
Mat1062: Introductory Numerical Methods for

PDE

Mary Pugh

January 13, 2009

1 Ownership

These notes are the joint property of Rob Almgren and Mary Pugh.

2 Boundary Conditions

We now want to discuss in detail methods for solving the linear di�usion

equation for u(x, t)

ut = D uxx (1)

We shall suppose that the domain is XL ≤ x ≤ XR, and that initial data

u0(x) is given at t = 0:

u(x, 0) = u0(x), XL ≤ x ≤ XR.

and that suitable boundary conditions are given on x = XL and x = XR

for t > 0. We will consider boundary conditions that are Dirichlet, Neu-

mann, or Robin. Dirichlet boundary conditions specify the value of u at

the endpoints:

u(XL, t) = uL(t), u(XR, t) = uR(t)

where uL and uR are speci�ed functions of time. Neumann conditions specify

the derivative ux at the endpoints:

ux(XL, t) = uL(t), ux(XR, t) = uR(t).

1



2 Mary Pugh Mat1062 Jan. 13, 2009

Robin boundary conditions specify a linear combination of u and ux at the

endpoints:

a u(XL, t) + b ux(XL, t) = uL(t), c u(XR, t) + d ux(XR, t) = uR(t)

where a, b, c, and d are �xed constants usually determined by material

properties.

2.1 Space Discretization

For given XL and XR, we choose a number N. Our grid spacing is

h =
XR − XL

N

and we place grid points at locations

xj = XL + j h, j = 0, 1, . . . ,N,

so that x0 = XL and xN = XR. We represent our solution by a vector U(t)

of length N + 1, whose components are

Uj(t) ≈ u
(
xj, t), j = 0, . . . ,N.

That is, the jth component of the vector, Uj(t) is supposed to approximate

the PDE's solution at the xj grid point: u(xj, t).

We take the initial data to be an exact sample of the true initial data

u0(x):

Uj(0) = u0

(
xj

)
.

Given Duxx,, a domain [XL, XR], and boundary conditions, these determine a

linear operator on a function space. We will approximate this linear operator

by a matrix operating on the vector U. This allows us to de�ne U(t) as

satisfying a linear ODE Ut = LU, which we can solve by standard methods.

As we will see below, even if the domain is unchanged and the operation

Duxx is unchanged, di�erent boundary conditions lead to di�erent linear

operators and hence di�erent dynamics. This holds in the continuous case

(where the operator is acting on a function space) and in the discretized case

(where the approximating operator is just a matrix). Boundary conditions

matter!



Mat1062 Jan. 13, 2009 Mary Pugh 3

2.2 Dirichlet Boundary Conditions

Let us consider the case of Dirichlet boundary conditions: u(XL, t) = uL(t)

and u(XR, t) = uR(t). There are N+1 meshpoints and U(t) has a component

for each meshpoint. However, the the components U0(t) and UN(t) are

speci�ed by the boundary conditions and so there are only N−1 unknowns:

U1(t) . . .UN−1(t).

From the January 8 notes, we need to approximate uxx(xj, t) for 1 ≤
j ≤ N − 1. This is done with the �nite-di�erence approximation. In matrix

form this is

 uxx(x1)
...

uxx(xN−1)

 ≈ 1

h2


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2 1




U0

U1
...

UN−1

UN

 .

However, these expressions are not quite what we want. The vector on the

left is of size N − 1 and will determine the interior grid values. The vector

on the right is of size N+1; it involves both the interior grid values and the

boundary values. We need to express derivatives at the interior grid points

in terms only of interior grid values and the Dirichlet boundary conditions.

This means that we need to eliminate U0 and UN from the above.

Substituting the boundary values u0 = uL(t), uN = uR(t), we approxi-

mate uxx (with Dirichlet boundary conditions on [XL, XR]) via the inhomo-

geneous linear operator L1

L1U = M1U + R1,

where M1 is a (N−1)×(N−1) tridiagonal matrix and R1 is an (N−1)-vector

containing the boundary data:

M1 =
1

h2


−2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2

 , R1(t) =
1

h2


uL(t)

0
...

0

uR(t)

 (2)

R1 depends on time if the boundary conditions do. In practice, it is often

more convenient to store the boundary values in their natural locations at



4 Mary Pugh Mat1062 Jan. 13, 2009

the endpoints of a linear grid, and then the derivatives can be computed by

doing the (N − 1)× (N + 1) multiplication above.

Of course, the matrix M1 never actually exists in the computer, nor do

we ever actually do a matrix multiply as written above: since most entries

are zero, storing the matrix and doing a matrix multiply would be a huge

waste of memory and time. \Multiplication" really means \apply the linear

operator," which we do by taking di�erences.

2.3 Neumann Boundary Conditions

For Neumann boundary conditions (ux(XL, t) = uL(t), ux(XR, t) = uR(t))

the values at the endponts, U0(t) and UN(t), are unknown. Again, we

approximate the di�erentiation operation as

uxx(x0)
...

uxx(xN)

 ≈ 1

h2


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2 1





U−1

U0

U1
...

UN−1

UN

UN+1


.

Note that we've done something strange here. We refer to U−1 and UN+1

which are the values at XL − h and XR + h respectively. These grid points

are not in our domain. They are arti�ces introduced to help implement

the �nite di�erence approximation of uxx at the endpoints. Such points are

often called \ghost points".

The vector on the left is of size N + 1 and will determine the interior

grid values and the boundary grid values. The vector on the right is of size

N+3; it involves the interior grid values, the boundary grid values, and the

values at the two ghost points. We need to express the right-hand side in

terms of interior grid values and the boundary grid values only. This means

that we need to use the Neumann boundary conditions to determine the

values at the ghost points. This is done as follows:

uL(t) = ux(XL, t) ∼
U1 − U−1

2h
=⇒ U−1 = U1 − 2huL(t)

as a result

uxx(XL, t) ∼
U1 − 2U0 + U−1

h2
=

2U1 − 2U0

h2
−

2uL(t)

h
.



Mat1062 Jan. 13, 2009 Mary Pugh 5

Similarly, at the right-hand endpoint

0 = ux(XR, t) ∼
UN+1 − UN−1

2h
=⇒ UN+1 = UN−1 + 2huR(t)

hence

uxx(XR, t) ∼
UN+1 − 2UN + UN−1

h2
=

2UN−1 − 2UN

h2
+

2uR(t)

h
.

And so, we approximate uxx (with Neumann boundary conditions on

[XL, XR]) with the inhomogeneous linear operator

M2U + R2,

where M2 is a (N+1)×(N+1) tridiagonal matrix and R2 is an N+1-vector

containing the boundary data:

M2 =
1

h2


−2 2

1 −2 1
. . .

. . .
. . .

1 −2 1

2 −2

 , R2(t) =
2

h


−uL(t)

0
...

0

uR(t)

 (3)

A natural question to ask is why we used centered �nite di�erences

above to approximate ux(XL) and ux(XR) rather than using a left-di�erence

for ux(XL) and a right-di�erence for ux(XR):

0 = ux(XL) ∼
U0 − U−1

h
0 = ux(XR) ∼

UN+1 − UN

h

We will revisit this question when we discuss the convergence and accuracy

of our scheme.

2.4 Robin Boundary Conditions

We handle Robin boundary conditions (a u(XL, t) + b ux(XL, t) = uL(t),

c u(XR, t) + d ux(XR, t) = uR(t)) in the same manner that we handle Neu-

mann boundary conditions: by introducing ghost grid points the values at

which are then determined from the boundary conditions.

uL(t) = a u(XL, t) + b ux(XL, t) ∼ a U0 + b
U1 − U−1

2h

=⇒ U−1 = U1 +
2ah

b
U0 −

2huL(t)

b



6 Mary Pugh Mat1062 Jan. 13, 2009

as a result

uxx(XL, t) ∼
U1 − 2U0 + U−1

h2
=

2U1 − (2 − 2ah/b)U0

h2
−

2uL(t)

bh
.

Similarly,

uR(t) = c u(XR, t) + d ux(XR, t) ∼ c UN + d
UN+1 − UN−1

2h

=⇒ UN+1 = UN−1 −
2ch

d
UN +

2huR(t)

d

hence

uxx(XR, t) ∼
U1 − 2U0 + U−1

h2
=

2UN−1 − (2 + 2ch/d)UN

h2
+

2uR(t)

dh
.

In this way, we can approximate uxx (with Robin boundary conditions

on [XL, XR]) as the inhomogeneous linear operator

= M3U + R3

where M2 is a (N + 1)× (N + 1) tridiagonal matrix:

M3 =
1

h2


−2 + 2ah/b 2

1 −2 1
. . .

. . .
. . .

1 −2 1

2 −2 − 2ch/d

 , R3(t) =
2

h


−uL(t)/b

0
...

0

uR(t)/d

 .

(4)

As a reality check, note that if a = c = 0 and if b = d = 1 then this matrix

is the same matrix as for the Neumann boundary conditions.

2.5 Summary

The spatial derivative operator
Lu = Duxx on [XL, XR]

u(XL, t) = uL(t)

u(XR, t) = uR(t)



Mat1062 Jan. 13, 2009 Mary Pugh 7

has the discrete approximation LU = MU + R where M = DM1 and

R = DR1 with M1 and R1 given in (2). Similarly, the spatial derivative

operator 
Lu = Duxx on [XL, XR]

ux(XL, t) = uL(t)

ux(XR, t) = uR(t)

has the discrete approximation LU = MU + R where M = DM2 and

R = DR2 with M2 and R2 given in (3). Finally, the spatial derivative

operator 
Lu = Duxx on [XL, XR]

au(XL, t) + bux(XL, t) = uL(t)

cu(XR, t) + Dux(XR, t) = uR(t)

has the discrete approximation LU = MU + R where M = DM3 and

R = DR3 with M3 and R3 given in (4).

In all three cases, we have L which is an a�ne linear operator. But the

three matrices M1, M2, and M3 are all di�erent from one another. They

will have di�erent eigenvalues and eigenvectors. All of the eigenvalues of M1

and M2 will be either zero or negative. The matrix M3 can have positive

eigenvalues. They correspond to modes that grow exponentially in time,

rather than decaying | this shows how powerful boundary e�ects can be!


