

Mat 1197 - Representations of the mirabolic subgroup

February 9

Let

$$H = \left\{ \begin{pmatrix} a & x \\ 0 & 1 \end{pmatrix} \mid a \in F^\times, x \in F \right\},$$

$$N = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in F \right\},$$

$$S = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \mid a \in F^\times \right\}.$$

The group H is called the *mirabolic subgroup* of $GL_2(F)$. Let (π, V) be a smooth representation of N and let ϑ be a quasicharacter of N (that is, a one-dimensional smooth representation of N). Let

$$V(\vartheta) = \text{Span}(\{ \pi(n)v - \vartheta(n)v \mid n \in N, v \in V \}) \text{ and } V_\vartheta = V/V(\vartheta).$$

When ϑ is trivial, we write $V(N)$ instead of $V(\vartheta)$ and V_N instead of V_ϑ .

1. Let (π, V) be a smooth representation of N and let $v \in V$. Show that $v \in V(\vartheta)$ if and only if there exists a compact open subgroup U of N such that $\int_U \vartheta(n)^{-1} \pi(n)v \, dn = 0$. (Here, dn is a Haar measure on N .)
2. If (π_j, V_j) are smooth representations of N , $1 \leq j \leq 3$ and $V_1 \rightarrow V_2 \rightarrow V_3$ an exact sequence of N -morphisms, show that there is a corresponding exact sequence at the level of the spaces $(V_j)_\vartheta$.
3. Suppose that ϑ is nontrivial. Show that the inclusion $V(N) \rightarrow V$ induces an isomorphism $V(N)_\vartheta \simeq V_\vartheta$.
4. Let (π, V) be a smooth representation of N . Prove that if $v \in V$ and $v \neq 0$, then there exists a quasicharacter ϑ of N such that $v \notin V(\vartheta)$.
5. Let (π, V) be a smooth representation of H . Suppose that $V_N = \{0\}$ and $V_\vartheta = \{0\}$ for some nontrivial quasicharacter ϑ . Prove that $V = \{0\}$. (Hint: Consider the action of S on the spaces $V(\vartheta)$ for ϑ nontrivial.)
6. Let ϑ be a nontrivial quasicharacter of N . Let $\pi = \text{Ind}_N^H \vartheta$ and let V be the space of π . Let $\pi^c = \text{c-Ind}_N^H \vartheta$ and let V^c be the space of π^c . Show that
 - a) $V(N) = V^c(N) = V^c$ and $V/V^c(N) = \{0\}$.
 - b) The map $f \mapsto f(1)$ induces isomorphisms $V_\vartheta \simeq \mathbb{C}$ and $V_\vartheta^c \simeq \mathbb{C}$.
7. Let ϑ be a nontrivial quasicharacter of N .
 - a) Prove that $\text{c-Ind}_N^H \vartheta$ is an irreducible representation of H .
 - b) Prove that the contragredient (smooth dual) of $\text{c-Ind}_N^H \vartheta$ is reducible.
 - c) Prove that $\text{c-Ind}_N^H \vartheta$ is not admissible.
8. Let (π, V) be a smooth representation of H and let ϑ be a nontrivial quasicharacter of N . Let $q_\vartheta : V \rightarrow V_\vartheta$ be the quotient map. Frobenius reciprocity gives an isomorphism $\mathcal{A} : \text{Hom}_H(V, \text{Ind}_N^H V_\vartheta) \simeq \text{Hom}_N(V, V_\vartheta)$. Let $q_* = \mathcal{A}^{-1}(q_\vartheta)$. (That is, for $v \in V$, $q_*(v)$ is the function $h \mapsto q(\pi(h)v)$.) Prove that the H -morphism $q_* : V \rightarrow \text{Ind}_N^H V_\vartheta$ induces an isomorphism $V(N) \simeq \text{c-Ind}_N^H V_\vartheta$.
9. Let (π, V) be an irreducible smooth representation of H . Prove that exactly one of the following holds:
 - (i) $\dim V = 1$ and there exists a quasicharacter χ of H such that $\pi(hn) = \chi(h)$ for all $n \in N$ and $h \in H$.
 - (ii) V is infinite-dimensional and $\pi \simeq \text{c-Ind}_N^H \vartheta$ for any nontrivial quasicharacter ϑ of N .

Describe the spaces V_N and V_ϑ (for ϑ nontrivial) in both cases.