
Mat1062: Introductory Numerical Methods for PDE
Problem Set 3

Friday April 1, 2016
due: Friay April 15, 2016

1. Computing derivatives: Finite Difference versus Chebyshev versus Fourier

You already know a reasonable finite difference scheme for approximating the first
derivative at a point:

u′(x) ≈ u(x+ h)− u(x− h)

2h
.

And certainly you know how to approximate the derivative at a point for a periodic
function using the Discrete Fourier Transform and the Discrete Inverse Fourier Trans-
form.

Now to introduce another spectral method based on Chebyshev Polynomials. This is
for a function defined on [−1, 1]. (Given a function on a different interval, you’d just
change coordinates as needed.) First step: choose the number of intervals: N . Second
step, choose a nonuniform mesh in [−1, 1] via

xi = cos(ih) where j = 0, . . . N and h = π/N.

These are “Chebyshev Extreme Points”; see page 262 of https://people.maths.ox.
ac.uk/trefethen/8all.pdf You define weights

ci =

{
2 if i = 0 or i = N

1 otherwise;

see (8.2.2) on page 270. Using these weights, you define the (N + 1)× (N + 1) matrix
D via

D00 =
2N2 + 1

6
, DNN = −2N2 + 1

6
, Dij =

ci
cj

(−1)i+j

xi − xj
if i 6= j.

(See Theorem 8.4 on page 270.) In principle, you define the diagonal entries via
Dii = −xi

2(1−x2
i )

for 1 ≤ i ≤ N − 1. In practice, you use the fact that the rows need to

sum to zero and define the diagonal entry of the ith row to be the negative of the sum
of all the other entries in the ith row.

(a) Code up the Chebeshev Extreme Points and the differentiation matrix. Choose a
function f on [−1, 1], sample it at the Chebeshev Extreme Points, defining a vector
~f . Compute D~f and compare it to f ′ sampled at the Chebeshev Extreme Points.
If your function was a reasonable function (like sine or cosine or a polynomial)
then you should get excellent results.

https://people.maths.ox.ac.uk/trefethen/8all.pdf
https://people.maths.ox.ac.uk/trefethen/8all.pdf


(b) Choose a periodic function on [−1, 1]. You now have three ways of computing
the derivative at x = 0 (assuming N is even). Approximate f ′(0) using all three
methods, creating three errors for this value of N . Now double N and repeat this
process. Present a log-log graph of errors versus N . Plot some sight lines to see
if you can guess at any behaviours you observe of errors versus N .

2. Pseudospectral computation of a semilinear heat equation

Consider the semilinear heat equation

ut = Duxx +Bu2 (1)

with periodic boundary conditions on (−π, π). The numbers D and B are assumed
positive. This homework set is intended to be an exploration of “diffusion versus
nonlinearity”. For Burger’s equation ut + uux = Duxx the diffusion always “beats”
the nonlinearity — there’s never finite-time blow-up. We will see that things aren’t so
simple for equation (1).

(a) First look at the PDE without the nonlinearity: ut = Duxx. Can solutions blow
up in finite time? Why or why not? If solutions don’t blow up in finite time,
what do they do as time goes to infinity? Now look at the equation without the
diffusion: ut = Bu2. Can solutions of this ODE blow up in finite time? If yes,
under what conditions can they blow up?

(b) Assume u is a solution of the above and define

v(x, t) = a u(bx, ct)

where a, b, and c are all positive numbers. What PDE does v satisfy? By choosing
a, b, and c well, you should be able to find that v is a periodic solution of

vt = vxx + v2 (2)

on (−π, π). What does this rescaling mean about the roles of D and B in whether
or not solutions can blow up in finite time?

(c) Write a pseudo-spectral code that approximates solutions of (2) on (−π, π). You
choose the time-stepping. Choose some simple initial data, choose a (relatively)
short final time, compute a sequence of solutions (v1, v2, v3, . . . ) up to that time
(where v1 was computed with timestep k, v2 with timestep k/2, v3 with timestep
k/4 and so on) and demonstrate that your code has the order of accuracy you
expected.

(d) Find a two-parameter family of periodic initial data which satisfies: 1) there is one
maximum, located at x = 0, 2) the maximum increases and decreases in height as
you vary one of the parameters, and 3) the “width” of the central “bump” varies
as you vary the other parameter. (For the last item you can equally well look at
the first derivative and check that its maximum value increases and decreases as
you vary the other parameter.)



(e) Do some explorations with your code on this class of initial data. Do you see
what appears to be finite-time blow up sometimes? But not others? If yes, is
what happens determined by only one parameter?

(f) Write a point-doubling code which takes a profile sampled at N points and returns
the same profile centered at 2N points. As discussed in class, this is done as
follows: given u sampled at x0 = −π, . . . , xN−1 = π − h compute its FFT û.
Create a vector v̂ of length 2N which uses the N values of û but is padded out
by zeroes elsewhere. (It’s fine if you use only N − 1 values of û.) Take the IFFT
of v̂ to create a vector v which has 2N values. Taking a fairly simple function for
u, demonstrate graphically that u and v agree where they should. Also, compute
the maximum of |u− v] (at the meshpoints they have in common).

(g) For one of the simulations in which you think you may be seeing finite-time blow-
up, compute up to a time T1 (of your choosing). Stop the computation, take
the solution at that time, double the number of points, decrease the timestep
by a factor of 2 and continue the compuation, computing up to a time T2 (of
your choosing). Stop the computation, take the solution at that time, double
the number of points, decrease the timestep by a factor of 2 and continue the
compuation, computing up to a time T3 (of your choosing). Do this until you
find that it’s taking your computer “too long” or that you’re using up too much
disk space, whichever comes first. (I’m fine if you don’t want to leave anything
running for longer than an hour.) Now that you have these solutions, plot them
at a sequence of times along with their spectra at a sequence of times. Find the
maximum value from the solution at each time and plot (t,maxu(·, t)). If you
have any ideas for how to plot this so that it’s a more compelling demonstration
of finite-time blow-up, do so.

(h) Explain why a non-uniform mesh would be better than a uniform mesh for this
particular exploration.


