
Mat1062: Introductory Numerical Methods for PDE
Problem Set 1

Tuesday January 19, 2016
due: by 4pm, Friday January 29

You’re encouraged to work in groups; just make sure to have everyone’s name on the HW
when you hand it in.

1. Eigenvalues, Eigenfunctions

Do not hand in this problem. This is a problem for you to solve on your
own; please see me if you need help.

Given the heat equation ut = α2uxx on [0, L] with linear homogeneous boundary con-
ditions, we seek exact solutions of the form

u(x, t) = T (t)X(x)

Plugging this assumption into the PDE, one finds

T ′(t)

α2T (t)
=
X ′′(x)

X(x)
= k.

for some real number k. This implies that T (t) and X(x) satisfy the ODEs

T ′(t) = kα2T (t), X ′′(x) = kX(x).

If the constant k is a negative number then one can write k as −λ2 and the ODEs
become

T ′(t) = −λ2α2T (t), X ′′(x) = −λ2X(x),

resulting in the solution X(x) = A cos(λx) + B sin(λx) for constants A and B and a
T (t) that decays to zero as t→∞.

If the constant k is zero then the ODEs become

T ′(t) = 0, X ′′(x) = 0,

resulting in the solution X(x) = Ax + B for constants A and B and a T (t) that is
constant.

If the constant k is a positive number then one can write k as λ2 and the ODEs become

T ′(t) = λ2α2T (t), X ′′(x) = λ2X(x),

resulting in the solution X(x) = A cosh(λx) + B sinh(λx) for constants A and B and
a T (t) that goes to infinity as t→∞.



(a) If the IBVP has Dirichlet boundary conditions

u(0, t) = 0, u(L, t) = 0

prove that there are no nontrivial solutions X(x) when k ≥ 0. That is, all
separable solutions decay in time.

(b) If the IBVP has the Neumann boundary conditions

ux(0, t) = 0, ux(L, t) = 0

prove that there are no nontrivial solutions X(x) when k > 0.

(c) If the IBVP has Robin boundary conditions

ux(0, t)− h1 u(0, t) = 0, ux(L, t) + h2 u(L, t)

where h1 and h2 are real numbers, show that there are no nontrivial solutions X(x)
when k > 0. What about if k = 0? Note that if h1 and h2 are both positive then
the boundary conditions correspond to energy loss through the ends. Specifically,
a quick integration by parts argument show that

d

dt

∫ L

0

1

2
u(x, t)2 dx = −

∫ L

0

ux(x, t)2 dx− h2 u(L, t)2 − h1 u(0, t)2 ≤ 0

2. Eigenvalues and Eigenvectors

If the IBVP has Robin boundary conditions

3u(0, t) + ux(0, t) = 0, −8u(2, t) + ux(2, t) = 0.

There are two nontrivial X(x) which correspond to k > 0 solutions. Find the corre-
sponding eigenvalues. You will need to use a computer to help you to do this — it
involves finding the intersection of two curves or the zero of a single function, depend-
ing on how you do these things. I’m perfectly okay if you use maple, mathematica,
or wolfram alpha for this job — I don’t want you to go off and code up a zero-finder.
The matlab optimization toolbox has the command fzero, if you have that toolbox.
You want to find these eigenvalues up to 16 significant digits because you’re going to
need them for the next step. Call the eigenvalues λ1 and λ2 where λ1 > λ2. Find the
corresponding eigenfunctions X1(x) and X2(x).

Consider the spatial operator L defined by
uxx on (0, 2)

3u(0) + ux(0) = 0

−8u(2) + ux(2) = 0



(a) Write a matlab function called RobinBCsApproach1.m which has has two inputs:
the length of the interval [xL, xR] and the number of subintervals. It has one
output: the analogue of the (N − 1)× (N − 1) matrix M2 defined in (46) on page
27 of the lecture notes.

(b) Take N = 7, L = 2 and use your function to create a (N − 1) × (N − 1) matrix
M . Use matlab’s eig command to find the eigenvalues of M . You can find
the largest three eigenvalues in descending order via the command: evals =

sort(eig(M),’descend’);. From your rootfinding work, you know what the
two largest eigenvalues should be. Taking the rootfinding eigenvalues as the true
values, you can compare the finite-difference eigenvalues to them and define an
error. Define err1(1) = λ1-evals(1) and err2(1) = λ2-evals(2).

(c) Repeat the above with N = 2·7 and define err1(2) = λ1-evals(1) and err2(2)

= λ2-evals(2).

(d) Repeat the above with N = 22 · 7 and define err1(3) and err2(3) analogously.

(e) Repeat the above with N = 23 · 7 and define err1(4) and err2(4) analogously.

(f) Repeat the above with N = 24 · 7 and define err1(5) and err2(5) analogously.

(g) Repeat the above with N = 25 · 7 and define err1(6) and err2(6) analogously.

(h) Give the six values of err1 and err2. (Note: if you type format short e

you’ll get a better display of the error. You should notice they are decreas-
ing. Now give the subsequent ratios err1(1)/err1(2) and err2(1)/err2(2)

and so on. What do you see? (Note: if you type err1(1:5)./err1(2:6) and
err2(1:5)./err2(2:6). you’ll get all those ratios at once.)

(i) Plot the analytical eigenfunctions X1(x) and X2(x) and compare them to the
eigenvectors for correspdonding eigenvectors of the discretized problem for the
first few values of N . As a sample of how to get them, try the following com-
mands as a sample:
A = rand(4,4) (create a random 4x4 matrix)

A = A + A’ (make it symmetric)

[v,d] = eig(A) (v is a matrix of eigenvectors, d is a diagonal

matrix with eigenvalues on the diagonal)

[evals,I] = sort(diag(d),’descend’)

evals(1) (largest eigenvalue)

v1 = v(:,I(1)) (eigenvector for largest eigenvalue)

A*v1./v1 (check that I’m not lying)

evals(2) (next largest eigenvalue)

v2 = v(:,I(2)) (eigenvector for next largest eigenvalue)

A*v2./v2 (check that I’m not lying)

If you’re feeling ambitious, you can find an error which is the norm of the dif-
ference between the analytical eigenfunctions, sampled appropriately, and the
eigenvectors and see how those errors decrease as N increases.



(j) Repeat the above but with a new matlab function called RobinBCsApproach2.m
which has has two inputs: the length of the interval [xL, xR] and the number of
subintervals. It has one output: the analogue of the (N − 1)× (N − 1) matrix M3

on page 29 of the lecture notes.

(k) Repeat the above but with a new matlab function called RobinBCsApproach3.m
which has has two inputs: the length of the interval [xL, xR] and the number of
subintervals. It has one output: the analogue of the (N + 1)× (N + 1) matrix M4

on page 30 of the lecture notes.

3. Coding up the vanilla diffusion equation

We want to solve the partial differential equation for u(x, t)

ut = Duxx for 0 ≤ x ≤ L and t ≥ 0,

with initial data
u(x, 0) = f(x) for 0 ≤ x ≤ L;

and homogeneous Dirichlet boundary conditions

u(0, t) = u(L, t) = 0 for t > 0.

(a) Write a Matlab program to compute unj for n = 0, 1, . . . . Use explicit time-
stepping. The inputs to your code should be: xL and xR (the endpoints of your
interval), T (the time that you want to compute up to), N (the number of subin-
tervals you want to use in space: h = (xR − xL)/N), and M (the number of
timesteps to be taken: k = T/M).
How you visualize the solution is up to you. If you are motivated and have time,
an excellent way to see what is going on is to use the mesh command to plot the
surface u(x, t). This is, however, no substitute for making quantitative compar-
isons as in the next item.

(b) For f(x) = sin k0πx/L, with k0 an integer, you can easily compute the exact solu-
tion to this PDE. (What is it?) Take D = 1; take L = 2 and N = 10, 20, 40, 80, . . ..
Fix λ = 1/4. The time-step, k, is then determined via k = 1

4
h2. Measure the

maximum difference between the solution of your difference formula at T = 1 and
the exact solution. I.e. at T = 1 compute the maximum difference over x. Let
eN be this maximum error at time T = 1 and make a log-log plot of eN vs. N ,
and show that eN → 0 as N →∞.

(c) Consider the “delta function” initial data (suppose N is even)

u0j =

{
1/h, j = N/2

0, else

where h is the distance between meshpoints on the interval [0, 1]. Based on this
initial data, what solution of the diffusion equation do you expect your solution to



approximate, at least for short times? Thinking about the boundary conditions,
what do you expect your solution to do for long times? Run your code for this
initial data and your solution to your guessed-at analytical solution (sampled at
the same xj and tn as your solution).
As a measure of how the boundary conditions are affecting your solution, plot the
total mass:

In = h

(
1
2

(
u0 + uN

)
+

N−1∑
j=1

unj

)
≈ I(t) =

∫ L

0

u(x, t) dx

as a function of time. How does this behave for short times, and why does it help
you distinguish between “short” and “long” times?

(d) Make a copy of your code and modify it to take homogeneous Neumann boundary
conditions

ux(0, t) = ux(L, t) = 0, t ≥ 0

(assume now that the initial data f(x) satisfies this condition).

Repeat a), b), and c) above, taking f(x) = cos kπx/L. How does the profile of
I(t) change? (How does I(t) evolve in your discrete model?)

4. Diffusion in a two-material domain

We want to consider the diffusion equation on an interval with non-constant diffusivity.
For simplicity, we’ll take Dirichlet boundary conditions:

ut = D1 uxx ∀x ∈ (0, 1) ∀t > 0

ut = D2 uxx ∀x ∈ (1, 2) ∀t > 0

u(x, 0) = u0(x) ∀x ∈ [0, 2]

u(0, t) = uL ∀t > 0

u(2, t) = uR ∀t > 0

limx↑1 u(x, t) = limx↓1 u(x, t) ∀t > 0

limx↑1 D1ux(x, t) = limx↓1 D2ux(x, t) ∀t > 0

The “boundary” conditions at x = 1 correspond to “both the temperature and the
temperature flux are continuous at the material interface”. Really, they’re interface
conditions.

(a) A steady state satisfies the PDE and the boundary/interface conditions. Find the
steady state. (It’ll depend on D1, D2, uL, and uR. Make sure your answer makes
sense to you by considering the four cases 1) uL = uR, 2) D1 = D2, 3) D1 � D2,
and 4) D1 � D2.



(b) Consider a mesh where N = 2N0 and h = 2/N and xj = jh with j = 0, . . . N . In
this case, x0 = 0, XN0 = 1, and XN = 2. That is, there’s a meshpoint, XN0 , at
the interface. Find the ODEs for

dU1/dt, dUN0−1/dt, dUN0+1/dt, dUN−1/dt.

In doing so, make it clear how you used both of the boundary conditions at x = 1.
(The ODEs at the other meshpoints are the usual ones, just modified to take into
account whether you’re using D1 or D2.)

(c) Take D1 = 1/10, D2 = 2, uL = 1, and uR = 5 and consider the initial data
u0(x) = 1 + 2x. Modify your code from problem 3 to solve the initial data prob-
lem, computing up to time T = 1.

You’re doing explicit time-stepping and so you’ll need to choose the time-step k
by fixing a value for λ. Let’s take λ = 1/4. But how should you define λ? Should
you take λ = D1k/h

2 or λ = D2k/h
2? Try both and see what happens.

Now that you’ve chosen how to define λ, compute up to time T = 1 using
(N,M) = (10, 200), (N,M) = (20, 800), (N,M) = (40, 3200), and (N,M) =
(80, 12800) to create approximate solutions u1, u2, u3, and u4. From part a) you
know what the steady state is and so you know the value of u∞(1): the value of
the steady state at the interface.

i. On one graph, plot u1(1, t) − u∞(1), u2(1, t) − u∞(1), u3(1, t) − u∞(1), and
u4(1, t)− u∞(1) as functions of time.

ii. In a table, present the values for u1(1, T )−u∞(1), u2(1, T )−u∞(1), u3(1, T )−
u∞(1), and u4(1, T )− u∞(1).

iii. Also present the values for (u1(1, T )−u∞(1))/(u2(1, T )−u∞(1)), (u2(1, T )−
u∞(1))/(u3(1, T )− u∞(1)), and (u3(1, T )− u∞(1))/(u4(1, T )− u∞(1)).

iv. Finally, present the values for (u1(1, T )− u2(1, T ))/(u2(1, T )− u3(1, T )) and
(u2(1, T )− u3(1, T ))/(u3(1, T )− u4(1, T )).


