CHAPTER 2
Representations of Finite Groups

In this chapter we consider only finite-dimensional representations.
2.1. Unitarity, complete reducibility, orthogonality relations

Theorem 1. A representation of a finite group is unitary. ¢ Proof. Let (w, V') be a (finite-
dimensional) representation of a finite group G = { g1,92,...9n }. Let (-,-)1 be any inner
product on V. Set

n

<vvw> = Z<7T(gj)v77r(gj)w>1a v, weV.

=1

Then it is clear from the definition that
(m(g)v, m(g)w) = (v,w), v,weV,ged.

Note that if v € V, then (v,v) = 37 (m(gj)v,7(g;)v)1 and if v # 0, then 7(g;)v # 0 for
all j implies (mw(g;)v,m(g;)v)1 > 0 for all j. Hence v # 0 implies (v,v) > 0. The other
properties of inner product are easy to verify for (-,-), using the fact that (-,-); is an inner

product, and each m(g;) is linear. The details are left as an exercise. qed

The following is an immediate consequence of Theorem 1 and a result from Chapter 1

stating that a finite-dimensional unitary representation is completely reducible.
Theorem 2. A representation of a finite group is completely reducible.

Example. Let G be a finite group acting on a finite set X. Let V be a complex vector
space having a basis {vy,,...,v,,, } indexed by the elements z1,...,x,, of X. If g € G,
let 7(g) be the operator sending v, to vg..;, 1 < j < m. Then (7,V) is a representation
of GG, called the permutation representation associated with X.

Let A(G) be the set of complex-valued functions on G. Often A(G) is called the
group algebra of G - see below. Let R4 be the (right) regular representation of G
on the space A(G): Given f € A(G) and g € G, Ra(g)f is the function defined by
(Ra(9)f)(g90) = f(909), go € G. Note that R4 is equivalent to the the permutation repre-
sentation associated to the set X = GG. Let L 4 be the left regular representation of G on the
space A(G): Given f € A(G) and g € G, L a(g)f is defined by (L4(g9)f)(g0) = (g g0),
go € G. Tt is easy to check that the operator f — f, where f(g) = f(g1), is a unitary
equivalence in Homg (R4, L 4).



If f1, fo € A(G), the convolution f1 * fy of fi with f5 is defined by
(f1* f2)(g Z f1(995 1) f2(g0), geq.
go€G

With convolution as multiplication, A(G) is an algebra. It is possible to study the repre-
sentations of G in terms of A(G)-modules.

We define an inner product on A(G) as follows:

(fi, £2) = 1GI7 Y A9 fa(9),  f, f2 € AG).

geG
Theorem 3 (Orthogonality relations for matrix coefficients). Let (71, V) and
(mo, V) be irreducible (unitary) representations of G. Let a;'- «(g) be the matrix entries of
the matrix of m;(g) relative to a fixed orthonormal basis of V;, i = 1,2 (relative to an inner
product which makes m; unitary). Then
(1) If my % 7o, then (a},az,,) = 0 for all j, k, £ and m.
(2) (a ]k,aem) 0;¢0km /n1, where ny = dim V;.
Proof. Let B be a linear transformation from V to V1. Then A := |G|~ 35, m1(g)Bm2(g) ™"
is also a linear transformation from V5 to V;. Let ¢’ € G. Then
m(g)A =G|} Z m1(g'g)Bma(g™") = |G|} Z m1(g)Bma(g~'g') = Ama(g').
geG geG
Hence A € Homg (ma, m),
Let n;, = dimV;, ¢ = 1,2. Letting bj; be the j/th matrix entry of B (relative to the
orthonormal bases of V5 and V; in the statement of the theorem). Then the j/th entry of
A (relative to the same bases) is equal to

‘G‘ ! Z Z ZCLJM NVaVZ g_l)‘

geG p=1v=1

Suppose that m; % m5. By the corollary to Schur’s Lemma, A = 0. Since this holds for
all choices of B, we may choose B such that b,, = 0,10um, 1 < <nq, 1 <v < ny. Then
G713 e ajr(9)az, (g7") = 0. Since the matrix coefficients a;,,(g) are chosen relative
to an orthonormal basis of V2 which makes 72 unitary, it follows that a,¢(g~') = a2 (g).
Hence (ajy,af,) = |GI7" 3 eq aji(9)ag,, (g) = 0. This proves (1).

Now suppose that m; = m5. In this case, Schur’s Lemma implies that A = AI for some
scalar . Hence tr A = |G| ™! > geq tr(mi(g)Bm ()Y =trB=mny\

That is, the j/th entry of the matrix A is equal to

G|~! Z ZZ&M buvase(g™h) = tr Bdjo/na.

geG p=1v=1

Taking B so that b, = §,,0,m, we have |G|~* > gec a}k(g)a1 (g71) = 8;00km/n1. qed

mi
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Corollary. Let m; and my be irreducible representations of G such that my % my. The
susbpace of A(G) spanned by all matrix coefficients of 71 is orthorgonal to the subspace
spanned by all matrix coefficients of ms.

Proof. Let ajl-k (g) be as in Theorem 3. Let v be a basis of the space V; of 71, and let bjx(g)
be the jkth entry of the matrix [m1(g)]y. Then there exists a matrix C' € GL,, (C) such
that [bjx(9)] = Clajk(9)]1<jk<n, C~! for all g € G (C is the change of basis matrix from
the 3 to 7). It follows that

bjx € Span{ay,, | 1 <m,f<ny}.

Hence the subspace spanned by all matrix coefficients of m; coincides with the subspace
spanned by the matrix coefficients ag,,, 1 < ¢, m < n;. Hence the corollary follows from
Theorem 3(1). ged

Corollary. There are finitely many equivalence classes of representations of a finite group

G.

Proof. This is an immediate consequence of the preceding corollary, together with dim A(G) =
|G|. qed

For the remainder of this chapter, let G be a finite group, and let {m,..., 7, } be a
complete set of irreducible representations of GG, that is, a set of irreducible representations
of G having the property that each irreducible representation of GG is equivalent to exactly
one 7;. Let n; be the degree of m;, 1 < j <r. Let aim(g) be the /mth entry of the matrix
of m;(g) relative to an orthonormal basis of the space of m; with respect to which each

matrix of 7; is unitary.

Theorem 4. The set {‘/njazm |1 <¥¢m <nj,1<j<r} isan orthonormal basis of
A(G).

Proof. According to Theorem 3, the set is orthormal. Hence it suffices to prove that
the set spans A(G). The regular representation R4 is completely reducible. So A(G) =
@t _, Vi, where each Vj is an irreducible G-invariant subspace. Fix k. There exists j
such that R4 |y, ~ m;. Choose an orthonormal basis 8 = { f1,..., fn, } of Vi such that

[Ra(9) lvi]g = [a),,(9)], g € G. Then
folgo) = (Ralon) (1) = S algo) fil1), 1< 0<m,

Hence f, = Y17, ciage, with ¢; = f;(1). It follows that
Vi C Span{aim |1<4,m<mn;}.

qged



Theorem 5. Let 1 < j < r. The representation m; occurs as a subrepresentation of R 4
with multiplicity n;.

Proof. Fixm € {1,...,n; }. Let W}, = Span{a’ , | 1 <£<n]} Then {a/ ,|1<0<n;}
is an orthogonal basis of WJ,. And W/, is orthogonal to WJ , whenever j # j' or m # m/.
Hence A(G) = &7_, @ Wi,

Let g, go € G. Then

Ra(go)al,i(9) = ale(990) Z aly(g0),  1<L<n;

It follows that the matrix of R4(go) relative to the basis {a’ ,|1 < £ < n;} of W,
coincides with the matrix of 7;. Therefore the restriction of R4 to the subspace o Wi
is equivalent to the nj-fold direct sum of 7;. qed

Corollary. n3 +---+n2 =|G|.

Corollary. A(G) equals the span of all matrix coefficients of all irreducible representations

of G.

Theorem 6 (Row orthogonality relations for irreducible characters). Let x; =
Xr;» 1 < j <. Then (xx,X;) = 0jk-

Proof.
& 0, if k# j
(Xks Xj) ZZ @ @ {szzll/njzl, ifk=j"

p=1lv=1

Lemma. A finite-dimensional representation of a finite group is determined up to equiv-
alence by its character.

Proof. If m is positive integer, let mn; = 7;®- - -®7;, where 7; occurs m times in the direct
sum. Let 7 = mym ®mo®- - - dm,m,.. Then y, = Z;:1 mix;. Let 7' =lim @@L,
We know that m ~ 7’ if and only if m; = ¢; for 1 < j <r. By linear independence of the
functions x;, this is equivalent to x» = x». qed

Lemma. Let 1 = mym @ -+ ® mym.. Then (Xx, Xr) = Z;Zl m?.

Corollary. 7 is irreducible if and only if (Xx, X=) = 1.

A complex-valued function on G is a class function if it is constant on conjugacy
classes in G. Note that the space of class functions on G is a subspace of A(G) and the
inner product on A(G) restricts to an inner product on the space of class functions.
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Theorem 7. Theset { x; | 1 <j <r} is an orthonormal basis of the space of class func-
tions on G. Consequently the number r of equivalence classes of irreducible representations
of G is equal to the number of conjugacy classes in G.

Proof. By Theorem 6, the set {x; | 1 < j <} is orthonormal. It suffices to prove that
the functions x; span the class functions.
Let f be a class function on G. Since f € A(G), we can apply Theorem 4 to conclude

that
f:Z Z \/_ame \/_amé an Z f?dvze)aiw'

j=1m¢=1 m, =1

Next,

() flo)=IGI" Y flded™ ") =IGI” 12% Z (fral,0) > al(g'99'™").

g'eqG m, =1 g'eG
Note that
n;
|G|_1 Zafne(glggl_l) = ’G’_l Z Z ainy(g/)aﬂy(g)aig(g’_l)
g'€G g’ €qG p,v=1

nj nj

=Y {1617 Y adu()al, (9) | alul9) = D (ahad)ad, ()

wu,v=1 g’ €G w,rv=1
=n; e Z al,(9) = Smens x5 (9)-

Substituting into (*) results in
=D D (a0 0mexi(9) = ) (Z fral, ) Z -x3)X5 (9
j=1m, =1 j=1 \¢=1 =1

qged
If g € G, let |cl(g)| be the number of elements in the conjugacy class of g in G.

Theorem 8 (Column orthogonality relations for characters).

Zx

|G|/|cl(g)|, if ¢’ is conjugate to g
0, otherwise.

Proof. Let g1,...,9, be representatives for the the distinct conjugacy classes in G. Let
A = [x;(9x))1<jk<r- Let ¢; = |cl(g;)], 1 < j < r. Let D be the diagonal matrix with
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diagonal entries ¢;, 1 < j <r. Then

(ADA") e = Z(AD)mj = Z > Xm(9¢)Dejxe(g;)
= " xm(gi)eixe(g;) = Y xm(9)Xe(g) = |Gdme
Jj=1 geG

Thus ADA* = |G|I. Since A(DA*) is a scalar matrix, A(DA*) = (DA*)A. So DA*A =
|G|I. That is,

r

|Gl0me =Y (DA")mjAje = cixi(gm)x;(ge)-

j=1 =1
qed

Example: Let G be a nonabelian group of order 8. Because G is nonabelian, we have
Z(G) # G, where Z(G) is the centre of G. Because G is a 2-group, Z(G) # {1}. If
|Z(G)| =4, then |G/Z(G)| =2, so G/Z(G) is cyclic. That is, G/Z(G) = (9Z(G)), g € G.
Hence G = (Z(G)U{x}). But this implies that G is abelian, which is impossible. Therefore
|Z(G)| = 2. Now |G/Z(G)| = 4 implies G/Z(G) is abelian. Combining G nonabelian and
G/Z(@G) abelian, we get Gger C Z(G). We cannot have G4, trivial, since G is nonabelian.
So we have Gg4er = Z(G). Now, we saw above that G/Z(G) cannot be cyclic. Thus

G/Z(Q) = C/Guer ~ 7,27 x 7,21

Suppose that y is a linear character of G (that is, a one-dimensional representation).
Then x | Gaer = 1, because x(g19297 95 ) = x(g1)x(92)x(91) " *x(g2) ™+ = 1. Now Ge, is
a normal subgroup of G. So we can consider x as a linear character of G/G 4. Now, in view
of results on tensor products of representations, we know that G/G4e, has 4 irreducible
(one-dimensional) representations, each one being the tensor product of two characters of
Z/27. Hence

P+124124 124024+ 402 =G| =8,

with n; > 2, j > 5. It follows that » =5 and ns = 2.

Since Gger = Z(G) has order 2, there are two conjugacy classes consisting of single
elements. There are 5 conjugacy classes altogether. Let a, b, and ¢ be the orders of
the conjugacy classes containing more than 1 element. Then 2 + a + b + ¢ = 8 implies
a=0b=c=2. Let x1, zo and x3 be representatives of the conjugacy classes containing 2
elements. Let z be the nontrivial element of Z(G). Then 1, y, x1, x2, 3 are representatives
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of the 5 conjugacy classes. The character table of G takes the form:

1 1 2 2 2

1 Y T To T3
i1 1 1 1 1
Yo 11 1 1 1
s 11 1 1 1
a1 1 1 1 1
x5 2 xs5(y) xs(zi) xs(w2) xs(zs)

Using column orthogonality relations, we see that

0= ij(y)m =4+ 2x5(y),

implying y5(y) = —2. And

5 4
0= ij(a:k)xj(l) = ZXj(ﬂUk;) + 2x5(2k) = 2x5(7k ),

Jj=1

implying ys5(zx) =0, 1 < k < 3.

Note that (up to isomorphism) there are two nonabelian groups of order 8, the dihedral
group Dg, and the quaternion group Js. We see from this example that both groups have
the same character table.

Exercises:
1. Using orthogonality relations, prove that if (7;, V}) is an irreducible representation of
a finite group G, j = 1,2, then m; ® 72 is an irreducible representation of G x G».
Then prove that every irreducible representation of G; x G5 arises in this way.

2. Let Dy be the dihedral group of order 10.
a) Describe the conjugacy classes in Dqg.
b) Compute the character table of Dyg.

3. Let B be the upper triangular Borel subgroup in GL3(F,), where [, is a finite field
containing p elements, p prime. Let N be the subgroup of B consisting of the upper
triangular matrices having ones on the diagonal.

a) Identify the set of one-dimensional representations of B.

b) Suppose that 7 is an irreducible representation of B, having the property that
m(x)v # v for some z € N and v € V. Show that 7 |y is a reducible representation
of N. (Hint: One approach is to start by considering the action of the centre of
N onV.)

4. Suppose that G is a finite group. Let n € N. Define 6,, : G — N by
On(g) ={heG[h" =g}, geG.
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10.

Let x;, 1 <i <1 be the distinct irreducible (complex) characters of G. Set

va(i) = 1GI7 D xalg™)-

geqG

Prove that 6,, = 2199 Vn(Xi)Xi-
Let (m,V) be an irreducible representation of a finite group G. Prove Burnside’s
Theorem:

Span{(g) | g € G } = Endc(V).

(Hint: Of course the theorem is equivalent to Span{ [7(g)ls | ¢ € G} = Myuxn(C),
where (3 is a basis of V. This can be proved using properties of matrix coefficients of
7 (Theorem 3)).

Let (m,V') be a finite-dimensional representation of a finite group G. Let

Wegt =Span{v®@uv |[veV}CVV
Weym = Span{ v; ® v — va ® v1 |v1,v2€V}CV®V.

a) Prove that W, and Wy, are G-invariant subspaces of V ® V' (considered as
the space of the inner tensor product representation m ® m of G).
b) Let (A2w,A2V) be the quotient representation, where A2V = (V @ V)/Weys.
Then A?7 is called the exterior square of 7. Compute the character x 2.
c¢) Let (Sym®r,Sym®V) be the quotient representation, where Sym?V = (V ®
V)/Weym. Then Sym?r is called the symmetric square of . Prove that (the
inner tensor product) 7 ® 7 is equivalent to A%7w @© Sym?r.
Let (7, V) be the permutation representation associated to an action of a finite group
G on a set X. Show that x.(g) is equal to the number of elements of X that are fixed
by g.
Let f be a function from a finite group G to the complex numbers. For each finite
dimensional representation (m, V') of G, define a linear operator 7(f) : V. — V by
T(flv = Y cq fgn(g)v, v € V. Prove that n(f) € Homg(m,m) for all finite-
dimensional representations (7, V') of G if and only if f is a class function.

A (finite-dimensional) representation (m,V’) of a finite group is called faithful if the
homomorphism 7 : G — GL(V) is injective (one-to-one). Prove that every irreducible
representation of G occurs as a subrepresentation of the set of representations

{m, 7T, TRTRAT,TRTRTRT,.... }.

Show that the character of any irreducible representation of dimension greater than 1
takes the value 0 on some conjugacy class.
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11. A finite-dimensional representation (7, V') of a finite group is multiplicity-free if each
irreducible representation occurring in the decomposition of 7 into a direct sum of
irreducibles occurs exactly once. Prove that m is multiplicity-free if and only if the

ring Homeg (7, 7) is commutative.

2.2. Character values as algebraic integers, degree of an irreducible represne-
tation divides the order of the group

A complex number z is an algebraic integer if f(z) = 0 for some monic polynomial f
having integer coefficients. The proof of the following lemma is found in many standard
references in algebra.

Lemma.
(1) Let z € C. The following are equivalent:
(a) z is an algebraic integer
(b) z is algebraic over Q and the minimal polynomial of z over Q has integer coeffi-
cients.
(c) The subring Z|z] of C generated by Z and z is a finitely generated Z-module.
(2) The algebraic integers form a ring. The only rational numbers that are algebraic
integers are the elements of Z.

Lemma. Let 7 be a finite-dimensional representation of G and let g € G. Then x.(g) is
an algebraic integer.

Proof. Because G is finite, we must have ¢* = 1 for some positive integer k. Hence
7(g)¥ = 1. Tt follows that every eigenvalue of 7(g) is a kth root of unity. Clearly a kth
root of unity is an algebraic integer. Since x(g) is the sum of the eigenvalues of 7(g), it
follows from part (2) of the above lemma that x(g), being a sum of algebraic integers, is
an algebraic integer. ged

Lemma. Let gi,...g, be representatives of the conjugacy classes in G. Let c; be the
number of elements in the conjugacy class of g;, 1 < j < r. Define f; € A(G) by
filg) = ¢jxi(9)/xi(1), if g is conjugate to g;. Then f;(g) is an algebraic integer for
1<i<randallg€@G.

Proof. Let go € G. As g ranges over the elements in the conjugacy class of g;, so does
90990 ! Therefore

Yo omlg) =Y, milgo)milg)mi(go) " =milgo) | D milg) | milgo)

g€ecl(gy) g€ecl(gy) gecl(gy)



So T := ded(g ) mi(g) belongs to Homg (;, m;). By irreducibility of m;, T' = zI for some
z € C. Note that
6T = 3 ile) = exiley) = #xi(1).
gecl(gy)
50 2 = ¢;Xi(95)/xi(1)-
Let g be an element of cl(gs). Let a;;5 be the number of ordered pairs (¢’, §) such that
g'Gg = g. Note that a;;s is independent of the choice of g € cl(gs).

(cixe(90)/xe (D) (eixe(g) eI = | D mlg) | | Y. m(d)

g'€cl(gi) gecl(gy)
= Z Z Wt(glé)zz Z aijsmi(g)
g’€cl(g;) gecl(gy) s=1 gecl(gs)

= (Z aijsCth(gs)/Xt(1)> 1

Hence

(cixe(9:)/x¢(1)) (ejxe(g5)/xe (1 ZazjsCth (9s)/x2(1).

This implies that the subring of C generated by the scalars csx:(gs)/x:(1), 1 < s < r,
and Z is a finitely-generated Z-module. Since Z is a principal ideal domain, any submod-
ule of a finitely-generated Z-module is also a finitely-generated Z-module, the submodule
Zlcixt(g:)/x+(1)] is finitely-generated. Applying part (2) of one of the above lemmas, the
result of this lemma follows. qed

Theorem 9. n; divides |G|, 1 < j <.
Proof. Note that
|Gl/xa(1) = |G|<Xi7Xi>/Xi( )

= chxz 95)x:(9;)/x:(1 Z ¢ixi(95)/xi(1)) xi(g;)-

71=1
Because the right side above is an algebraic integer, the left side is a rational number which
is also an algebraic integer, hence it is an integer. ged
2.3. Decomposition of finite-dimensional representations

In this section we describe how to decompose a representation 7 into a direct sum of
irreducible representations, assuming that the functions a’ , are known.
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Lemma. Let (m,V) be a finite-dimensional representation of G. For 1 <k <r, 1< j ¢ <
ny, define Pfg :V —V by

Pl =ni|GI71)  aky(g)m(g).
geG
Then
(1) m(9)Pyy = 2201, ay;(9) Py, and Pim(g) = 3201 an(9)Pf,, g € G.
(2) P;}Pl’fy = P, if k = k' and £ = pi, and equals 0 otherwise.
(3) (P)" = P

Proof. For the first part of (1),

w(9) Pl = |G|\ Y ak,(9)m(9g)) = G i Y dby (g1 )m(g)
g'eqG g’'eG
ng N
=G| Y Y b (g ab(9)m(g) = al(9) Pl
g'eGr=1 v=1

The second part of (1) is proved similarly.
For (2),

PEPY, =i GI7H Y db(9)m(9) Pl = mil G171 Y by (g) Zaw

geG geG

- ”kz atu’ 50 Py = Ok 00, P,
For (3),

(Pf)" = nl G171 Y aju(g)m(9™) =melGI7H Y afy(g~Hm(g™") = Py

geG geG

Set VF = PE(V). Note that , since (PJ;)* = Pf5 = (PF)?, PJ; is the orthogonal

projection of V' on ij From property (2) of the above lemma, it follows that ij 1 Vj’?/
if k#k orj+#j.

Let W = @j_, ®}%, V. Note that P} (V) = P5,PK(V) C V) € W. Fix vy € W+
Then

0 = (vo, Pfy(v) _nk|G|1Z%e (vo, m(g)v)v = mlaly, fa),
geG

where f(g) = (vo, m(g)v), g € G. Tt follows that f € A(G)*. Hence f(g) =0 forall g € G.
Setting v = vy and g = 1, we have (vg,vg)y = 0. Thus vg = 0. That is, W = V.
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Next, note that P Vt =0if k £ k' or t # ¢, by part (2) of the above lemma.
Let v € V£ Then v = PE(v') for some v € V. Now v = PE(v') = PE(PE()) =
Pk (v), so we have

Pj ( ) P£P££< ) ijjpjkﬁ(v) - ‘/yk

Thus PF,(Vf) C V. Now
Vi = PhVE = Pl PLVE € PEVE VP
Hence we have Peg VE =V}, Let v, v € VF. Then

(Pe(v), Piy(v')) = {(Py)" Pjo(v), v') = (P Py(v),v') = (Pfy(v),v') = (v,0").

We have shown
Lemma. Pfe is an isometry of Vzk onto ij

Choose an orthonormal basis e}, €5, ..., ek | of V = Pf;(V). Then eé‘?g = P} (e?l),
1 < j < rg is an orthonormal basis of Vek. It follows that the set

{efl1<j<m,1<<m, 1<k<r}

is an orthonormal basis of V. Set Y = Span{ efe |1<¢<ny}. If g€ G, then

s

W(Q)??E = 7T( Pﬁl Zaué 1/16]1 = Zaﬁﬁ(g)€§y~

v=1

This shows that Y]k is G-invariant and has the matrix [a%,(9)](1<,r<n,} Telative to the
given orthonormal basis of Y]k This implies that 7r|yjk ~ 7, 1 < 7 < rg. Now
V = @i<k<r P1<j<r ij, so we have decomposed 7 into a direct sum of irreducible
representations. This decomposition is not unique.

Set Y* = @7, YF. Now {ef, |1 <j <rp, 1 <0< ny}is an orthonormal basis of Y,
and T |yr ~ rEmg. Because Pk 70 is the orthogonal projection of V' on VEand YF = @?lee ,
it follows that P* := vy Pze is the orthogonal projection of V on Y*. Looking at the

definitions, we see that this orthogonal projection P* is defined by
anlGl B ak,(9)m(9) = nklGITH Y xk(g)7(g)
9€@G geG

Suppose that W is a G-invariant subspace of V' such that 7 |y is equivalent to a direct
sum of 7, with itself some number of times. Let {vi,...,v,, } be an orthonormal basis of
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an irreducible G-invariant subspace of W, chosen so that the matrix of the restriction of

7(g) to this subspace is [a} (g)]. Then

Pk(v] = ni |G|~ Z Xk (g = k|G Z Za’gg(g) Zaﬁj(g)vu
p=1

geG geG (=1
Nk Nk
—1 k ko k
= nk|G| Z Z a’lgé(g)auj (g)’UM = N Z <a'uj7 CLEZ)U,U«
geG l,u=1 lu=1
= nknglvj =0
Therefore P¥ | W is the identity. Because P* is the orthogonal projection of V on Y*, we
know that P*(v) = v if and only if v € Y*. Tt follows that W C Y*. Now we may conclude

that if we have a G-invariant subspace of V' such that the restriction of 7 to that subspace
is equivalent to rym, then that subspace must equal Y*.

Lemma. The subspaces Y* are unique.

The subspace Y* is called the m-isotypic subspace of V. It is the (unique) largest
subspace of V' on which the restriction of 7 is a direct sum of representations equivalent
to m. Of course, we will have Y* = {0} if no irreducible constituent of 7 is equivalent to

Tk -

2.4. Induced representations

One method of producing representations of a finite group G is the process of induc-
tion: given a representation of a subgroup of GG, we can define a related representation of
G. Let (7, V) be a (finite-dimensional) representation of a subgroup H of G. Define

V={f:G—=V][f(hg)=n(h)f(9), he H geG}.

We define the induced representation iGm = Ind% (7) by (i$7(9)f)(90) = f(909), 9, g0 €
G. Observe that if h € H, then

(i57(9) f)(hgo) = f(hgog) = 7(h) f(g09) = m(h)(iG™(9)f)(g0)-

It follows from the definitions that the degree of i equals |G||H| ™! times the degree of

7. Let (-,-)y be any inner product on V. Set (f1, f2)y = |G|7! deG<fl(g)7f2(g)>Va I1,

fo € V. It is easy to check that this defines an inner product on V with respect to which
i%m is unitary.
Example If H = {1} and = is the trivial representation of H, then igﬂ' is the right regular
representation of G.

The Frobenius character formula expresses the character of igﬂ in terms of the char-

acter of 7.
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Theorem 10 (Frobenius character formula). Let (w,V) be a representation of a
subgroup H of G. Fix g € G. Let hq,..., h,, be representatives for the conjugacy classes
in H which lie inside the conjugacy class of g in G. Then

Xi¢(9) = |G| H[™ 1Z:IclH el ()|~ xx (hi).

Proof. Let g € G. Define T : ¥V — V by T = > ) i¢7(g'). Note that trT =

|cl(g)|xic = (9)-
Let 8 = {v1,...,v, } be an orthonormal basis of V' such that each [7(h)|g, h € H, is

a unitary matrix. For each j € {1,...,n}, define

filg) = |G|Y2H|"Y2r(h)v;, ifg=hecH

Then f](hog) = |G|1/2|H|—1/27T(h0h)1] = W(ho)fj(h,)"u, if g = h € I{7 and f](hog) —
fi(g) =01if g ¢ H. Thus f; € V. Note that

os fidv =G (fi9) frl)v = [HITH Y (w(h)vg, m(h)or)v

geG heH
= [H|7" ) (v, ok)v = (v, 06)v = G
heH
Therefore { fi1,..., fn } is an orthonormal set in V. Pick representatives g1, ..., ge of the

cosets in H\G (that is, of the right H cosets in G). Then

(i () 5, iGm(ge)) fo)v = 1GI7H Y (fi(99i), Fo(ggi))v = 1GI7H Y D (f5(R), fo(hgy "gr))v

geG heH
= 0u|G| ™! Z (m(h) f; (1), 7(h) fs(UO)vdir(fs, fs)v = dirdys
heH

Hence {iG47(g:)fj }1<i<e, 1<j<n is an orthonormal set. Since dimV = |G||H| ' dimV =
¢n, it is an orthonormal basis of V (with respect to which i is a unitary representation).
The kkth entry of T with respect to this basis is

(T'(kth basis element), kth basis element)y .

Therefore

trl' = ZZ ZHW 9i f] lf]”(gz)fﬁ

=1 j=1

As ¢’ ranges over the conjugacy class cl(g), gig'g; ' also ranges over cl(g). Hence
(™) (9)Tifm(g; ) =T,

14



and the above expression for tr’T" becomes

4 n n
Z ZW%W)(%)Tfja (i5m)(g0) fi)v = gZ<Tfj7 fidv

i=1 j=1 j=1

Now we rewrite each (T'f;, f;)y using the definitions of f; and 7'

(Tfi fiyv=">_ 1GI™" > (filgod): filgo)v = D 1GIT Y (fi(hg), £5(h)v

g’Ecl(g) go€G g'ecl(g)NH heH
= Z|c1H WG (b, fi(A)v
heH
=|H|™! Z leler (h)] Y (e v, T(h)vj)v = Z el (h hs)vj, vj)v
s=1 heH

It follows that

T = |GIH|[" Y [elu(ho)] Y (w(hs)vj, v5)v = |GI[H| 1Z|CIH )X (hs).-
s=1

J=1 s=1

Thus ;o (9) = |GIH[~' 3201 [ela(g)] ™ ela () [ xx (hs). qed

Example: Applying the Frobenius character formula with 7 the trivial representation of
the trivial subgroup of GG, we see that the character of the regular representation of G
vanishes on all elements except for the identity element.

The inner product on A(G) restricts to an inner product on the space C(G) of class
functions on G. When we wish to identify the fact that we are taking the inner product on
A(G), we will sometimes write (-,-)g. Let H be a subgroup of G. We may view i% as a map
from C(H) to C(G), mapping X to i%(xx) = XiG e for 7w any irreducible representation
of H. As the characters of the irreducible representations of H form a basis of C(H), the
map extends by linearity to all of C(H). We can define a linear map & from C(G) to
C(H) by restricting a class function on G to H. The next result, Frobenius Reciprocity,
tells us that r& is the adjoint of the map % .

If (m,V) is a representation of G and 7 is an irreducible representation of G, the
multiplicity of T in 7 is defined to be the number of times that 7 occurs in the decomposition
of m as a direct sum of irreducible representations of (. This multiplicity is equal to

<X77 X7r>G - <X7T7 XT>G

Theorem 11 (Frobenius Reciprocity). Let (m,V') be an irreducible representation of
H and let (1,W) be an irreducible representation of G. Then (., XigTr)G = (r8x, Xa) 1
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Proof. Let m and 7 be as in the statement of the theorem. Let g € G be such that
cla(g)NH # (. Choose hq, ..., hy, as in the previous theorem. Then, using x-(g) = x-(h:),
1 <1< m,

m

Xigx(9)x-(9) = <IG||H| IZ|C1H(hi)|’C1G<hi)|_1Xﬂ(hi)>XT—@

= |GIIH]~ 1Z!dH lele (ha)| = X (i) xr (i)

Now when evaluating (Xiflﬂ,XTM = |G|t deG Xigﬂ(g)XT(g), we need only sum over
those g € G such that cl(g) N H # (. Then
Xigr Xr)a = [H 7' xa(B)xr(h) = (s rem ()
heH

qed

Corollary (Transitivity of induction). Suppose that K C H are subgroups of G. Let
(m,V) be a representation of K. Then i$m = i% (iflr).

Proof. Note that it follows from the definitions that r5§ = r& o rZ. Taking adjoints, we
have

i =(g) = (rg) o (ry)" = if o i
qed

Lemma. Let (m,V) be a representation of a subgroup H of G. Fix g € G. Let 7’ be the
representation of gHg~! defined by 7' (ghg~ m(h), h € H. Then i ~ Z?Hg_lﬁ

=
Proof. Let f be in the space of i%7. Set (Af)(g0) = f(97'g0), go € G. Let h € H. Then

(Af)(ghg~"90) = f(hg™ go) = m(h)(Af)(g0) = 7' (ghg™")(Af)(g0).
Therefore Af belongs to the space of igGHg,ﬂr' . It is clear that A is invertible. Note that

igrg—1(91)(Af)(g0) = (Af)(9091) = f(g " g091) = (AiG7(g1)f)(90)-
qed

Let (7, V) be a finite-dimensional representation of a subgroup H of G. Let K be a
subgroup of G, and let g € G. Then KNgHg~! is a subgroup of G. Define a representation
79 of this subgroup by 79(k) = n(g~'kg), k € K NgHg™!. Let h € H. Then K N
ghH(gh)™' = KNgHg™! and n9"(k) = n(h~1g~tkgh) = w(h)~*m9(k)n(h). Hence 79" ~
m9. This certainly implies that igmthhg,lwgh ~ illgmgHg,lwg.

Changing notation slightly, we see that the above lemma tells us that ngg Hg_lwg ~
iKﬂkgHgflkflﬂ'kg. We now know that the equivalence class of iflgmgHg_lwg is independent
of the choice of element ¢ inside its K-H-double coset (that is, we may replace g by kgh,

k € K, h € H, without changing the equivalence class).
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Theorem 12. (Mackey) K and H be subgroups of G, and let (m, V') be a representation
of H. Then
(iGmk =r&§((Gm) ~ P ikngugr (™).
geK\G/H

Proof. Let p = i%m. Let V be the space of p. Define a map A : V — V by (Av)(g) =

w(h)v, ifg=heH

0, ifgd¢ H.
if and only if p(g5 'g1)Av; = Avy for some vy € V. Now p(g; 'g1)Av; is supported in

,veV. Let vy € V, and ¢1, g2 € G. Then p(g1)Av1 € p(g2)AV

Hgy 19, and Awvs is supported in H. Hence the two functions are equal if and only if
g1H = g.H. Tt follows that deG/H p(9)AV = ©gec/up(9)AV. Now p(g) is invertible
and A is one-to-one, so dim p(g)AV = dim V. Therefore the dimension of the latter direct
sum equals |G||H|™1dimV = dim V. Thus V = @yeq/up(9)AV.

Now we want to study V as a K-space and p(g)AV is not K-stable. Given g € G,
the double coset KgH is a disjoint union of certain cosets ¢’H. So we group together
those p(g')AV such that ¢’H C KgH. Let X(9) = > ycromP(g)AV. It should be
understood that the above sum is taken over a set of representatives ¢’ of the left H-cosets
which lie in KgH. Now we have regrouped things and we have V = ©ycx\a/n X (g9). Now
p(k)X (g) = X(g) for all k € K. We will prove that

() PK |X(g) = Tg/)|X(g) = igﬂgHg*lﬁg‘

The theorem is a consequence of (**) and the above direct sum decomposition of V.
Now suppose that ¢ = kgh, k € K, h € H. Then p(¢')AV = p(kg)AV. Let
ko€ KNgHg '

p(kog ) AV = p(kog) AV = p(g(g~ " kog)) AV = p(g)AV

. This implies that X(9) = > x/(xngmg-1) P(k)p(9)AV. Now we can easily check that
if k € K, then p(k)p(g)AV = p(g)AV if and only if p(g~tkg)AV = AV if and only if
g tkge H, thatiske KNgHg . So X(g) = Ok /(kngtg-1) P(k)p(g)AV.

Let W be the space of igmgHg_lwg. Now define B : X(G) — W as follows. Let v € V
and k € K. Set ¢, (k) = m9(k)vif k € KNgHg™! and ¢, (k) = 0 otherwise. Then ¢, € W.
Given v € V and k € K, set Bp(k)p(g)Av = illgmgHg,lwg(k:)gov. It is a simple matter to
check that B is invertible. Since rg p acts by right translation on X (g) and igﬁg Hg,ﬂrg

acts by right translation on W, we see that B intertwines these representations. Hence
(**) holds. qed

Theorem 13. Let H and K be subgroups of a finite group G. Let (w, V') and (p, W) be
(finite-dimensional) representations of H and K, respectively. Then Homg (iGm,i% p) is
isomorphic to

{¢:G — Endc(V,W) |p(kgh) = p(k)op(g)om(h), ke K,ge G, he H}.
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Sketch of proof. Let A € Homg(i%m,i%p). Define o4 : G — Endc(V, W) by pa(g)v =
(Afu)(g), v € V, where f,(h) =n(h)v, h € H, and f,(g9) =0 if g ¢ H. Note that f, is in
the space of iG7m. Let k € K, g€ G, h € H, and v € V. Then

pa(kgh)v = (Afy)(kgh) = p(k)(Af,)(gh) = p(k)(p(h)Afs)(9)
= p(k)(Afzxnyo)(9) = p(k)palg)m(h)v

where the second equality holds because Af, is in the space of if(p, the fourth equality
holds because A € Homg (iG7,i%p), and the fifth because 7(h)f, = Jr(nyo for all h € H.
Hence ¢4 has the desired properties relative to left translation by elements of K and right
translation by elements of H.

Given ¢ : G — Endc(V, W) | p(kgh) = p(k)op(g)on(h), g€ G,he€ H, k € K. Let f

be in the space of i%m. Define A, f in the space of i%p by (A, f)(g) = >0 ©(995 ) f(g0),
where in the sum gg runs over a set of coset representatives for K'\G. Suppose that k € K

and g € G. Then
(Agf)(kg) = Zs@ kggy ') Zs@ 990 = p(k)(Apf)(9)-

Hence A, f belongs to the space of i p.
Next, let g, g1 € G. Then

(AgiGm(g1) f Zso 990 ) (5w (g1) f Zw 990 ") f(gog1)
= Zso 99195 ) f(90) = (A @f)(ggl) = (i%p(91)Apf)(9)

Therefore A, € Homeg (i%m,i%p).
To finish the proof, check that A — ¢4 and ¢ — A, are inverses of each other. The
details are left as an exercise. qed

Corollary. Let w be an irreducible representation of a subroup H of G. Then Homg (igﬂ, zfﬂr)

is isomorphic to
H(G,7):={p:G— Endc(V) | o(hgh’) = n(h)op(g) onm(h'), g€ G, h, € H }.

Lemma. The subspace of H(G, ) consisting of functions supported on the double coset
HgH is isomorphic to Hom s (79, 7% 7). where H9 = HNgHg™" and 79(h) = (g~ 'hg),
h e HY.

Proof. Fix g € G. Given ¢ € H(G,w) such that ¢ is supported on HgH, define a linear
operator By, : V. — V by B,(v) = ¢(g)v, v € V. Then, if h € H9, we have, using the fact
that g~'hg € H and h € H, and properties of ¢,

By (m9(h)v) = ¢(9)(m(g~ " hg)v) = p(hg)v = m(h)p(g)v = m(h)By(v).
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Hence B, € Homp (79,72 1).

Given B € Homp, (79, rH7), set wp(highe)v = m(h1)Bm(h)v, for hy, hy € H and
veV,and pp(gr)v =01if g1 ¢ HgH. Check that ¢ € H(G,7), and also that the map
B — ¢p is the inverse of the map ¢ — B,. The details are left as an exercise. qed

Corollary. Let (m,V) be a representation of a subgroup H of G. If g € G, let H9 =
HNgHg ! and set m9(h) = w(g~'hg), g € H9. Then

Homg (i$m, %) ~ @ Hom o (79, 75 7).
geH\G/H

Corollary(Mackey irreducibility criterion). Let (7, V) be an irreducible representa-
tion of a subgroup H of G. Then i§r is irreducible if and only if Homg, (79, rH" m) = 0
for all g ¢ H.

Proof. Note that if g = h € H, then H" = H and rghw = 7. Hence, by irreducibility of m,

Homp (m,7") o~ C. Therefore, since i% is irreducible if and only if Homg (i§w,i%n) ~ C,

by the above proposition, iG is irreducible if and only if Hom g (79, 72 7) = 0 whenever

g¢ H. qed

Corollary. Ifr is the trivial representation of a subgroup H of G, then dim Homg (i, %)
equals the number of H-H-double cosets in G.

Note that 79 and r£” 7 are both the trivial representation of HY (for any g € G). Acccord-
ing to the above proposition, there is a one-dimensional contribution to Homg(igﬁ, z%w)
for each double coset HgH. qed

Given 1, po € H(G, ), set

(1% 2)(9) =G Y @1(g0) © ¢2(g5 ' 9).
go€G

This product makes H(G, ) into an algebra, known as a Hecke algebra.

Proposition. The algebra Homg (i%7,iG7) is isomorphic to the Hecke algebra H(G, ).
g HT

To prove the proposition, check that the vector space A — ¢4 of the the Theorem 13 is
an algebra homomorphism: ¢4,04, = ¥4, * pa,. The details are left as an exercise.

Exercises:
1. Adapt the above arguments to prove: Let H and K be subgroups of G, let m be a
representation of H, and let 7 be a representation of K. Suppose that ifﬂr and Z'[G(T
are irreducible. Show that i§m 2 i%7 if and only if for every g € G

-1
gHg  NK -
Hom rg—1nx (79, 1% T)=0.
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2. Let A be an abelian subgroup of a group G. Show that each irreducible representation
of G has degree at most |G||A]| L.

3. Let m; be a representation of a subgroup H; of a group G, j = 1,2. Prove that

'G1XG2 ~ -G1 'Gz
ZH1><H27T1 X Ty ’LHlﬂ'l X ’I,H27T2.

4. Let m and p be representations of subgroups H and K of a finite group G. Let
g1, g2 € G. Define representations 79 and p9 of the group g; ' Hgy N g, ' Kgy by
w9 (z) = w(grzgy ') and p%(x) = p(gazgy '), x € g7 Hogr N gaKgs .

i 1 (91,92) .— ;G g1 g2
(i) Prove that the equivalence class of T e (9 ® p92) depends

only on the double coset Hg; g5 K.

(ii) Prove that the internal tensor product ifﬂr ® z% p is equivalent to the direct sum
of the representations 7(91:92) as g, gy ! ranges over a set of representatives for the
H-K-double cosets in G. (Hint: Consider the restriction of the representation
of G x G which is the outer tensor product %7 ® i%p to the subgroup G =
{(9,9) | g € G} and apply Theorem 11.)

5. Suppose that the finite group G is a the semidirect product of a subgroup H with an
abelian normal subgroup A, that is, G = H x A. Let GG act on the set A of irreducible
(that is, one-dimensional) representations of A by o +— o9, where 09(a) = o(g~tag),
a €A o€ A. Let {01,...,0.} be a set of representatives for the orbits of G on A.
Let H; = {0l =0;}.

a) Let G; = H; x A. Show that o; extends to a representation of G; via o;(ha) =
oi(a), h € H;, a € A.

b) Let m be an irreducible representation of H;. Show that we may define an ir-
reducible representation p(m,o;) of G; on the space V of 7 by: p(m,0;)(ha) =
o;(ha)n(h) = o;(a)w(h), h € H;, a € A.

c) Let 7 be an irreducible representation of H;. Set 6; » = Indgip(w, 0;). Prove that
0; = is an irreducible representation of G.

d) Let 7w and 7" be irreducible representations of H; and H;/. Prove that 0; » ~ 6,/ ./
implies ¢ = ¢ and ™ ~ 7’.

e) Prove that { 6; . } are all of the (equivalence classes of) irreducible representations
of G. (Here, i ranges over {1,...,r} and, for ¢ fixed, = ranges over all of the
(equivalence classes of) irreducible representations of H;).

6. Let H be a subgroup of a finite group G. Let H(G, 1) be the Hecke algebra associated
with the trivial representation of the subgroup H.

a) Show that if (7, V) is an irreducible representation of G, and V¥ is the subspace

of H-fixed vectors in V, then V# becomes a representation of H (G, 1), that is, a
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module over the ring H(G, 1), with the action

foo=IG7D flomlgw,  veVH

geG

b) Show that if VH # {0}, then V' is an irreducible representation of H(G, 1) (an
irreducible H (G, 1)-module). (Hint: If W is a nonzero invariant subspace of V-
and v € VH | use irreducibility of 7 to show that there exists a function f; on G
such that v = f; - w, where w € W and f; - w is defined as above even though
fi ¢ H(G,1). Next, show that if 15 is the characteristic function of H, then
f=1gxfixly, f€eH(G,1),and f-w="0.)

c¢) Show that (m,V) — V¥ is a bijection between the equivalence classes of irre-
ducible representatations of G such that VH = {0} and the equivalence classes
of irreducible representations of H(G,1).

Remarks - Representations of Hecke algebras: Suppose that (7, V) is an irreducible
finite-dimensional representation of a subgroup H of G. A representation of the Hecke
algebra H(G, ) is defined to be an algebra homomorphism from H(G,7) to Endc (V)
for some finite-dimensional complex vector space V’. (That is, V' is a finite-dimensional
H(G, 7)-module).

Let (p, W) be a finite-dimensional representation of G. Then it is easy to check that
the internal tensor product (rg p@m, W ® V) contains the trivial representation of H if
and only if 78 p contains the representation 7V of H that is dual to 7.

Assume that the dual representaion 7V is a subrepresentation of rZp. Given f €
H(G, ), define a linear operator p'(f) on W ® V' by

P (Nwev)=IGI7 Y plg)w® fg)v.

geG

The fact that f € H(G,n) can be used to prove that the subspace (W ® V) of H-
invariant vectors in W ® V is p/(f)-invariant, and the map f — p/(f)| (W @ V) defines
a representation of the Hecke algebra H(G, ).

In this way, we obtain a map p — p’ from the set of representations of G whose
restrictions to H contain ¥ and the set of nonzero representations of the Hecke algebra
H(G, 7). It can be shown that this map has the following properties:

(i) p is irreducible if and only if p’ is irreducible.
(ii) If p; and po are irreducible, then p; and ps are equivalent if and only if p} and p}, are
equivalent.
(iii) For each nonzero irreducible representation (7,U) of H(G, ), there exists an irre-
ducible representation p of G such that p’ is equivalent to 7.
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The study of representations of reductive groups over finite fields (that is, finite groups
of Lie type) is sometimes approached via the study of representations of Hecke algebras.
In certain cases, H(G,7) may be isomorphic (as an algebra) to another Hecke algebra
H(G', "), where G’ is a different group (and 7’ is an irreducible representation of a sub-
group H' of G’). In this case, the study of those irreducible representations of G' whose
restrictions to H contain 7" reduces to the study of a similar set of representations of the
group G’.

Representations of Hecke algebras also play a role in the study of admissible repre-
sentations of reductive groups over p-adic fields. An example of such a group is GL,,(Q,)
where Q,, is the field of p-adic numbers. In this setting, the representation p of G will be
infinite-dimensional (and admissible), the subgroup H will be compact, and open in G,
7 will be finite-dimensional (since H is compact) and the representation p’ of the Hecke
algebra will be finite-dimensional. In this setting, the definition of the Hecke algebras is
slightly different from that for finite groups.
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