = —y/2m < 0 is a repeated root. Therefore the general solution of Eq. (17) in this
case is . '

y=(A+Be . ' 1)
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3. Overdamped Harmonic Motion (y* ~ 4km > 0). Since m, v, and k are positive,
y? — dkm is always less than 2. In this case, the values of Ay and ), given by Eq. (19)
are real, distinct, and negative, and the general solution of Eq. (17) is

y =AeM! + B, 22)

Since the roots in Eq. (19) are either real and negative, or complex with a negative real
part, in all cases the solution y tends to zero as ¢ — oo; this occurs regardless of the values
of the arbitrary constants A and B, that is, regardless of the initial conditions. This confirms
our intuitive expectation, namely, that damping gradually dissipates the energy initially
imparted to the system, and consequently, the motion dies out with increasing time.

The most important case is the first one, which occurs when the damping is small. If we
let A=Rcoséand B =Rsinéin Eq. (20), then we obtain

y = Re™"2" cos(vt — §). (23)

The displacement y lies between the curves y = +Re~7"/ 2m: hence it resembles a co-
sine wave whose amplitude decreases as ¢ increases. A typical example is sketched in
Figure 4.4.5. The motion is called a damped oscillation or damped vibration. The amplitude
factor R depends on m, y, k, and the initial conditions.

<2

Damped vibration; y = Re™""/2" cos(vt — §).

Although the motion is not periodic, the parameter v determines the frequency with
which the mass oscillates back and forth; consequently, v is called the quasi-frequency.
By comparing v with the freq)uency @y of undamped motion, we find that

Q
v o= m (2N A
W kjm 4km 8km’

24)

The last approximation is valid when y2/4km is small. We refer to this situation as “small
damping.” Thus the effect of small damping is to reduce slightly the frequency of the os-
cillation. By analogy with Eq. (14), the quantity T; = 27 /v is called the quasi-period. It
is the time between successive maxima or successive minima of the position of the mass,
or between successive passages of the mass through its equilibrium position while going in
the same direction. The relation between 1; and T is given by ’

Ty PN '
—_— = = =[] - o~ ~
T v < 4km b 8km’ 5)

where again the last approximation is valid when y2/ 4km is small. Thus small damping
increases the quasi-period.
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Equations (24) and (25) reinforce the significance of the dimensionless ratio y2/dkm. Tt
is not the magmtude of y alone that determines whether damping is large or small, but the
magnitude of y? compared to 4km. When y?/4km s ‘small, then damping has a small effect
on the quasi-frequency and quasi-period of the motion. On the other hand, if we want to
study the detailed motion of the mass for all time, then we can never neglect the damping
force, no matter how small.

As y2 /4km increases, the quasi-frequency v decreases and the quasi-period 721 increases.
Infact,v—OandT; - ccasy — 2\/_ m. As indicated by Egs. (20), (21), and (22), the na-
ture of the solution changes as y passes through the value 2\/— km. This value of y is known
as critical damping. The motion is said to be underdamped for values of y < 2+/km; while

for values of y > 2\/—_ the motion is said to be overdamped. In the critically damped and
overdamped cases given by Egs. (21) and (20), respectively, the mass creeps back to its
equilibrium position but does not oscillate about it, as for small y. Note that this analysis
is consistent with the definitions of underdamped, critcally damped, and overdamped har-
monic motion based on the sign of ¥> — 4km (see pages 245-246). Two typical examples of
critically damped motion are shown in Figure 4.4.6, and the situation is discussed further
in-Problems 19 and 20. ' ‘

: ) 4
,7_1 - ‘ oy = [% f,(3t/2)]e‘t/2

Two critically damped motions: y’ +y +0.25y =0,y = (A + Bre™/?,

The motion of a certain spring-mass system is governed by the differential equation -
y'+0.125y +y =0, : (26)

where y is measured in feet and 7 in seconds. If y(0) = 2 and y(0) =0, determine the posi-
tion of the mass at any time. Find the quasi-frequency and the quasi-period, as well as the
time at which the mass first passes through its equilibrium position. Find the time = such
that [y(£)} < 0.1 for all z > 7. A

The solution of Eq. (26) is

V255

y=e"16 | Acos —T6—-t+Bsin

ol

16 -
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To éatisfy the initial conditions, we must choose A=2and B = 2 /V/255; hence the solution

of the initial value problem is

r+

16 o5 16

=-—§3—e—V16cos<-i%§§t-5 , Q@7
V255 16

V255 V255
y = ¢ /16 <2 cos 2 sin > t>

where tané = 1/4/255, so § = 0.06254. The displacement of the mass as a function of
‘time is shown in Figure 4.4.7. For purposes of comparison, we also show the motion if the
damping term is neglected. ' :

y'+y=0 ¥ +0.125y" +y =0

Vibration with small damping (solid curve) and with no damping
(dashed curve). In each case, y(0) = 2 and y'(0) = 0,

The quasi-frequency is v= \/ZE /16 20.998 and the quasi-period  is
T; = 2z/v = 6295 s. These values differ only slightly from the corresponding val-
ues (1 and 27, respectively) for the undamped oscillation. This is also evident from the
graphs in Figure 4.4.7, which rise and fall almost together. The damping coefficient is
small in this example, only one-sixteenth of the critical value, in fact. Nevertheless the
amplitude of the oscillation is reduced rather rapidly. Figure 4.4.8 shows the graph of the
solution for 40 < 7 < 60, together with the graphs of y = + 0.1. From the graph, it appears
that 7 is about 47.5, and by a more precise calculation we find that 7 = 47.5149 s,

To find the time at which the mass first passes through its equilibrium position, we refer

* to Eq. (27) and set /255¢/16 — § equal to z/2, the smallest positive zero of the cosine

function. Then, by solving for ¢, we obtain

= 2 1.637 s.

(5

Ph
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y
=32 pn6 cos(——-“255t 0 06254)
0.151- ¥ = 255" 16
i =01
AR Y A WENETEEENEREEES LA

0.05 |- , /\ |
| | /1 |

Solution of Example 2; determination of 7.

Phase Portraits for Harmonic Oscillators

The differences in the behavior of solutions of undamped and damped harmonic os-
cillators, illustrated by plots of displacement versus time, are completed by looking at
their corresponding phase portraits. If we convert Eq. (17) to a first order system where_
X = X1+ x,j = yi + Y], we obtain ' ‘ :

0 1

x =Ax=' X. o (28) -

~k/m —y/m

Since the eigenvalues of A are the roots of the characteristic equation (18), we know that
the origin of the phase plane is a center, and therefore stable, for the undamped system in
which y = 0. In the underdamped case, 0 < y? < 4km, the origin is a spiral sink. Direction
fields and phase portraits for these two cases are shown in Figure 4.4.9.

P ~

T

et

QPP 3

(@) ' (b

Direction field and phase portrait for (a) an undamped harmonic
oscillator. (b) a damped harmonic oscillator that is underdamped.
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If y5 = 4km, the matrix A has a negative, real, and repeated eigenvalue; if v? > dkm,
the eigenvalues of A are real, negative, and unequal. Thus the origin of the phase plane in
both the critically damped and overdamped cases is a nodal sink. Direction fields and phase
portraits for these two cases are shown in Figure 4.4.10.
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Direction field and phase portrait for (@) a critically damped harmonic

oscillator. (b) an overdamped harmonic oscillator.

It is clear from the phase portraits in Figure 4.4.10 that a mass can pass. through the
equilibrium position at most once, since trajectories either do not cross the X,-axi$, Or Cross
it at most once, as they approach the equilibrium point. In Problem 19, you are asked to

. give an analytic argument of this fact.

L E

‘In each of Problems 1 through 4; determine wy, R,

and & so as to write the given expression in the form
¥y = Rcos(wyt — ).

1. y=3cos2t+3sin2s

2. y=-—cost+3sint

3. y=4cos3t—2sin 3t

.y =-=2v3cos xr — 2sin xt

o5 (a) A mass weighing 2 b stretches a spring 6 in. If the

mass is pulled down an additional 3 in. and then released, and
if there is no damping, determine the position y of the mass
at any time 7. Plot y versus £. Find the frequency, period, and
amplitude of the motion.

(b) Draw a phase portrait of the equivalent dynamical sys-
tem that includes the trajectory corresponding to the initial
value problem in part (a). )

s 6. (a) A mass of 100 g stretches a spring 5-cm. If the mass

is set in' motion from its equilibrium position with a down-
ward velocity of lOlcm/s, and if there is no damping, deter-
mine the position y of the mass at any time . When does the
mass first return to its equilibrinm position?

(b) Draw a phase portrait of the equivalent dynamical sys-

" tem that includes the trajectory corresponding to the initial

value problem in part (a).

7. A mass weighing 3 1b stretches a spring 3 in. If the mass
is pushed upward, contracting the spring a distance of 1 in.,
and then set in motion with a downward velocity of 2 ft/s,
and if there is no damping, find the position y of the mass at
any time z. Determine the frequency, period, amplitude, and
phase of the motion.

8. A series circuit has a capacitor of 0.25 microfarad and an
inductor of 1 henry. If the initial charge on the capacitor is
107 coulomb and there is no initial current, find the charge
g on the capacitor at any time r.

9. (a) Amassof20 g stretches a spring 5 cm. Suppose that ¢

the mass is also attached to a viscous damper with a damp-
ing constant of 400 dyne-s/cm. If the mass is pulled down an
additional 2 cm and then released, find its position ¥ at any
time 7. Plot y versus ¢. Determine the quasi-frequency and the
quasi-period. Determine the ratio of the quasi-period to the
period of the corresponding undamped motion. Also find the
time = such that |y(¢)] < 0.05 cm for all > .

(b) Draw a phase portrait of the equivalent dynamical sys-
tem that includes the trajectory corresponding to the initial
value problem in part (a).

10. A mass weighing 16 1b stretches a spring 3 in. The mass  ~

is attached to a viscous damper with a damping constant of
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2 Tb-s/ft. If the mass is set in motion from its equilibrium po-
sition with a downward velocity of 3 in./s, find its position y
at any time ¢. Plot y versus ¢. Determine when the mass first
retarns to its equilibrium position. Also find the time 7 such
that |[y(#)] < 0.01 in for all £ > 7.

11. (a) A ‘spring is stretched 10 cm by a force of 3
newtons (N). A mass of 2 kg is hung from the spring and
i3 also attached to a viscous damper that exerts a force of 3 N
when the velocity of the mass is 5 m/s. If the mass is pulled
down 5 cm below its equilibrium position and given an ini-
tial downward velocity of 10 cm/s, determine its position y at
any time z. Find the quasi-frequency v and the ratio of v to the
natural frequency of the corresponding undamped motion.
(b) Draw a phase portrait of the equivalent dynamical sys-
tem that includes the trajectory corresponding to the initial
value problem in part (a).

1o (a) A series circuit has a capacitor of 1077 farad, a resis-

tor of 3 x 10? ohms, and an inductor of 0.2 henry. The initial
charge on the capacitor is 10~® coulomb and there is no initial
current. Find the charge ¢ on the capacitor at any time ¢.

(b) ‘Draw a phase portrait of the equivalent dynamical sys-
tem that includes the trajectory corresponding to the initial
value problem in part (a).

13. A certain vibrating system satisfies the equation
" + vy +y=0. Find the value of the damping coefficient
y for which the quasi-period of the damped motion is 50%
greater than the period of the corresponding undamped
motion.

14. Show that the period of motion of an undamped vibra-
tion of a mass hanging from a vertical spring is 2z \/IT s
where L is the elongation of the spring due to the mass and
g is the acceleration due to gravity.

15. Show that the solution of the initial value problem

my" +yy +ky=0, Y =yp V()=

can be expressed as the sum y = v + w, where v sat-
isfies the initial conditions v(ty) = yp, V'(#,) =0, w satis-
fies the initial conditions w(z) = 0, w/(f;) = y;, and both
v and w satisfy the same. differential equation as u.
This is another instance of superposing solutions of sim-
pler problems to obtain the solution of a more general
problem.

16. Show that A cos wyt + Bsin wyt can be written in the
form rsin{w,t — @). Determine r and 6 in terms of A and
B.If R cos(wyt — 8) = rsin(wyt — ), determine the relation-
ship among R, 7, 6, and 6.

17. - Amass weighing 8 Ib stretches a spring 1.5 in. The mass
is also attached to a damper with coefficient y. Determine the
value of y for which the system is critically damped. Be sure
to give the units for y.

18. If a series circuit Hés a capacitor of C = 0.8 microfarad
and an inductor of L = 0.2 henry, find the resistance R so that
the circuit is critically damped.

19. Assume that the system described by the equation
my" +yy +ky=0 is either critically damped or over-
damped. Show that the mass can pass through the equi-
librium position af most once, regardless of the initial
conditions. )

Hint: Determine all possible values of ¢ for which y = 0.

20. Assume that the system described by the equation
my" + vy +ky =0 is critically damped and that the initial
conditions are y(0) = y,,¥'(0) = vy. If vy = 0, show that
y — 0 as t — oo but that y is never zero. If y, is positive,
determine a condition on v, that will ensure that the mass
passes through its equilibrium position after it is released.

21. Logarithmic Decrement

(a) For the damped oscillation described by Eq. (23), show
that the time between successive maximais T, = 2z/v.

(b) Show that the ratio of the displacements at two succes-
sive maxima is given by exp(yT,/2m). Observe that this ra-

~ tio does not depend on which pair of maxima is chosen. The

natural logarithm of this ratio is called the logarithmic decre-
ment and is denoted by A.

(c) Show that A = =y /mv. Since m, v, and A are quantl-
ties that can be measured easily for a mechanical system, this
result provides a convenient and practical method for deter-
mining the damping constant of the system, which is more
difficult to measure directly. In particular, for the motion of
a vibrating mass in a viscous fluid, the damping constant
depends on the viscosity of the fluid. For simple geometric
shapes, the form of this dependence is known, and the pre-
ceding relation allows the experimental determination of the
viscosity. This is one of the most accurate ways of determin-
ing the viscosity of a gas at high pressure. '

22. Referring to Problem 21, find the loganthmlc decre-
ment of the system in Problem 10.

23. For the system in Problem 17, suppose that A = 3 and
T, = 0.3 s. Referring to Problem 21, determine the value of
the damping coefficient y. -

24. The position of a certain spring-mass system satisfies
the initial value problem -

V' +ky=0, y0O=2, YO =uv.

If the period and amplitude of the resulting motion are db-
sérved to be z and 3, respectively, determine the values of k
and v.

25. - Consider the initial value problem

Y4y +y=0, 0 =2 y(0)=0.

" We wish to explore how long a time interval is required
for the solution to become “negligible” and how this inter-
val depends on the damping coefficient y. To be more pre-
cise, let us seek the time 7 such that |y(f)| < 0.01 for all
t > 7. Note that critical damplng for this problem occurs for
y=2.
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(a) Lety =0.25 and determine =, or at least estimate it fairly

. accurately from 4 plot of the solution.

(b) Repest part (a) for several other values of y in the inter-
val 0 <y < 1.5. Note that 7 steadily decreases as y increases
for y in this range.

(c).Create a graph of r versus y by plotting the pairs of
values found in parts (a) and (b). Is the graph a smooth
curve? : _

(d) Repeat part (b) for values of y between 1.5 and 2. Show
that = continues to decrease until y reaches a certain critical
value y, after which z increases. Find y, and the correspond-
ing minimum value of = to two decimal places. )

(&) "Another way to proceed is to write the solution of the ini-
tial value problem in the form (23), Neglect the cosine factor
and consider only the exponential factor and the amplitude
R. Then find an expression for 7 as a function of y. Compare
the approximate results obtained in this way with the values
determined in parts (a), (b), and (d).

26.  Consider the initial value problem
my vy +ky=0, y0) =y, Y(0)=u,

Assume that 32 < 4km.
(a) Solve the initial value problem.

" (b) Write the solution in the form y(f) = Rexp(—yt/2m)

cos(vt — §). Determine R in terms of m, ¥, k, y,, and Up-
(c) Investigate the dependence of R on. the damping coeffi-
cient y for fixed values of the other parameters.

- 27. Use the differential equation derived in Problem 19

of Section 4.1 to determine the period of vertical oscilla-
tions of a cubic block floating in a fluid under the stated

_conditions.

28. Draw the phase portrait for the dynanﬁcal system equiv-
alent to the differential equation considered in Example 2:
Y +0.125y +y=0.

% 29. The position of a certain undamped spring-mass system

satisfies the initial value problem
y0) =0, y(0)=2.

(2) Find the solution of this initial value problem.

(b) Ploty versus t and y' versus ¢ on the same axes.

(¢) Draw the phase portrait for the dynamical system equiv-
alent to y" + 2y = 0. Include the trajectory corresponding to
the initial conditions y(0) = 0, y/(0) = 2.

Y'+2=0,

30. The position of a certain spring-mass system satisfies
the initial value problem

¥(0) =0,

(a) Find the solution of this initial value problem.

(b) Ploty versus 7 and y' versus 7 on the same axes.

(¢) Draw the phase portrait for the dynamical system equiva-
lent to y" + 41)/ + 2y = 0. Include the trajectory correspond-
ing to the initial conditions y(0) = 0, y/(0) = 2.

Y+ + 2 =0, YO =2.

31. Inthe absence of damping, the motion of a spring-mass
system satisfies the initial value problem

my" +ky=0,  y0)=aq,

(a) Show that the kinetic energy initially imparted to the
mass is mb® /2 and that the potential energy initially stored
in the spring is ka? /2, so that initially the total energy in the
system is (ka? + mb?)/2. _ o

(b) Solve the given initial value problem.

(c) Using the solution in part (b), determine the total energy
in the system at any time ¢ Your result should confirm the
principle of consetvation of energy for this system.

¥'(0) =b.

32. If the restoring force of a nonlinear spring satisfies the
relation '

F (Ax) = ~kAx — e(Ax),

where k > 0, then the differential equation for the displace-
ment x(7) of the mass from its equilibrium position satisfies
the differential equation (see Problem 17, Section 4.1)

mx" +yx +kx+ex® = 0.
Assume that the initial conditions are
x0)=0, X(0)=1.

(a) Find x(r) when e = 0 and also determine the amplitude
and period of the motion.

(b) Let ¢ = 0.1. Plot a numerical approximation to the so-
lution. Does the motion appear to be periodic? Estimate the
amplitude and period.

(¢) Repeat part (c) for e = 0.2 and € = 0.3.

(d) Plot your estimated values of the amplitude A and the
period T versus ¢. Describe the way in which A and 7', re-
spectively, depend on e.

(e) Repeat parts (c), (d), and (e) for negative values of ¢.

4.5 NOnhomogeneous Equations; Method
~of Undetermined Coefficients

We now return to the nonhomogeneous equation

LIyl =y" +p@)y +q(t)y = g(0), (D




