
CHAPTER 2

Representations of Finite Groups

In this chapter we consider only finite-dimensional representations.

2.1. Unitarity, complete reducibility, orthogonality relations

Theorem 1. A representation of a finite group is unitary. c Proof. Let (π, V ) be a (finite-

dimensional) representation of a finite group G = { g1, g2, . . . gn }. Let 〈·, ·〉1 be any inner

product on V . Set

〈v, w〉 =
n∑

j=1

〈π(gj)v, π(gj)w〉1, v, w ∈ V.

Then it is clear from the definition that

〈π(g)v, π(g)w〉 = 〈v, w〉, v, w ∈ V, g ∈ G.

Note that if v ∈ V , then 〈v, v〉 =
∑n

j=1〈π(gj)v, π(gj)v〉1 and if v 6= 0, then π(gj)v 6= 0 for

all j implies 〈π(gj)v, π(gj)v〉1 > 0 for all j. Hence v 6= 0 implies 〈v, v〉 > 0. The other

properties of inner product are easy to verify for 〈·, ·〉, using the fact that 〈·, ·〉1 is an inner

product, and each π(gj) is linear. The details are left as an exercise. qed

The following is an immediate consequence of Theorem 1 and a result from Chapter I
stating that a finite-dimensional unitary representation is completely reducible.

Theorem 2. A representation of a finite group is completely reducible.

Example. Let G be a finite group acting on a finite set X. Let V be a complex vector
space having a basis { vx1 , . . . , vxm } indexed by the elements x1, . . . , xm of X. If g ∈ G,
let π(g) be the operator sending vxj to vg·xj , 1 ≤ j ≤ m. Then (π, V ) is a representation
of G, called the permutation representation associated with X.

Let A(G) be the set of complex-valued functions on G. Often A(G) is called the
group algebra of G - see below. Let RA be the (right) regular representation of G

on the space A(G): Given f ∈ A(G) and g ∈ G, RA(g)f is the function defined by
(RA(g)f)(g0) = f(g0g), g0 ∈ G. Note that RA is equivalent to the the permutation repre-
sentation associated to the set X = G. Let LA be the left regular representation of G on the
space A(G): Given f ∈ A(G) and g ∈ G, LA(g)f is defined by (LA(g)f)(g0) = f(g−1g0),
g0 ∈ G. It is easy to check that the operator f 7→ ḟ , where ḟ(g) = f(g−1), is a unitary
equivalence in HomG(RA, LA).
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If f1, f2 ∈ A(G), the convolution f1 ∗ f2 of f1 with f2 is defined by

(f1 ∗ f2)(g) =
∑

g0∈G

f1(gg−1
0 )f2(g0), g ∈ G.

With convolution as multiplication, A(G) is an algebra. It is possible to study the repre-
sentations of G in terms of A(G)-modules.

We define an inner product on A(G) as follows:

〈f1, f2〉 = |G|−1
∑
g∈G

f1(g)f2(g), f1, f2 ∈ A(G).

Theorem 3 (Orthogonality relations for matrix coefficients). Let (π1, V1) and

(π2, V2) be irreducible (unitary) representations of G. Let ai
jk(g) be the matrix entries of

the matrix of πi(g) relative to a fixed orthonormal basis of Vi, i = 1, 2 (relative to an inner

product which makes πi unitary). Then

(1) If π1 6' π2, then 〈a1
jk, a2

`m〉 = 0 for all j, k, ` and m.

(2) 〈a1
jk, a1

`m〉 = δj`δkm/n1, where n1 = dim V1.

Proof. Let B be a linear transformation from V2 to V1. Then A := |G|−1
∑

g∈G π1(g)Bπ2(g)−1

is also a linear transformation from V2 to V1. Let g′ ∈ G. Then

π1(g′)A = |G|−1
∑
g∈G

π1(g′g)Bπ2(g−1) = |G|−1
∑
g∈G

π1(g)Bπ2(g−1g′) = Aπ2(g′).

Hence A ∈ HomG(π2, π1),
Let ni = dim Vi, i = 1, 2. Letting bj` be the j`th matrix entry of B (relative to the

orthonormal bases of V2 and V1 in the statement of the theorem). Then the j`th entry of
A (relative to the same bases) is equal to

|G|−1
∑
g∈G

n1∑
µ=1

n2∑
ν=1

a1
jµ(g)bµνa2

ν`(g
−1).

Suppose that π1 6' π2. By the corollary to Schur’s Lemma, A = 0. Since this holds for
all choices of B, we may choose B such that bµν = δµkδνm, 1 ≤ µ ≤ n1, 1 ≤ ν ≤ n2. Then
|G|−1

∑
g∈G a1

jk(g)a2
m`(g

−1) = 0. Since the matrix coefficients a2
m`(g) are chosen relative

to an orthonormal basis of V2 which makes π2 unitary, it follows that am`(g−1) = a2
`m(g).

Hence 〈a1
jk, a2

`m〉 = |G|−1
∑

g∈G a1
jk(g)a2

`m(g) = 0. This proves (1).
Now suppose that π1 = π2. In this case, Schur’s Lemma implies that A = λI for some

scalar λ. Hence trA = |G|−1
∑

g∈G tr (π1(g)Bπ1(g)−1) = trB = n1λ.
That is, the j`th entry of the matrix A is equal to

|G|−1
∑
g∈G

n∑
µ=1

n∑
ν=1

a1
jµ(g)bµνa1

ν`(g
−1) = trBδj`/n1.

Taking B so that bµν = δµkδνm, we have |G|−1
∑

g∈G a1
jk(g)a1

m`(g
−1) = δj`δkm/n1. qed
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Corollary. Let π1 and π2 be irreducible representations of G such that π1 6' π2. The

susbpace of A(G) spanned by all matrix coefficients of π1 is orthorgonal to the subspace

spanned by all matrix coefficients of π2.

Proof. Let a1
jk(g) be as in Theorem 3. Let γ be a basis of the space V1 of π1, and let bjk(g)

be the jkth entry of the matrix [π1(g)]γ . Then there exists a matrix C ∈ GLn1(C) such
that [bjk(g)] = C[ajk(g)]1≤j,k≤n1C

−1 for all g ∈ G (C is the change of basis matrix from
the β to γ). It follows that

bjk ∈ Span{ a1
`m | 1 ≤ m, ` ≤ n1 }.

Hence the subspace spanned by all matrix coefficients of π1 coincides with the subspace
spanned by the matrix coefficients a`m, 1 ≤ `,m ≤ n1. Hence the corollary follows from
Theorem 3(1). qed

Corollary. There are finitely many equivalence classes of representations of a finite group

G.

Proof. This is an immediate consequence of the preceding corollary, together with dimA(G) =
|G|. qed

For the remainder of this chapter, let G be a finite group, and let {π1, . . . , πr } be a
complete set of irreducible representations of G, that is, a set of irreducible representations
of G having the property that each irreducible representation of G is equivalent to exactly
one πj . Let nj be the degree of πj , 1 ≤ j ≤ r. Let aj

`m(g) be the `mth entry of the matrix
of πj(g) relative to an orthonormal basis of the space of πj with respect to which each
matrix of πj is unitary.

Theorem 4. The set {√nja
j
`m | 1 ≤ `,m ≤ nj , 1 ≤ j ≤ r } is an orthonormal basis of

A(G).

Proof. According to Theorem 3, the set is orthormal. Hence it suffices to prove that
the set spans A(G). The regular representation RA is completely reducible. So A(G) =
⊕t

k=1Vk, where each Vk is an irreducible G-invariant subspace. Fix k. There exists j

such that RA |Vk
' πj . Choose an orthonormal basis β = { f1, . . . , fnj

} of Vk such that
[RA(g) |Vk

]β = [aj
`m(g)], g ∈ G. Then

f`(g0) = (RA(g0)f`)(1) =
nj∑
i=1

aj
i`(g0)fi(1), 1 ≤ ` ≤ nj .

Hence f` =
∑nj

i=1 cia
j
i`, with ci = fi(1). It follows that

Vk ⊂ Span{ aj
`m | 1 ≤ `,m ≤ nj }.

qed
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Theorem 5. Let 1 ≤ j ≤ r. The representation πj occurs as a subrepresentation of RA

with multiplicity nj .

Proof. Fix m ∈ { 1, . . . , nj }. Let W j
m = Span{aj

m` | 1 ≤ ` ≤ nj }. Then { aj
m` | 1 ≤ ` ≤ nj }

is an orthogonal basis of W j
m. And W j

m is orthogonal to W j′

m′ whenever j 6= j′ or m 6= m′.
Hence A(G) = ⊕r

j=1 ⊕
nj

m=1 W j
m.

Let g, g0 ∈ G. Then

RA(g0)a
j
m`(g) = aj

m`(gg0) =
nj∑

µ=1

aj
mµ(g)aj

µ`(g0), 1 ≤ ` ≤ nj .

It follows that the matrix of RA(g0) relative to the basis { aj
m` | 1 ≤ ` ≤ nj } of W j

m

coincides with the matrix of πj . Therefore the restriction of RA to the subspace ⊕nj

m=1W
j
m

is equivalent to the nj-fold direct sum of πj . qed

Corollary. n2
1 + · · ·+ n2

r = |G|.

Corollary. A(G) equals the span of all matrix coefficients of all irreducible representations

of G.

Theorem 6 (Row orthogonality relations for irreducible characters). Let χj =
χπj

, 1 ≤ j ≤ r. Then 〈χk, χj) = δjk.

Proof.

〈χk, χj〉 =
nk∑

µ=1

nj∑
ν=1

〈aj
µµ, aj

νν〉 =
{

0, if k 6= j∑nj

µ=1 1/nj = 1, if k = j .

Lemma. A finite-dimensional representation of a finite group is determined up to equiv-

alence by its character.

Proof. If m is positive integer, let mπj = πj⊕· · ·⊕πj , where πj occurs m times in the direct
sum. Let π = m1π1⊕m2⊕· · ·⊕mrπr. Then χπ =

∑r
j=1 mjχj . Let π′ = `1π1⊕· · ·⊕ `rπr.

We know that π ' π′ if and only if mj = `j for 1 ≤ j ≤ r. By linear independence of the
functions χj , this is equivalent to χπ = χπ′ . qed

Lemma. Let π = m1π1 ⊕ · · · ⊕mrπr. Then 〈χπ, χπ〉 =
∑r

j=1 m2
j .

Corollary. π is irreducible if and only if 〈χπ, χπ〉 = 1.

A complex-valued function on G is a class function if it is constant on conjugacy
classes in G. Note that the space of class functions on G is a subspace of A(G) and the
inner product on A(G) restricts to an inner product on the space of class functions.
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Theorem 7. The set {χj | 1 ≤ j ≤ r } is an orthonormal basis of the space of class func-

tions on G. Consequently the number r of equivalence classes of irreducible representations

of G is equal to the number of conjugacy classes in G.

Proof. By Theorem 6, the set {χj | 1 ≤ j ≤ r } is orthonormal. It suffices to prove that
the functions χj span the class functions.

Let f be a class function on G. Since f ∈ A(G), we can apply Theorem 4 to conclude
that

f =
r∑

j=1

nj∑
m,`=1

〈f,
√

nja
j
m`
〉√nja

j
m` =

r∑
j=1

nj

nj∑
m,`=1

〈f, aj
m`〉a

j
m`.

Next,

(∗) f(g) = |G|−1
∑
g′∈G

f(g′gg′−1) = |G|−1
r∑

j=1

nj

nj∑
m,`=1

〈f, aj
m`〉

∑
g′∈G

aj
m`(g

′gg′−1).

Note that

|G|−1
∑
g′∈G

aj
m`(g

′gg′−1) = |G|−1
∑
g′∈G

nj∑
µ,ν=1

aj
mν(g′)aj

µν(g)aj
ν`(g

′−1)

=
nj∑

µ,ν=1

|G|−1
∑
g′∈G

aj
mµ(g′)aj

`ν(g)

 aj
µν(g) =

nj∑
µ,ν=1

〈aj
mµ, aj

ν`〉a
j
µν(g)

= n−1
j δm`

nj∑
µ=1

aj
µµ(g) = δm`n

−1
j χj(g).

Substituting into (*) results in

f(g) =
r∑

j=1

nj∑
m,`=1

〈f, aj
m`〉δm`χj(g) =

r∑
j=1

(
nj∑

`=1

〈f, aj
``〉

)
χj(g) =

r∑
j=1

〈f, χj〉χj(g).

qed

If g ∈ G, let |cl(g)| be the number of elements in the conjugacy class of g in G.

Theorem 8 (Column orthogonality relations for characters).

r∑
j=1

χj(g)χj(g′) =
{
|G|/|cl(g)|, if g′ is conjugate to g
0, otherwise.

Proof. Let g1, . . . , gr be representatives for the the distinct conjugacy classes in G. Let
A = [χj(gk)]1≤j,k≤r. Let cj = |cl(gj)|, 1 ≤ j ≤ r. Let D be the diagonal matrix with
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diagonal entries cj , 1 ≤ j ≤ r. Then

(ADA∗)m` =
r∑

j=1

(AD)mjA
∗
j` =

r∑
j=1

r∑
t=1

χm(gt)Dtjχ`(gj)

=
r∑

j=1

χm(gj)cjχ`(gj) =
∑
g∈G

χm(g)χ`(g) = |G|δm`

Thus ADA∗ = |G|I. Since A(DA∗) is a scalar matrix, A(DA∗) = (DA∗)A. So DA∗A =
|G|I. That is,

|G|δm` =
r∑

j=1

(DA∗)mjAj` =
r∑

j=1

cjχj(gm)χj(g`).

qed

Example: Let G be a nonabelian group of order 8. Because G is nonabelian, we have
Z(G) 6= G, where Z(G) is the centre of G. Because G is a 2-group, Z(G) 6= {1}. If
|Z(G)| = 4, then |G/Z(G)| = 2, so G/Z(G) is cyclic. That is, G/Z(G) = 〈gZ(G)〉, g ∈ G.
Hence G = 〈Z(G)∪{x}〉. But this implies that G is abelian, which is impossible. Therefore
|Z(G)| = 2. Now |G/Z(G)| = 4 implies G/Z(G) is abelian. Combining G nonabelian and
G/Z(G) abelian, we get Gder ⊂ Z(G). We cannot have Gder trivial, since G is nonabelian.
So we have Gder = Z(G). Now, we saw above that G/Z(G) cannot be cyclic. Thus

G/Z(G) = G/Gder ' Z/2Z× Z/2Z.

Suppose that χ is a linear character of G (that is, a one-dimensional representation).
Then χ |Gder ≡ 1, because χ(g1g2g

−1
1 g−1

2 ) = χ(g1)χ(g2)χ(g1)−1χ(g2)−1 = 1. Now Gder is
a normal subgroup of G. So we can consider χ as a linear character of G/Gder. Now, in view
of results on tensor products of representations, we know that G/Gder has 4 irreducible
(one-dimensional) representations, each one being the tensor product of two characters of
Z/2Z. Hence

12 + 12 + 12 + 12 + n2
5 + · · ·+ n2

r = |G| = 8,

with nj ≥ 2, j ≥ 5. It follows that r = 5 and n5 = 2.
Since Gder = Z(G) has order 2, there are two conjugacy classes consisting of single

elements. There are 5 conjugacy classes altogether. Let a, b, and c be the orders of
the conjugacy classes containing more than 1 element. Then 2 + a + b + c = 8 implies
a = b = c = 2. Let x1, x2 and x3 be representatives of the conjugacy classes containing 2
elements. Let z be the nontrivial element of Z(G). Then 1, y, x1, x2, x3 are representatives

6



of the 5 conjugacy classes. The character table of G takes the form:

1 1 2 2 2
1 y x1 x2 x3

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 χ5(y) χ5(x1) χ5(x2) χ5(x3)

Using column orthogonality relations, we see that

0 =
∑
j=1

χj(y)χj(1) = 4 + 2χ5(y),

implying χ5(y) = −2. And

0 =
5∑

j=1

χj(xk)χj(1) =
4∑

j=1

χj(xk) + 2χ5(xk) = 2χ5(xk),

implying χ5(xk) = 0, 1 ≤ k ≤ 3.
Note that (up to isomorphism) there are two nonabelian groups of order 8, the dihedral

group D8, and the quaternion group Q8. We see from this example that both groups have
the same character table.

Exercises:
1. Using orthogonality relations, prove that if (πj , Vj) is an irreducible representation of

a finite group Gj , j = 1, 2, then π1 ⊗ π2 is an irreducible representation of G1 ×G2.
Then prove that every irreducible representation of G1 ×G2 arises in this way.

2. Let D10 be the dihedral group of order 10.
a) Describe the conjugacy classes in D10.
b) Compute the character table of D10.

3. Let B be the upper triangular Borel subgroup in GL3(Fp), where Fp is a finite field
containing p elements, p prime. Let N be the subgroup of B consisting of the upper
triangular matrices having ones on the diagonal.
a) Identify the set of one-dimensional representations of B.
b) Suppose that π is an irreducible representation of B, having the property that

π(x)v 6= v for some x ∈ N and v ∈ V . Show that π |N is a reducible representation
of N . (Hint: One approach is to start by considering the action of the centre of
N on V .)

4. Suppose that G is a finite group. Let n ∈ N. Define θn : G → N by

θn(g) = | {h ∈ G | hn = g } |, g ∈ G.

7



Let χi, 1 ≤ i ≤ r be the distinct irreducible (complex) characters of G. Set

νn(χi) = |G|−1
∑
g∈G

χi(gn).

Prove that θn =
∑

1≤i≤r νn(χi)χi.

5. Let (π, V ) be an irreducible representation of a finite group G. Prove Burnside’s

Theorem:
Span{π(g) | g ∈ G } = EndC(V ).

(Hint: Of course the theorem is equivalent to Span{ [π(g)]β | g ∈ G } = Mn×n(C),
where β is a basis of V . This can be proved using properties of matrix coefficients of
π (Theorem 3)).

6. Let (π, V ) be a finite-dimensional representation of a finite group G. Let

Wext = Span{ v ⊗ v | v ∈ V } ⊂ V ⊗ V

Wsym = Span{ v1 ⊗ v2 − v2 ⊗ v1 | v1, v2 ∈ V } ⊂ V ⊗ V
.

a) Prove that Wext and Wsym are G-invariant subspaces of V ⊗ V (considered as
the space of the inner tensor product representation π ⊗ π of G).

b) Let (∧2π,∧2V ) be the quotient representation, where ∧2V = (V ⊗ V )/Wext.
Then ∧2π is called the exterior square of π. Compute the character χ∧2π.

c) Let (Sym2π,Sym2V ) be the quotient representation, where Sym2V = (V ⊗
V )/Wsym. Then Sym2π is called the symmetric square of π. Prove that (the
inner tensor product) π ⊗ π is equivalent to ∧2π ⊕ Sym2π.

7. Let (π, V ) be the permutation representation associated to an action of a finite group
G on a set X. Show that χπ(g) is equal to the number of elements of X that are fixed
by g.

8. Let f be a function from a finite group G to the complex numbers. For each finite
dimensional representation (π, V ) of G, define a linear operator π(f) : V → V by
π(f)v =

∑
g∈G f(g)π(g)v, v ∈ V . Prove that π(f) ∈ HomG(π, π) for all finite-

dimensional representations (π, V ) of G if and only if f is a class function.

9. A (finite-dimensional) representation (π, V ) of a finite group is called faithful if the
homomorphism π : G → GL(V ) is injective (one-to-one). Prove that every irreducible
representation of G occurs as a subrepresentation of the set of representations

{π, π ⊗ π, π ⊗ π ⊗ π, π ⊗ π ⊗ π ⊗ π, .... }.

10. Show that the character of any irreducible representation of dimension greater than 1
takes the value 0 on some conjugacy class.
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11. A finite-dimensional representation (π, V ) of a finite group is multiplicity-free if each
irreducible representation occurring in the decomposition of π into a direct sum of
irreducibles occurs exactly once. Prove that π is multiplicity-free if and only if the
ring HomG(π, π) is commutative.

2.2. Character values as algebraic integers, degree of an irreducible represne-
tation divides the order of the group

A complex number z is an algebraic integer if f(z) = 0 for some monic polynomial f

having integer coefficients. The proof of the following lemma is found in many standard
references in algebra.

Lemma.
(1) Let z ∈ C. The following are equivalent:

(a) z is an algebraic integer

(b) z is algebraic over Q and the minimal polynomial of z over Q has integer coeffi-

cients.

(c) The subring Z[z] of C generated by Z and z is a finitely generated Z-module.

(2) The algebraic integers form a ring. The only rational numbers that are algebraic

integers are the elements of Z.

Lemma. Let π be a finite-dimensional representation of G and let g ∈ G. Then χπ(g) is

an algebraic integer.

Proof. Because G is finite, we must have gk = 1 for some positive integer k. Hence
π(g)k = 1. It follows that every eigenvalue of π(g) is a kth root of unity. Clearly a kth
root of unity is an algebraic integer. Since χπ(g) is the sum of the eigenvalues of π(g), it
follows from part (2) of the above lemma that χπ(g), being a sum of algebraic integers, is
an algebraic integer. qed

Lemma. Let g1, . . . gr be representatives of the conjugacy classes in G. Let cj be the

number of elements in the conjugacy class of gj , 1 ≤ j ≤ r. Define fi ∈ A(G) by

fi(g) = cjχi(g)/χi(1), if g is conjugate to gj . Then fi(g) is an algebraic integer for

1 ≤ i ≤ r and all g ∈ G.

Proof. Let g0 ∈ G. As g ranges over the elements in the conjugacy class of gj , so does
g0gg−1

0 . Therefore

∑
g∈cl(gj)

πi(g) =
∑

g∈cl(gj)

πi(g0)πi(g)πi(g0)−1 = πi(g0)

 ∑
g∈cl(gj)

πi(g)

πi(g0)−1.
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So T :=
∑

g∈cl(gj)
πi(g) belongs to HomG(πi, πi). By irreducibility of πi, T = zI for some

z ∈ C. Note that
trT =

∑
g∈cl(gj)

χi(g) = cjχi(gj) = zχi(1),

so z = cjχi(gj)/χi(1).
Let g be an element of cl(gs). Let aijs be the number of ordered pairs (g′, ĝ) such that

g′ĝ = g. Note that aijs is independent of the choice of g ∈ cl(gs).

(ciχt(gi)/χt(1)) (cjχt(gj)/χt(1)) I =

 ∑
g′∈cl(gi)

πt(g′)

 ∑
ĝ∈cl(gj)

πt(ĝ)


=

∑
g′∈cl(gi)

∑
ĝ∈cl(gj)

πt(g′ĝ) =
r∑

s=1

∑
g∈cl(gs)

aijsπt(g)

=

(
r∑

s=1

aijscsχt(gs)/χt(1)

)
I

Hence

(ciχt(gi)/χt(1)) (cjχt(gj)/χt(1)) =
r∑

s=1

aijscsχt(gs)/χt(1).

This implies that the subring of C generated by the scalars csχt(gs)/χt(1), 1 ≤ s ≤ r,
and Z is a finitely-generated Z-module. Since Z is a principal ideal domain, any submod-
ule of a finitely-generated Z-module is also a finitely-generated Z-module, the submodule
Z[ciχt(gi)/χt(1)] is finitely-generated. Applying part (2) of one of the above lemmas, the
result of this lemma follows. qed

Theorem 9. nj divides |G|, 1 ≤ j ≤ r.

Proof. Note that

|G|/χi(1) = |G|〈χi, χi〉/χi(1)

=
r∑

j=1

cjχi(gj)χi(gj)/χi(1) =
r∑

j=1

(cjχi(gj)/χi(1))χi(gj).

Because the right side above is an algebraic integer, the left side is a rational number which
is also an algebraic integer, hence it is an integer. qed

2.3. Decomposition of finite-dimensional representations

In this section we describe how to decompose a representation π into a direct sum of
irreducible representations, assuming that the functions aj

m` are known.
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Lemma. Let (π, V ) be a finite-dimensional representation of G. For 1 ≤ k ≤ r, 1 ≤ j, ` ≤
nk, define P k

j` : V → V by

P k
j` = nk|G|−1

∑
g∈G

ak
j`(g)π(g).

Then

(1) π(g)P k
j` =

∑nk

ν=1 ak
νj(g)P k

ν` and P k
j`π(g) =

∑nk

ν=1 a`ν(g)P k
jν , g ∈ G.

(2) P k
j`P

k′

µν = P k
jν if k = k′ and ` = µ, and equals 0 otherwise.

(3) (P k
j`)

∗ = P k
`j .

Proof. For the first part of (1),

π(g)P k
j` = |G|−1nk

∑
g′∈G

ak
j`(g′)π(gg′) = |G|−1nk

∑
g′∈G

ak
j`(g−1g′)π(g′)

= |G|−1nk

∑
g′∈G

nk∑
ν=1

ak
jν(g−1)ak

ν`(g′)π(g′) =
nk∑

ν=1

ak
νj(g)P k

ν`

The second part of (1) is proved similarly.
For (2),

P k
j`P

k′

µν = nk|G|−1
∑
g∈G

ak
j`(g)π(g)P k′

µν = nk|G|−1
∑
g∈G

ak
j`(g)

nk∑
t=1

ak′

tµ(g)P k′

tν

= nk

nk∑
t=1

〈ak′

tµ, ak
j`〉P k′

tν = δkk′δ`µP k
jν .

For (3),

(P k
j`)

∗ = nk|G|−1
∑
g∈G

ak
j`(g)π(g−1) = nk|G|−1

∑
g∈G

ak
`j(g−1)π(g−1) = P k

`j .

Set V k
j = P k

jj(V ). Note that , since (P k
jj)

∗ = P k
jj = (P k

jj)
2, P k

jj is the orthogonal
projection of V on V k

j . From property (2) of the above lemma, it follows that V k
j ⊥ V k′

j′

if k 6= k′ or j 6= j′.
Let W = ⊕r

k=1 ⊕
nk
j=1 V k

j . Note that P k
j`(V ) = P k

jjP
k
j`(V ) ⊂ V k

j ⊂ W . Fix v0 ∈ W⊥.
Then

0 = 〈v0, P
k
j`(v)〉 = nk|G|−1

∑
g∈G

ak
j`(g)〈v0, π(g)v〉V = nk〈ak

j`, f〉A(G),

where f(g) = 〈v0, π(g)v〉, g ∈ G. It follows that f ∈ A(G)⊥. Hence f(g) = 0 for all g ∈ G.
Setting v = v0 and g = 1, we have 〈v0, v0〉V = 0. Thus v0 = 0. That is, W = V .

11



Next, note that P k
j`V

k′

t = 0 if k 6= k′ or t 6= `, by part (2) of the above lemma.
Let v ∈ V k

` . Then v = P k
``(v

′) for some v′ ∈ V . Now v = P k
``(v

′) = P k
``(P

k
``(v

′)) =
P k

``(v), so we have
P k

j`(v) = P k
j`P

k
``(v) = P k

jjP
k
j`(v) ⊂ V k

j .

Thus P k
j`(V

k
` ) ⊂ V k

j . Now

V k
` = P k

``V
k
` = P k

`jP
k
j`V

k
` ⊂ P k

`jV
k
j ⊂ V k

` .

Hence we have P k
`jV

k
j = V k

` . Let v, v′ ∈ V k
` . Then

〈P k
j`(v), P k

j`(v
′)〉 = 〈(P k

j`)
∗P k

j`(v), v′〉 = 〈P k
`jP

k
j`(v), v′〉 = 〈P k

`,`(v), v′〉 = 〈v, v′〉.

We have shown

Lemma. P k
j` is an isometry of V k

` onto V k
j .

Choose an orthonormal basis ek
11, e

k
21, . . . , e

k
rk,1 of V k

1 = P k
11(V ). Then ek

j` := P k
`1(e

k
j1),

1 ≤ j ≤ rk is an orthonormal basis of V k
` . It follows that the set

{ ek
j` | 1 ≤ j ≤ rk, 1 ≤ ` ≤ nk, 1 ≤ k ≤ r }

is an orthonormal basis of V . Set Y k
j = Span{ ek

j` | 1 ≤ ` ≤ nk }. If g ∈ G, then

π(g)ek
j` = π(g)P k

`1(e
k
j1) =

nk∑
ν=1

ak
ν`(g)P k

ν1e
k
j1 =

nk∑
ν=1

ak
ν`(g)ek

jν .

This shows that Y k
j is G-invariant and has the matrix [ak

ν`(g)]{1≤ν,`≤nk} relative to the
given orthonormal basis of Y k

j . This implies that π |Y k
j
' πk, 1 ≤ j ≤ rk. Now

V = ⊕1≤k≤r ⊕1≤j≤rk
Y k

j , so we have decomposed π into a direct sum of irreducible
representations. This decomposition is not unique.

Set Y k = ⊕rk
j=1Y

k
j . Now { ek

j` | 1 ≤ j ≤ rk, 1 ≤ ` ≤ nk } is an orthonormal basis of Y k,
and π |Y k ' rkπk. Because P k

`` is the orthogonal projection of V on V k
` and Y k = ⊕nk

`=1V
k
` ,

it follows that P k :=
∑nk

`=1 P k
`` is the orthogonal projection of V on Y k. Looking at the

definitions, we see that this orthogonal projection P k is defined by

P k =
nk∑
`=1

nk|G|−1
∑
g∈G

ak
``(g)π(g) = nk|G|−1

∑
g∈G

χk(g)π(g).

Suppose that W is a G-invariant subspace of V such that π |W is equivalent to a direct
sum of πk with itself some number of times. Let { v1, . . . , vnk

} be an orthonormal basis of

12



an irreducible G-invariant subspace of W , chosen so that the matrix of the restriction of
π(g) to this subspace is [ak

`m(g)]. Then

P k(vj) = nk|G|−1
∑
g∈G

χk(g)π(g)vj = nk|G|−1
∑
g∈G

nk∑
`=1

ak
``(g)

nk∑
µ=1

ak
µj(g)vµ

= nk|G|−1
∑
g∈G

nk∑
`,µ=1

ak
``(g)ak

µj(g)vµ = nk

nk∑
`,µ=1

〈ak
µj , a

k
``〉vµ

= nkn−1
k vj = vj

Therefore P k |W is the identity. Because P k is the orthogonal projection of V on Y k, we
know that P k(v) = v if and only if v ∈ Y k. It follows that W ⊂ Y k. Now we may conclude
that if we have a G-invariant subspace of V such that the restriction of π to that subspace
is equivalent to rkπk, then that subspace must equal Y k.

Lemma. The subspaces Y k are unique.

The subspace Y k is called the πk-isotypic subspace of V . It is the (unique) largest
subspace of V on which the restriction of π is a direct sum of representations equivalent
to πk. Of course, we will have Y k = {0} if no irreducible constituent of π is equivalent to
πk.

2.4. Induced representations

One method of producing representations of a finite group G is the process of induc-
tion: given a representation of a subgroup of G, we can define a related representation of
G. Let (π, V ) be a (finite-dimensional) representation of a subgroup H of G. Define

V = { f : G → V | f(hg) = π(h)f(g), h ∈ H, g ∈ G }.

We define the induced representation iGHπ = IndG
H(π) by (iGHπ(g)f)(g0) = f(g0g), g, g0 ∈

G. Observe that if h ∈ H, then

(iGHπ(g)f)(hg0) = f(hg0g) = π(h)f(g0g) = π(h)(iGHπ(g)f)(g0).

It follows from the definitions that the degree of iGHπ equals |G||H|−1 times the degree of
π. Let 〈·, ·〉V be any inner product on V . Set 〈f1, f2〉V = |G|−1

∑
g∈G〈f1(g), f2(g)〉V , f1,

f2 ∈ V. It is easy to check that this defines an inner product on V with respect to which
iGHπ is unitary.

Example If H = {1} and π is the trivial representation of H, then iGHπ is the right regular
representation of G.

The Frobenius character formula expresses the character of iGHπ in terms of the char-
acter of π.

13



Theorem 10 (Frobenius character formula). Let (π, V ) be a representation of a

subgroup H of G. Fix g ∈ G. Let h1, . . . , hm be representatives for the conjugacy classes

in H which lie inside the conjugacy class of g in G. Then

χiG
H

π(g) = |G||H|−1
m∑

i=1

|clH(hi)||clG(g)|−1χπ(hi).

Proof. Let g ∈ G. Define T : V → V by T =
∑

g′∈cl(g) iGHπ(g′). Note that trT =
|cl(g)|χiG

H
π(g).

Let β = { v1, . . . , vn } be an orthonormal basis of V such that each [π(h)]β , h ∈ H, is
a unitary matrix. For each j ∈ {1, . . . , n}, define

fj(g) =
{
|G|1/2|H|−1/2π(h)vj , if g = h ∈ H
0, if g /∈ H.

Then fj(h0g) = |G|1/2|H|−1/2π(h0h)v = π(h0)fj(h)v, if g = h ∈ H, and fj(h0g) =
fj(g) = 0 if g /∈ H. Thus fj ∈ V. Note that

〈fj , fk〉V = |G|−1
∑
g∈G

〈fj(g), fk(g)〉V = |H|−1
∑
h∈H

〈π(h)vj , π(h)vk〉V

= |H|−1
∑
h∈H

〈vj , vk〉V = 〈vj , vk〉V = δjk.

Therefore { f1, . . . , fn } is an orthonormal set in V. Pick representatives g1, . . . , g` of the
cosets in H\G (that is, of the right H cosets in G). Then

〈iGHπ(gi)fj , i
G
Hπ(gk))fs〉V = |G|−1

∑
g∈G

〈fj(ggi), fs(ggk)〉V = |G|−1
∑
h∈H

〈fj(h), fs(hg−1
i gk)〉V

= δik|G|−1
∑
h∈H

〈π(h)fj(1), π(h)fs(1)〉V δik〈fj , fs〉V = δikδjs

Hence { iGHπ(gi)fj }1≤i≤`, 1≤j≤n is an orthonormal set. Since dimV = |G||H|−1 dim V =
`n, it is an orthonormal basis of V (with respect to which iGHπ is a unitary representation).

The kkth entry of T with respect to this basis is

〈T (kth basis element), kth basis element〉V .

Therefore

trT =
∑̀
i=1

n∑
j=1

〈T (iGHπ(gi)fj), iGHπ(gi)fj〉V .

As g′ ranges over the conjugacy class cl(g), gig
′g−1

i also ranges over cl(g). Hence

(iGHπ)(gi)T iGHπ(g−1
i ) = T,
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and the above expression for tr T becomes

∑̀
i=1

n∑
j=1

〈(iGHπ)(gi)Tfj , (iGHπ)(g0)fj〉V = `
n∑

j=1

〈Tfj , fj〉V .

Now we rewrite each 〈Tfj , fj〉V using the definitions of fj and T .

〈Tfj , fj〉V =
∑

g′∈cl(g)

|G|−1
∑

g0∈G

〈fj(g0g
′), fj(g0)〉V =

∑
g′∈cl(g)∩H

|G|−1
∑
h∈H

〈fj(hg′), fj(h)〉V

=
m∑

s=1

|clH(hs)||G|−1
∑
h∈H

〈fj(hhs), fj(h)〉V

= |H|−1
m∑

s=1

|clH(hs)|
∑
h∈H

〈π(h)π(hs)vj , π(h)vj〉V =
m∑

s=1

|clH(hs)|〈π(hs)vj , vj〉V

It follows that

trT = |G||H|−1
m∑

s=1

|clH(hs)|
n∑

j=1

〈π(hs)vj , vj〉V = |G||H|−1
m∑

s=1

|clH(hs)|χπ(hs).

Thus χiG
H

π(g) = |G||H|−1
∑m

s=1 |clG(g)|−1|clH(hs)|χπ(hs). qed

Example: Applying the Frobenius character formula with π the trivial representation of
the trivial subgroup of G, we see that the character of the regular representation of G

vanishes on all elements except for the identity element.

The inner product on A(G) restricts to an inner product on the space C(G) of class
functions on G. When we wish to identify the fact that we are taking the inner product on
A(G), we will sometimes write 〈·, ·〉G. Let H be a subgroup of G. We may view iGH as a map
from C(H) to C(G), mapping χπ to iGH(χπ) := χiG

H
π, for π any irreducible representation

of H. As the characters of the irreducible representations of H form a basis of C(H), the
map extends by linearity to all of C(H). We can define a linear map rH

G from C(G) to
C(H) by restricting a class function on G to H. The next result, Frobenius Reciprocity,
tells us that rH

G is the adjoint of the map iGH .
If (π, V ) is a representation of G and τ is an irreducible representation of G, the

multiplicity of τ in π is defined to be the number of times that τ occurs in the decomposition
of π as a direct sum of irreducible representations of G. This multiplicity is equal to
〈χτ , χπ〉G = 〈χπ, χτ 〉G.

Theorem 11 (Frobenius Reciprocity). Let (π, V ) be an irreducible representation of

H and let (τ,W ) be an irreducible representation of G. Then 〈χτ , χiG
H

π〉G = 〈rH
G χτ , χπ〉H .
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Proof. Let π and τ be as in the statement of the theorem. Let g ∈ G be such that
clG(g)∩H 6= ∅. Choose h1, . . . , hm as in the previous theorem. Then, using χτ (g) = χτ (hi),
1 ≤ i ≤ m,

χiG
H

π(g)χτ (g) =

(
|G||H|−1

m∑
i=1

|clH(hi)||clG(hi)|−1χπ(hi)

)
χτ (g)

= |G||H|−1
m∑

i=1

|clH(hi)||clG(hi)|−1χπ(hi)χτ (hi)

Now when evaluating 〈χiG
H

π, χτ 〉G = |G|−1
∑

g∈G χiG
H

π(g)χτ (g), we need only sum over
those g ∈ G such that cl(g) ∩H 6= ∅. Then

〈χiG
H

π, χτ 〉G = |H|−1
∑
h∈H

χπ(h)χτ (h) = 〈χπ, rGH (χτ )〉H .

qed

Corollary (Transitivity of induction). Suppose that K ⊂ H are subgroups of G. Let

(π, V ) be a representation of K. Then iGKπ = iGH(iHKπ).

Proof. Note that it follows from the definitions that rK
G = rK

H ◦ rH
G . Taking adjoints, we

have
iGK = (rK

G )∗ = (rH
G )∗ ◦ (rK

H )∗ = iGH ◦ iHK .

qed

Lemma. Let (π, V ) be a representation of a subgroup H of G. Fix g ∈ G. Let π′ be the

representation of gHg−1 defined by π′(ghg−1) = π(h), h ∈ H. Then iGHπ ' iGgHg−1π′.

Proof. Let f be in the space of iGHπ. Set (Af)(g0) = f(g−1g0), g0 ∈ G. Let h ∈ H. Then

(Af)(ghg−1g0) = f(hg−1g0) = π(h)(Af)(g0) = π′(ghg−1)(Af)(g0).

Therefore Af belongs to the space of iGgHg−1π′. It is clear that A is invertible. Note that

igHg−1(g1)(Af)(g0) = (Af)(g0g1) = f(g−1g0g1) = (A iGHπ(g1)f)(g0).

qed

Let (π, V ) be a finite-dimensional representation of a subgroup H of G. Let K be a
subgroup of G, and let g ∈ G. Then K∩gHg−1 is a subgroup of G. Define a representation
πg of this subgroup by πg(k) = π(g−1kg), k ∈ K ∩ gHg−1. Let h ∈ H. Then K ∩
ghH(gh)−1 = K ∩ gHg−1 and πgh(k) = π(h−1g−1kgh) = π(h)−1πg(k)π(h). Hence πgh '
πg. This certainly implies that iKK∩ghHhg−1πgh ' iKK∩gHg−1πg.

Changing notation slightly, we see that the above lemma tells us that iKK∩gHg−1πg '
iK∩kgHg−1k−1πkg. We now know that the equivalence class of iKK∩gHg−1πg is independent
of the choice of element g inside its K-H-double coset (that is, we may replace g by kgh,
k ∈ K, h ∈ H, without changing the equivalence class).
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Theorem 12. (Mackey) K and H be subgroups of G, and let (π, V ) be a representation

of H. Then

(iGHπ)K = rK
G (iGHπ) '

⊕
g∈K\G/H

iKK∩gHg−1(πg).

Proof. Let ρ = iGHπ. Let V be the space of ρ. Define a map A : V → V by (Av)(g) ={
π(h)v, if g = h ∈ H
0, if g /∈ H.

, v ∈ V . Let v1 ∈ V , and g1, g2 ∈ G. Then ρ(g1)Av1 ∈ ρ(g2)AV

if and only if ρ(g−1
2 g1)Av1 = Av2 for some v2 ∈ V . Now ρ(g−1

2 g1)Av1 is supported in
Hg−1

1 g2 and Av2 is supported in H. Hence the two functions are equal if and only if
g1H = g2H. It follows that

∑
g∈G/H ρ(g)AV = ⊕g∈G/Hρ(g)AV . Now ρ(g) is invertible

and A is one-to-one, so dim ρ(g)AV = dim V . Therefore the dimension of the latter direct
sum equals |G||H|−1 dim V = dimV. Thus V = ⊕g∈G/Hρ(g)AV .

Now we want to study V as a K-space and ρ(g)AV is not K-stable. Given g ∈ G,
the double coset KgH is a disjoint union of certain cosets g′H. So we group together
those ρ(g′)AV such that g′H ⊂ KgH. Let X(g) =

∑
g′H⊂KgH ρ(g′)AV . It should be

understood that the above sum is taken over a set of representatives g′ of the left H-cosets
which lie in KgH. Now we have regrouped things and we have V = ⊕g∈K\G/HX(g). Now
ρ(k)X(g) = X(g) for all k ∈ K. We will prove that

(∗∗) ρK |X(g) = rK
G ρ |X(g) ' iKK∩gHg−1πg.

The theorem is a consequence of (**) and the above direct sum decomposition of V.
Now suppose that g′ = kgh, k ∈ K, h ∈ H. Then ρ(g′)AV = ρ(kg)AV . Let

k0 ∈ K ∩ gHg−1.

ρ(k0g
′)AV = ρ(k0g)AV = ρ(g(g−1k0g))AV = ρ(g)AV

. This implies that X(g) =
∑

K/(K∩gHg−1) ρ(k)ρ(g)AV . Now we can easily check that
if k ∈ K, then ρ(k)ρ(g)AV = ρ(g)AV if and only if ρ(g−1kg)AV = AV if and only if
g−1kg ∈ H, that is k ∈ K ∩ gHg−1. So X(g) = ⊕K/(K∩gHg−1) ρ(k)ρ(g)AV .

Let W be the space of iKK∩gHg−1πg. Now define B : X(G) →W as follows. Let v ∈ V

and k ∈ K. Set ϕv(k) = πg(k)v if k ∈ K∩gHg−1 and ϕv(k) = 0 otherwise. Then ϕv ∈ W.
Given v ∈ V and k ∈ K, set Bρ(k)ρ(g)Av = iKK∩gHg−1πg(k)ϕv. It is a simple matter to
check that B is invertible. Since rK

G ρ acts by right translation on X(g) and iKK∩gHg−1πg

acts by right translation on W, we see that B intertwines these representations. Hence
(**) holds. qed

Theorem 13. Let H and K be subgroups of a finite group G. Let (π, V ) and (ρ,W ) be

(finite-dimensional) representations of H and K, respectively. Then HomG(iGHπ, iGKρ) is

isomorphic to

{ϕ : G → EndC(V,W ) |ϕ(kgh) = ρ(k) ◦ ϕ(g) ◦ π(h), k ∈ K, g ∈ G, h ∈ H }.
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Sketch of proof. Let A ∈ HomG(iGHπ, iGKρ). Define ϕA : G → EndC(V,W ) by ϕA(g)v =
(Afv)(g), v ∈ V , where fv(h) = π(h)v, h ∈ H, and fv(g) = 0 if g /∈ H. Note that fv is in
the space of iGHπ. Let k ∈ K, g ∈ G, h ∈ H, and v ∈ V . Then

ϕA(kgh)v = (Afv)(kgh) = ρ(k)(Afv)(gh) = ρ(k)(ρ(h)Afv)(g)

= ρ(k)(Afπ(h)v)(g) = ρ(k)ϕA(g)π(h)v

where the second equality holds because Afv is in the space of iGKρ, the fourth equality
holds because A ∈ HomG(iGHπ, iGKρ), and the fifth because π(h)fv = fπ(h)v for all h ∈ H.
Hence ϕA has the desired properties relative to left translation by elements of K and right
translation by elements of H.

Given ϕ : G → EndC(V,W ) | ϕ(kgh) = ρ(k)◦ϕ(g)◦π(h), g ∈ G, h ∈ H, k ∈ K. Let f

be in the space of iGHπ. Define Aϕf in the space of iGKρ by (Aϕf)(g) =
∑

g0
ϕ(gg−1

0 )f(g0),
where in the sum g0 runs over a set of coset representatives for K\G. Suppose that k ∈ K

and g ∈ G. Then

(Aϕf)(kg) =
∑
g0

ϕ(kgg−1
0 )f(g0) = ρ(k)

∑
g0

ϕ(gg−1
0 )f(g0) = ρ(k)(Aϕf)(g).

Hence Aϕf belongs to the space of iGKρ.
Next, let g, g1 ∈ G. Then

(AϕiGHπ(g1)f)(g) =
∑
g0

ϕ(gg−1
0 )(iGHπ(g1)f)(g0) =

∑
g0

ϕ(gg−1
0 )f(g0g1)

=
∑
g0

ϕ(gg1g
−1
0 )f(g0) = (Aϕf)(gg1) = (iGKρ(g1)Aϕf)(g)

Therefore Aϕ ∈ HomG(iGHπ, iGKρ).
To finish the proof, check that A 7→ ϕA and ϕ 7→ Aϕ are inverses of each other. The

details are left as an exercise. qed

Corollary. Let π be an irreducible representation of a subroup H of G. Then HomG(iGHπ, iGHπ)
is isomorphic to

H(G, π) := {ϕ : G → EndC(V ) | ϕ(hgh′) = π(h) ◦ ϕ(g) ◦ π(h′), g ∈ G, h, h′ ∈ H }.

Lemma. The subspace of H(G, π) consisting of functions supported on the double coset

HgH is isomorphic to HomHg (πg, rHg

H π). where Hg = H ∩ gHg−1 and πg(h) = π(g−1hg),
h ∈ Hg.

Proof. Fix g ∈ G. Given ϕ ∈ H(G, π) such that ϕ is supported on HgH, define a linear
operator Bϕ : V → V by Bϕ(v) = ϕ(g)v, v ∈ V . Then, if h ∈ Hg, we have, using the fact
that g−1hg ∈ H and h ∈ H, and properties of ϕ,

Bϕ(πg(h)v) = ϕ(g)(π(g−1hg)v) = ϕ(hg)v = π(h)ϕ(g)v = π(h)Bϕ(v).

18



Hence Bϕ ∈ HomHg (πg, rHg

H π).
Given B ∈ HomHg (πg, rHg

H π), set ϕB(h1gh2)v = π(h1)Bπ(h2)v, for h1, h2 ∈ H and
v ∈ V , and ϕB(g1)v = 0 if g1 /∈ HgH. Check that ϕB ∈ H(G, π), and also that the map
B 7→ ϕB is the inverse of the map ϕ 7→ Bϕ. The details are left as an exercise. qed

Corollary. Let (π, V ) be a representation of a subgroup H of G. If g ∈ G, let Hg =
H ∩ gHg−1 and set πg(h) = π(g−1hg), g ∈ Hg. Then

HomG(iGHπ, iGHπ) '
⊕

g∈H\G/H

HomHg (πg, rHg

H π).

Corollary(Mackey irreducibility criterion). Let (π, V ) be an irreducible representa-

tion of a subgroup H of G. Then iGHπ is irreducible if and only if HomHg (πg, rHg

H π) = 0
for all g /∈ H.

Proof. Note that if g = h ∈ H, then Hh = H and rHh

H π = π. Hence, by irreducibility of π,
HomH(π, πh) ' C. Therefore, since iGHπ is irreducible if and only if HomG(iGHπ, iGHπ) ' C,
by the above proposition, iGHπ is irreducible if and only if HomHg (πg, rHg

H π) = 0 whenever
g /∈ H. qed

Corollary. If π is the trivial representation of a subgroup H of G, then dim HomG(iGHπ, iGHπ)
equals the number of H-H-double cosets in G.

Note that πg and rHg

H π are both the trivial representation of Hg (for any g ∈ G). Acccord-
ing to the above proposition, there is a one-dimensional contribution to HomG(iGHπ, iGHπ)
for each double coset HgH. qed

Given ϕ1, ϕ2 ∈ H(G, π), set

(ϕ1 ∗ ϕ2)(g) = |G|−1
∑

g0∈G

ϕ1(g0) ◦ ϕ2(g−1
0 g).

This product makes H(G, π) into an algebra, known as a Hecke algebra.

Proposition. The algebra HomG(iGHπ, iGHπ) is isomorphic to the Hecke algebra H(G, π).

To prove the proposition, check that the vector space A 7→ ϕA of the the Theorem 13 is
an algebra homomorphism: ϕA1◦A2 = ϕA1 ∗ ϕA2 . The details are left as an exercise.

Exercises:
1. Adapt the above arguments to prove: Let H and K be subgroups of G, let π be a

representation of H, and let τ be a representation of K. Suppose that iGHπ and iGKτ

are irreducible. Show that iGHπ 6' iGKτ if and only if for every g ∈ G

HomgHg−1∩K(πg, rgHg−1∩K
K τ) = 0.
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2. Let A be an abelian subgroup of a group G. Show that each irreducible representation
of G has degree at most |G||A|−1.

3. Let πj be a representation of a subgroup Hj of a group Gj , j = 1, 2. Prove that

iG1×G2
H1×H2

π1 ⊗ π2 ' iG1
H1

π1 ⊗ iG2
H2

π2.

4. Let π and ρ be representations of subgroups H and K of a finite group G. Let
g1, g2 ∈ G. Define representations πg1 and ρg2 of the group g−1

1 Hg1 ∩ g−1
2 Kg2 by

πg1(x) = π(g1xg−1
1 ) and ρg2(x) = ρ(g2xg−1

2 ), x ∈ g−1
1 Hg1 ∩ g2Kg−1

2 .
(i) Prove that the equivalence class of τ (g1,g2) := iG

g−1
1 Hg1∩g2Kg−1

2
(πg1 ⊗ ρg2) depends

only on the double coset Hg1g
−1
2 K.

(ii) Prove that the internal tensor product iGHπ⊗ iGKρ is equivalent to the direct sum
of the representations τ (g1,g2) as g1g

−1
2 ranges over a set of representatives for the

H-K-double cosets in G. (Hint: Consider the restriction of the representation
of G × G which is the outer tensor product iGHπ ⊗ iGKρ to the subgroup Ḡ =
{ (g, g) | g ∈ G } and apply Theorem 11.)

5. Suppose that the finite group G is a the semidirect product of a subgroup H with an
abelian normal subgroup A, that is, G = H nA. Let G act on the set Â of irreducible
(that is, one-dimensional) representations of A by σ 7→ σg, where σg(a) = σ(g−1ag),
a ∈ A, σ ∈ Â. Let {σ1, . . . , σr } be a set of representatives for the orbits of G on Â.
Let Hi = {σh

i = σi }.
a) Let Gi = Hi n A. Show that σi extends to a representation of Gi via σi(ha) =

σi(a), h ∈ Hi, a ∈ A.
b) Let π be an irreducible representation of Hi. Show that we may define an ir-

reducible representation ρ(π, σi) of Gi on the space V of π by: ρ(π, σi)(ha) =
σi(ha)π(h) = σi(a)π(h), h ∈ Hi, a ∈ A.

c) Let π be an irreducible representation of Hi. Set θi,π = IndG
Gi

ρ(π, σi). Prove that
θi,π is an irreducible representation of G.

d) Let π and π′ be irreducible representations of Hi and Hi′ . Prove that θi,π ' θi′,π′

implies i = i′ and π ' π′.
e) Prove that { θi,π } are all of the (equivalence classes of) irreducible representations

of G. (Here, i ranges over {1, . . . , r} and, for i fixed, π ranges over all of the
(equivalence classes of) irreducible representations of Hi).

6. Let H be a subgroup of a finite group G. Let H(G, 1) be the Hecke algebra associated
with the trivial representation of the subgroup H.
a) Show that if (π, V ) is an irreducible representation of G, and V H is the subspace

of H-fixed vectors in V , then V H becomes a representation of H(G, 1), that is, a

20



module over the ring H(G, 1), with the action

f · v = |G|−1
∑
g∈G

f(g)π(g)v, v ∈ V H .

b) Show that if V H 6= {0}, then V H is an irreducible representation of H(G, 1) (an
irreducible H(G, 1)-module). (Hint: If W is a nonzero invariant subspace of V H ,
and v ∈ V H , use irreducibility of π to show that there exists a function f1 on G

such that v = f1 · w, where w ∈ W and f1 · w is defined as above even though
f1 /∈ H(G, 1). Next, show that if 1H is the characteristic function of H, then
f := 1H ∗ f1 ∗ 1H , f ∈ H(G, 1), and f · w = v.)

c) Show that (π, V ) → V H is a bijection between the equivalence classes of irre-
ducible representatations of G such that V H 6= {0} and the equivalence classes
of irreducible representations of H(G, 1).

Remarks - Representations of Hecke algebras: Suppose that (π, V ) is an irreducible
finite-dimensional representation of a subgroup H of G. A representation of the Hecke
algebra H(G, π) is defined to be an algebra homomorphism from H(G, π) to EndC(V ′)
for some finite-dimensional complex vector space V ′. (That is, V ′ is a finite-dimensional
H(G, π)-module).

Let (ρ,W ) be a finite-dimensional representation of G. Then it is easy to check that
the internal tensor product (rH

G ρ ⊗ π,W ⊗ V ) contains the trivial representation of H if
and only if rH

G ρ contains the representation π∨ of H that is dual to π.
Assume that the dual representaion π∨ is a subrepresentation of rH

G ρ. Given f ∈
H(G, π), define a linear operator ρ′(f) on W ⊗ V by

ρ′(f)(w ⊗ v) = |G|−1
∑
g∈G

ρ(g)w ⊗ f(g)v.

The fact that f ∈ H(G, π) can be used to prove that the subspace (W ⊗ V )H of H-
invariant vectors in W ⊗ V is ρ′(f)-invariant, and the map f 7→ ρ′(f) | (W ⊗ V )H defines
a representation of the Hecke algebra H(G, π).

In this way, we obtain a map ρ 7→ ρ′ from the set of representations of G whose
restrictions to H contain π∨ and the set of nonzero representations of the Hecke algebra
H(G, π). It can be shown that this map has the following properties:
(i) ρ is irreducible if and only if ρ′ is irreducible.
(ii) If ρ1 and ρ2 are irreducible, then ρ1 and ρ2 are equivalent if and only if ρ′1 and ρ′2 are

equivalent.
(iii) For each nonzero irreducible representation (τ, U) of H(G, π), there exists an irre-

ducible representation ρ of G such that ρ′ is equivalent to τ .
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The study of representations of reductive groups over finite fields (that is, finite groups
of Lie type) is sometimes approached via the study of representations of Hecke algebras.
In certain cases, H(G, π) may be isomorphic (as an algebra) to another Hecke algebra
H(G′, π′), where G′ is a different group (and π′ is an irreducible representation of a sub-
group H ′ of G′). In this case, the study of those irreducible representations of G whose
restrictions to H contain π∨ reduces to the study of a similar set of representations of the
group G′.

Representations of Hecke algebras also play a role in the study of admissible repre-
sentations of reductive groups over p-adic fields. An example of such a group is GLn(Qp)
where Qp is the field of p-adic numbers. In this setting, the representation ρ of G will be
infinite-dimensional (and admissible), the subgroup H will be compact, and open in G,
π will be finite-dimensional (since H is compact) and the representation ρ′ of the Hecke
algebra will be finite-dimensional. In this setting, the definition of the Hecke algebras is
slightly different from that for finite groups.
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