MAT 240 - Problem Set 4

Due Thursday October 16th

Questions 1d), 2c), 2d), and 7 will be marked.

- 1. In each case, find a basis for the indicated subspace W of the vector space V. In some parts, you must find a basis for W that has certain additional properties. (Be sure to demonstrate that the set you find is linearly independent and spans W.)
 - a) Let W be the subspace of $V = \mathbb{C}^5$ consisting of all vectors $x = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{C}^5$ that satisfy

$$-2ix_1 + x_2 - x_3 + (1 - i)x_4 = 0$$
$$x_1 + ix_2 - 2x_5 = 0$$

- b) Let $V = P_2(\mathbb{C})$ and $W = \{ f(x) \in V \mid f(x) = f(x-i) \}.$
- c) Let $V = W = M_{2 \times 2}(F)$. Find a basis for W that has the property that every element $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ belonging to the basis satisfies a + b = 1.
- d) Let $V = P_n(\mathbb{C})$, where $n \ge 1$. Find a basis for W = V such that every f(x) belonging to the basis satisfies f(0)f(1) = -1.
- 2. In each case below, for the given subset S of V, find a basis for the subspace span(S) of V, and compute the dimension of span(S).
 - a) Let V be the space of functions from \mathbb{R} to \mathbb{R} , and let $S = \{ f(t) = e^{rt}, g(t) = e^{st} \}$, where r and s are fixed real numbers such that $r \neq s$.
 - b) Let $V = P(\mathbb{R})$ and $S = \{x^2 1, x^2 + 1, x^2 2, x^2 + 2\}.$
 - c) Let V be a vector space over the field \mathbb{R} of dimension at least 3 and let $S = \{x + z, x + y, 3x y + 4z\}$, where x, y and z are distinct vectors in V such that $\{x, y, z\}$ is linearly independent.
 - d) Let $V = M_{2 \times 2}(\mathbb{F}_5)$ and let

$$S = \left\{ \begin{array}{cc} 1 & 2 \\ 3 & 1 \end{array} \right\}, \begin{array}{cc} 2 & 4 \\ 1 & 0 \end{array} \right\}, \begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right\}, \begin{array}{cc} 4 & 3 \\ 2 & 1 \end{array} \right\}.$$

e) Let V be a vector space of dimension at least n + 1, where n is a positive integer. Let

 $S = \{ y + x_1, y + x_2, \dots, y + x_n \} \cup \{ y + x_1 + x_2, y + x_1 + x_2 + x_3, \dots, y + x_1 + x_2 + \dots + x_n \},\$

where $\{x_1, x_2, \dots, x_n\}$ is linearly independent and $y \in V$ does not belong to span $(\{x_1, x_2, \dots, x_n\})$.

- 3. Question 12 of $\S1.6$.
- 4. Question 26 of $\S1.6$.
- 5. Question 27 of §1.6.
- 6. Let n be a positive integer and let F be a field.
 - a) Prove that any basis for $P_n(F)$ must contain a polynomial of degree n.

- b) Find a basis for P(F) that has the property that all elements in the basis have degree at least n + 1. (Be sure to demonstrate that the set you find is linearly independent and spans P(F).)
- 6. Let $n \ge 2$ and let V be an n-dimensional vector space over a field F. Let j be an integer such that $1 \le j \le n-1$. Prove that there exists at least one subspace W of V such that $\dim(W) = j$.
- 7. Let $n \ge 2$ and let V be an n-dimensional vector space over a field F. Suppose that j is an integer such that $1 \le j \le n-1$ and W_1 is a subspace of V such that $\dim(W_1) = j$.
 - a) Prove that there exists a subspace W_2 of V such that $W_1 \cap W_2 = \{\mathbf{0}\}$ and $\dim(W_2) = n-j$. (*Hint*: Corollary 2 of Theorem 1.10, or Theorem 1 of the notes posted on the course home page, may be useful.)
 - b) Suppose that W_2 is as in part a). Prove that every vector $x \in V$ can be expressed in the form $x = x_1 + x_2$, where $x_1 \in W_1$ and $x_2 \in W_2$. Show that, given a fixed x, the vectors $x_1 \in W_1$ and $x_2 \in W_2$ are unique.
- 8. Let V be a vector space over a field F. Suppose that $n \ge 2$ and $\dim(V) = n$. Let W_1 and W_2 be subspaces of V such that $\dim(W_1) + \dim(W_2) > n$. Prove that $W_1 \cap W_2 \ne \{\mathbf{0}\}$. (*Hint*: Let S_1 be a basis for W_1 and let S_2 be a basis for W_2 . If you assume that $W_1 \cap W_2 = \{\mathbf{0}\}$, what can you say about properties of the set $S_1 \cup S_2$?)