Mat1062: Introductory Numerical Methods for
PDE

Mary Pugh

January 13, 2009

1 Ownership

These notes are the joint property of Rob Almgren and Mary Pugh.

2 Boundary Conditions

We now want to discuss in detail methods for solving the linear diffusion
equation for u(x,t)
Ut = Duyy (1)

We shall suppose that the domain is X, < x < Xg, and that initial data
up(x) is given at t = 0:

u(x,0) = uog(x), Xy <x < Xg.

and that suitable boundary conditions are given on x = X, and x = X
for t > 0. We will consider boundary conditions that are Dirichlet, Neu-
mann, or Robin. Dirichlet boundary conditions specify the value of u at
the endpoints:

w(Xp,t) = ur(t), u(Xg,t) = ugp(t)

where v, and ug are specified functions of time. Neumann conditions specify
the derivative u, at the endpoints:

Ux(Xp,t) = ug(t), ux(Xg,t) = ugn(t).

2 Mary Pugh Mat1062 Jan. 13, 2009

Robin boundary conditions specify a linear combination of u and u, at the
endpoints:

au(Xy,t) +bux(Xy,t) =ug(t), cu(Xg,t) +dux(Xg,t) =ua(t)

where a, b, ¢, and d are fixed constants usually determined by material
properties.

2.1 Space Discretization
For given X, and Xg, we choose a number N. Our grid spacing is

Xr—Xp

h =
N

and we place grid points at locations
x; = Xp +jh, j=0,1,...,N,

so that xg = X and xn = Xg. We represent our solution by a vector U(t)
of length N + 1, whose components are

U(t) ~ u(x;,t), §=0,...,N.

That is, the jth component of the vector, U;(t) is supposed to approximate
the PDE’s solution at the x; grid point: wu(x;,t).
We take the initial data to be an exact sample of the true initial data
Up(x):
UJ(O) = uo(Xj).

Given Du,y,, a domain [X{, Xg], and boundary conditions, these determine a
linear operator on a function space. We will approximate this linear operator
by a matrix operating on the vector L. This allows us to define U(t) as
satisfying a linear ODE Uy = LU, which we can solve by standard methods.
As we will see below, even if the domain is unchanged and the operation
Duyx is unchanged, different boundary conditions lead to different linear
operators and hence different dynamics. This holds in the continuous case
(where the operator is acting on a function space) and in the discretized case
(where the approximating operator is just a matrix). Boundary conditions
matter!

Mat1062 Jan. 13, 2009 Mary Pugh 3

2.2 Dirichlet Boundary Conditions

Let us consider the case of Dirichlet boundary conditions: u(Xg,t) = ug(t)
and u(Xg,t) = ug(t). There are N+1 meshpoints and U(t) has a component
for each meshpoint. However, the the components Up(t) and Un(t) are
specified by the boundary conditions and so there are only N —1 unknowns:
Uq(t) ... Un_1(t).

From the January 8 notes, we need to approximate wyy(x;j,t) for T <
j < N —1. This is done with the finite-difference approximation. In matrix
form this is

1T -2 1 Uy
U (X7) 1 T -2 1 U,
uXX(XNfﬂ 1 —2 1 Un_1

1T =21 Un

However, these expressions are not quite what we want. The vector on the
left is of size N — 1 and will determine the interior grid values. The vector
on the right is of size N 4 1; it involves both the interior grid values and the
boundary values. We need to express derivatives at the interior grid points
in terms only of interior grid values and the Dirichlet boundary conditions.
This means that we need to eliminate Uy and Uy from the above.

Substituting the boundary values up = uy(t), un = ug(t), we approxi-
mate U,y (with Dirichlet boundary conditions on [X, Xg]) via the inhomo-
geneous linear operator L,

LiUu=M;U+ Ry,

where My isa (N—1)x (N—1) tridiagonal matrix and Ry is an (N—1)-vector
containing the boundary data:

-2 1 ug(t)
1 1T =2 1 1 0
M1_ﬁ) R1(t)_ﬁ (2)
1 -2 1 0
1T =2 ug(t)

Ry depends on time if the boundary conditions do. In practice, it is often
more convenient to store the boundary values in their natural locations at

4 Mary Pugh Mat1062 Jan. 13, 2009

the endpoints of a linear grid, and then the derivatives can be computed by
doing the (N — 1) x (N + 1) multiplication above.

Of course, the matrix M never actually exists in the computer, nor do
we ever actually do a matrix multiply as written above: since most entries
are zero, storing the matrix and doing a matrix multiply would be a huge
waste of memory and time. “Multiplication” really means “apply the linear
operator,” which we do by taking differences.

2.3 Neumann Boundary Conditions

For Neumann boundary conditions (uy(Xp,t) = up(t), ux(Xg,t) = ug(t))
the values at the endponts, Uy(t) and Upn(t), are unknown. Again, we
approximate the differentiation operation as

LLXX(X()) 1 -2 1 U]

Uxx (XN) 1T =2 1 Un—1
1T =2 1 Un
Un1

Note that we've done something strange here. We refer to U_; and Ung
which are the values at X, — h and Xy + h respectively. These grid points
are not in our domain. They are artifices introduced to help implement
the finite difference approximation of u,, at the endpoints. Such points are
often called “ghost points”.

The vector on the left is of size N + 1 and will determine the interior
grid values and the boundary grid values. The vector on the right is of size
N + 3; it involves the interior grid values, the boundary grid values, and the
values at the two ghost points. We need to express the right-hand side in
terms of interior grid values and the boundary grid values only. This means
that we need to use the Neumann boundary conditions to determine the
values at the ghost points. This is done as follows:

u; —u_
uL(t):ux(XLnt)N% = U7 =U;—Zhu(t)
as a result
u; -2 _ 2U; -2 2ug(t
(X, 1) ~ Wo+U 52Uy —2Up 2wy).

h? h? h

Mat1062 Jan. 13, 2009 Mary Pugh 5

Similarly, at the right-hand endpoint

Ungt — Ung

O = uX(XR»t) ~ Zh

= Ung1 = Uno1 + Zhug(t)

hence
Ung1 — 2Un + Ung . 2UN—71 — 2UN n 2ug(t)
h?2 N h?2 h
And so, we approximate uyy (with Neumann boundary conditions on
[Xr, Xr]) with the inhomogeneous linear operator

uxx(XR)t) ~

MyU + Ry,

where M, is a (N+1) x (N +1) tridiagonal matrix and R; is an N+ 1-vector
containing the boundary data:

1T =2 1 0
M= - Ry(t) = = 3)
2 = hz .. y 2 — h
1T -2 1 0
2 =2 ug(t)

A natural question to ask is why we used centered finite differences
above to approximate u,(X.) and u,(Xg) rather than using a left-difference
for u,(X.) and a right-difference for u,(Xg):

Up—U4 Unyr — Un
h h

We will revisit this question when we discuss the convergence and accuracy
of our scheme.

0 =u,(Xy) ~ 0 =ux(Xg) ~

2.4 Robin Boundary Conditions

We handle Robin boundary conditions (a w(Xp,t) + b uy(Xy,t) = uy(t),
c W(Xg,t) + d ux(Xg,t) = ug(t)) in the same manner that we handle Neu-
mann boundary conditions: by introducing ghost grid points the values at
which are then determined from the boundary conditions.

U;—Uu_
u(t) = au(Xe,t) + b u(Xe,t) ~alp+ b %

2ah 2hu(t
= U ;=U+ g Up — LIL)L()

6 Mary Pugh Mat1062 Jan. 13, 2009

as a result

Uy —2Up+ U_4 2U; — (2—2ah/b)Uy 2uy(t)
U (Xp, t) ~ = - .

h2 h? bh
Similarly,
u — Un—
Un(t) = c u(Xn, t) + d Usx(Xa,t) ~c Un+ d %
2ch 2hug(t
= UN+1:UN—1—TUN+ 5()

hence

Uy —2Up+ U_; . 2UNn_1— (24 2ch/d)UN n 2ug(t)

uXX(XR) t) ~ hz - hz dh

In this way, we can approximate u,, (with Robin boundary conditions
on [X., Xg]) as the inhomogeneous linear operator

= M;U + R;

where My is a (N + 1) x (N 4 1) tridiagonal matrix:

—2+2ah/b 2 —u.(t)/b
1 1 -2 1 5 0
Ms:ﬁ)R3(t)zﬂ :
1 -2 1 0

2 —2-—2ch/d ug(t)/d

(4)
As a reality check, note that if a =c =0 and if b =d = 1 then this matrix
is the same matrix as for the Neumann boundary conditions.

2.5 Summary
The spatial derivative operator
Lu = Duyy on [Xi, Xg]

w(Xg,t) =ur(t)
w(Xg, t) = ug(t)

Mat1062 Jan. 13, 2009 Mary Pugh 7

has the discrete approximation LU = MU + R where M = DM; and
R = DR; with My and R; given in (2). Similarly, the spatial derivative
operator

Lu = Duyy on [Xi, Xgl

ux(Xg, t) = ur(t)

Ux(XR, t) = ugr(t)

has the discrete approximation LU = MU + R where M = DM, and
R = DR; with M, and R, given in (3). Finally, the spatial derivative
operator

Lu = Duyy on [Xi,Xg]

au(Xg,t) + buy(Xg, t) =ur(t)

cu(Xg, t) + Dux(Xg, t) = ug(t)

has the discrete approximation LU = MU + R where M = DMj3 and
R = DR3 with M3 and Rj given in (4).

In all three cases, we have L which is an affine linear operator. But the
three matrices My, My, and M3 are all different from one another. They
will have different eigenvalues and eigenvectors. All of the eigenvalues of M,
and M, will be either zero or negative. The matrix M3 can have positive
eigenvalues. They correspond to modes that grow exponentially in time,
rather than decaying — this shows how powerful boundary effects can be!

