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Abstract. In this paper we present upper bounds on the minimal mass of a non-

trivial stationary 1 -cycle. The results that we obtain are valid for all closed Riemann-

ian manifolds. The first result is that the minimal mass of a stationary 1 -cycle on a

closed n -dimensional Riemannian manifold Mn is bounded from above by
(n+2)!d

4
,

where d is the diameter of a manifold Mn . The second result is that the minimal
mass of a stationary 1 -cycle on a closed Riemannian manifold Mn is bounded from

above by (n + 2)!F illRad(Mn) ≤ (n + 2)!(n + 1)nn
√

(n + 1)!(vol(Mn))1/n , where

F illRad(Mn) is the filling radius of a manifold, and vol(Mn) is its volume.

1. Introduction.

Let l(Mn) denote the length of a shortest closed geodesic on a Riemannian

manifold Mn . In 1983 M. Gromov asked whether there exists a constant c(n) such

that l(Mn) ≤ c(n)(vol(Mn))
1

n , (see [G], p. 135). This problem also appeared as

Problem 87 in a list of open problems in Differential Geometry composed by S.-T.

Yau ([Y], p. 689, or [SY], p. 297). In the same spirit it might be interesting to

know whether there exists c̃(n) such that l(Mn) ≤ c̃(n)d , where d denotes the

diameter of Mn .

At the moment the only known explicit upper bounds for the length of a shortest

closed geodesic on an arbitrary closed Riemannian manifold Mn are the estimates

that were found in [NR]; see also the earlier paper [R]. Those estimates, however,

use information about either the sectional curvature or the injectivity radius of the

manifold.

In the present paper we prove the existence of a stationary 1 -cycle such that

its mass satisfies these inequalities. In fact, our proofs demonstrate the existence

of a stationary 1-cycle of a special type which we will call strongly stationary such
1
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that its mass satisfies these inequalities. Strongly stationary 1 -cycles are defined

as follows.

Definition 1. A strongly stationary 1-cycle consists of finitely many points p1, . . . , pl

and a finite collection of (not necessarily distinct) geodesic segments that start and

end at these points so that the following two conditions are satisfied for each point

pi , i = 1, 2, . . . l :

1) (Cycle condition) The number of geodesic segments meeting at pi is even. (Here

each geodesic loop based at pi is counted twice; multiple geodesic segments are

counted with their multiplicities.)

2) (Stationarity Condition) The sum of unit vectors in Tpi
Mn tangent to all ge-

odesic segments meeting at pi (counted with their multiplicities) is equal to zero.

Here each tangent vector is directed from pi .

In other words, stationary 1-cycles are immersed finite multigraphs such that all

edges are realized by geodesic segments, each vertex has an even degree, and for

each vertex the stationarity condition 2) holds.

Each closed geodesic can be regarded as a strongly stationary 1-cycle. A geodesic

loop is a strongly stationary 1-cycle if and only if it is a closed geodesic. Some simple

examples of strongly stationary 1-cycles that do not correspond to closed geodesics

are shown on Fig. 2. Informally speaking, strongly stationary 1-cycles can be

viewed as a homological analog of closed geodesics.

In section 2 we are going to give a slightly different but equivalent definition of

strongly stationary 1-cycles, which will explain the term “strongly stationary”, (see

def. 4).

Definition 1 can be compared with the definition of geodesic nets in the paper

of J. Hass and F. Morgan [HM]. Geodesic nets satisfy the stationarity condition

but need not satisfy the cycle condition. However, Hass and Morgan require that

all geodesics forming a geodesic net must be embedded and cannot intersect each

other. They also do not allow multiple geodesics with the same endpoints.

The mass or length of a strongly stationary 1-cycle is defined as the sum of

lengths of all its geodesic segments counted with their multiplicities. (The terms

mass and length will be used interchangeably.) A strongly stationary 1-cycle is

called non-trivial if its mass is not equal to zero. (The geodesic segments in the
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definition of a strongly stationary 1-cycle are allowed to be trivial geodesics.)

We also obtain an explicit upper bound for the total number of all geodesic

segments (counted with their multiplicities) in a non-trivial strongly stationary

1-cycle of mass not exceeding c̃(n)diam(Mn) (or c(n)vol(Mn)
1

n ) in terms of n .

Of course, our estimates would give the estimates on the length of a shortest

closed geodesic if the strongly stationary 1-cycle we obtain is realized by a closed

geodesic. And, in fact, when Mn is diffeomorphic to the 2 -dimensional sphere,

this technique produces a closed geodesic, as was observed by J. Pitts, E. Calabi

and J. Cao, (see [ClCo]). This fact enabled us to obtain estimates for the length

of a shortest closed geodesic on a manifold diffeomorphic to S2 , (see [NR1]) im-

proving previously known results by C.B. Croke and M. Maeda, (see [C], [Ma]).

Similar results were independently obtained by S. Sabourau in [S1]. Sabourau had

also found curvature free upper bounds on the length of a shortest geodesic loop on

a compact Riemannian manifold, (see [S2]). To compare the results of the present

paper with this result of Sabourau note that for each point of Mn there are infin-

itely many geodesic loops based at this point. So the set of all geodesic loops on

Mn is uncountable. However strongly stationary 1-cycles are critical points of a

certain functional (see below). Therefore a standard argument implies that there

are only countably many strongly stationary 1-cycles for a generic analytic metric

on Mn .

We refer the reader to a survey written by C. B. Croke and M. Katz ([CK]) for

an exposition of other curvature-free estimates in Riemannian geometry as well as

of the theory of systolic freedom developed by I. Babenko, M. Katz, A. Suciu. (This

theory enables one to prove that some plausibly looking curvature-free estimates in

fact do not hold.)

The techniques that we use in the present paper were partially inspired by the

geometric measure theory approach to the existence of minimal submanifolds de-

veloped by F. J. Almgren and J. Pitts, (see [P]). However, since we deal only with

“nice” 1-dimensional cycles we find ourselves in a much more geometrical situation

and do not need almost anything from the elaborate language and machinery of

geometric measure theory. Sections 2-4 contain the adaptation of all the necessary

results and ideas from GMT to our context. (Our main results will be proven in

section 5.)
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We also use an appropriate generalization of obstruction to an extension tech-

nique used by M. Gromov in [G] (see section 1.2 of [G] as well as the proof of

Proposition on p. 136 of [G]), and in the case of the Theorem 2 below we use

Gromov’s upper bound for the filling radius in terms of volume.

Now we are going to state our main results.

Theorem 1. Let Mn be a closed simply-connected Riemannian manifold of di-

mension n . Let q(≤ n) denote the minimal dimension i such that πi(M
n) 6= 0 .

Then there exists a non-trivial strongly stationary 1-cycle on Mn that consists

of at most (q+2)!
2

geodesic segments such that its mass does not exceed (q+2)!
4

d . If

q = 2 then there exists a strongly stationary 1-cycle of length ≤ 4d that is either a

closed geodesic or consists of two geodesic loops emanating from the same point p .

Remark. It is well-known (and easy to prove) that if Mn is not simply-

connected then there is a closed geodesic on Mn of length ≤ 2d .

In order to state the next theorem we will need the following definitions and the

following result of M. Gromov (see [G]).

Definition 2.A. Let Mn be a manifold topologicaly imbedded into an arbitrary

metric space X . Then its filling radius, denoted FillRad(M ⊂ X) , is the infimum

of ǫ > 0 , such that Mn bounds in the ǫ -neighborhood Nǫ(M
n) , i.e. homomor-

phism Hn(Mn) −→ Hn(Nǫ(M
n)) induced by the inclusion map vanishes, where

Hn(M) denotes the singular homology group of dimension n with coefficients in

Z , when M is orientable, and with coefficients in Z2 , when M is not orientable.

Definition 2.B. Let Mn be an abstract manifold. Then its filling radius, denoted

FillRadMn will be FillRad(M ⊂ X) , where X = L∞(M) , i.e. the Banach space

of bounded Borel functions f on Mn and the imbedding of Mn into X is the

map that assigns to each point p of Mn the distance function p −→ fp = d(p, q) .

Theorem A ([G]). Let Mn be a closed connected Riemannian manifold. Then

FillRadMn ≤ (n+ 1)nn(n+ 1)!
1

2 (volMn)
1

n .

Theorem 2. Let Mn be a closed Riemannian manifold. Then there exists a non-

trivial strongly stationary 1-cycle in Mn made of at most (n + 2)!/2 geodesic

segments such that its mass is bounded from above by (n+ 2)!FillRadMn ≤ (n+

2)!(n+ 1)(n+ 1)!
1

2nn(vol(Mn))
1

n .
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Remark. Note that M. Katz proved that the filling radius of a manifold Mn

does not exceed 1
3
diam(Mn) (and this estimate is exact), [K]. Therefore Theorem

2 immediately implies a slightly weaker version of Theorem 1 (with a worse value

of the constant).

Now we will present the main ideas of the proof of Theorem 1. For the sake of

simplicity, let us assume that π2(M) 6= {0} . Let us begin with any non-contractible

f : S2 −→ M . Then f∗([S
2]) does not bound in M . Assume that the minimal

length of a non-trivial strongly stationary 1-cycle is greater than 6d . Then l(M) >

6d . We will find a 3 -chain that has f∗([S
2]) as its boundary, thus obtaining a

contradiction.

Assuming S2 has a sufficiently fine triangulation, triangulate D3 as a cone over

S2 . To construct a 3 -chain we will use the following ”extension” procedure, which

will be inductive to skeleta of D3 . We let the only additional 0 -vertex of D3 , i.e.

its center p , be mapped to an arbitrary point p̃ of M , and we will let the edges,

i.e. line segments [vi, p] connecting vertices of the triangulation of S2 with p , be

mapped to minimal geodesic segments of length at most d that connect p̃ with

the corresponding vertices ṽi = f(vi) .

Next we are going to extend to the 2 -skeleton. We consider an arbitrary 2 -

simplex [vi, vj, p] and notice that its boundary is mapped to a closed curve of length

of at most 2d+ δ , (that is, assuming that the diameter of each simplex is less than

δ ). Now, if δ is sufficiently small, so that l(M) > 2d+ δ by our assumption, then

each such curve can be contracted to a point without length increase, thus for each

such curve we obtain a disc, and we can map each 2 -simplex to the corresponding

disc.

At the next step we want to ”extend” to the 3 -skeleton. At this stage we will

use some basic Morse theory on the space of 1 -cycles.

In order to ”extend” to the 3 -skeleton, consider an arbitrary 3 -dimensional

simplex. Consider its boundary that consists of four faces. We want to construct

a loop in the space of 1 -cycles that corresponds to this boundary. Here is how we

do it. Each face corresponds to a line segment in ΛM , the space of continuous

closed curves on M , that begins with a constant curve and ends with the curve

that is the image of the boundary of the corresponding face. This line segment

passes through curves of length less than or equal to 2d + δ . Now the main idea
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is to consider those line segments ”together”, thus obtaining a line segment in the

space of cycles. This segment begins with a 1-cycle of length 0 (consisting of

four points each counted with multiplicity three) and ends with a four properly

oriented images of the boundaries of the corresponding faces. If we considered

1-cycles as functionals on the space of 1-forms (as it is customary in geometric

measure theory), then the sum of the above boundaries would have constituted the

zero cycle. So, we would have obtained a loop in the space of 1-cycles of length

≤ 6d+6δ . But here we consider 1-cycles that consist of parametrized segments, so

no cancellation of oppositely directed segments would occur. Therefore we group

4×3 = 12 parametrized segnents into 6 pairs of segments with the identical image

but opposite orientations and shrink each pair to its midpoint. The resulting 12

points are then connected by some paths with original 4 × 3 = 12 points, which

will close the loop. Thus, we obtain a loop in the space of 1-cycles of length at

most 6d+ 6δ .

We next use a Morse-theoretic lemma (see Proposition 4, below) to claim that

either we can contract the loop to a point along cycles of length at most 6d+ 6δ ,

or there exists a “nice” stationary cycle below this loop (i.e. the length of the

stationary 1 -cycle does not exceed 6d + 6δ ). In the former case we can, indeed,

contract each such loop to a point, and obtain corresponding 2 -discs in the space

of 1 -cycles, which correspond to 3 -chains on a manifold. Each of these 3 -chains

consists of all 1 -cycles in the image of the corresponding 2 -disc, (see section 4 for

more details). Add those 3 -chains and note that the boundary of the sum will be

f∗([S
2]) , thus, obtaining a contradiction. We can now let δ go to zero.

2. Basic definitions.

2.1 Spaces of 1-cycles that will be used in the present paper Now we

would like to introduce some spaces of “nice” 1-cycles that are especially useful for

our purposes. Following [ClCo] it is convenient to consider spaces of parametrized

1-cycles made of at most k closed curves: Define Γk as the space of all k -tuples

(γ1, . . . , γk) of Lipschitz maps of [0, 1] to Mn such that Σk
i=1γi(0) = Σk

i=1γi(1) .

Endow Γk with the following metric topology: First, because of the Nash embed-

ding theorem we can assume without any loss of generality that Mn is isometrically

embedded into the Euclidean space RN of a large dimension. Define the distance
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by the formula:

d((α1, . . . , αk), (γ1, . . . , γk)) = max
i,t

dMn(αi(t), γi(t))+Σk
i=1

√

∫ 1

0

|α′
i(t) − γ′i(t)|

2dt.

It is easy to see that the length functional

l((γ1, . . . , γk)) = Σk
i=1l(γi)

is a continuous functional on this space. Observe that we can assign to each element

A of Γk a bounded linear functional TA on the space Ω1(M
n) of 1-forms on Mn

by the formula TA(ω) =
∫

A
ω = Σk

i=1

∫

γi
ω . Thus, we obtain the map I : Γ =

∪kΓk −→ (Ω1(M
n))∗ to the dual space of the space of 1-forms. Denote the image

of Γ under this map by Z1(M
n,Z) . This space will be called the space of non-

parametrized 1-cycles on Mn . Denote the image of Γk under I by Z(k) . We

will call Z(k) the space of (non-parametrized) 1-cycles on Mn made of at most

k closed curves. Observe that Γk contains all collections of at most k suitably

parametrized closed curves in Mn . (see Fig. 3 for examples of elements of Γ2 .)

Therefore Z(1) ⊂ Z(2) ⊂ Z(3) ⊂ . . . , and
⋃∞

i=1 Z(i) = Z1(M
n,Z) . Also, for any x

let the subset of Γk formed by all γ = (γ1, . . . , γk) such that l(γ) = Σk
i=1l(γi) ≤ x

be denoted by Γx
k , and the image of Γx

k under I be denoted by Zx
(k) . We will

call Zx
(k) the space of 1-cycles on Mn of length ≤ x made of at most k curves.

Similarly, we will call elements of Γk parametrized 1-cycles made of k curves, k

will be called the order of parametrized cycles from Γk , and elements of Γx
k will

be called parametrized 1-cycles of length ≤ x made of k curves.

The fundamental difference between spaces Z(k) and Γk is that if we go along

a curve γ and then backtrack via the same curve, we obtain the trivial non-

parametrized cycle, but a non-trivial parametrized cycle. This feature of non-

parametrized cycles makes some of our constructions easier and more transparent

when they are carried out for Z(k) . Therefore we first explain how to perform some

of our constructions in Z(k) before explaining how they can be done in Γk (which

is what is actually needed for our purposes). In the present paper we will be using

non-parametrized cycles only for illustrative purposes.

2.2 Strongly stationary 1-cycles

Let X be a smooth vector field on Mn . It determines a one-parameter group of

diffeomorphisms ΦX(t) of Mn . For any γ ∈ Γk consider the one-parameter family
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of parametrized 1-cycles ΦX(t)(γ) . Now one can consider the function LX,γ(t)

defined as the total length of k Lipschitz curves that together form ΦX(t)(γ) .

Definition 3. Let γ ∈ Γk be a parametrized 1-cycle. We say that γ is strongly

stationary if it satisfies the following two conditions: 1) (Stationarity) For any

smooth vector field X
dLX,γ

dt (0) = 0 ; and 2) For each i = 1, . . . k γi is a geodesic.

If γ is strongly stationary, then its image I(γ) in Z(k) is called a stationary (non-

parametrized) 1-cycle. For each γ ∈ Γk and each smooth vector field X on Mn

the value of the derivative of LX,γ at t = 0 will be called the first variation of

the length of γ in the direction of X . We will denote the minimal length of a

non-trivial strongly stationary parametrized 1 -cycle in Mn by α(Mn) .

On the first glance it might seem that the condition 2) in this definition is

extraneous. The following example shows that this is not so:

Example 1. Let k = 1 . Assume that γ = γ1 ∈ Γ1 is a three-petal curve

that consists of three geodesic loops emanating from the same point p . Consider

three angles formed by pairs of tangent vectors for each petal (=geodesic loop) at

p (see Fig. 2(b). As usual, we direct the tangent vectors from p .) Assume further

that: 1) These three angles have equal values that are strictly less than 2π/3 ; 2)

The bisectors of these three angles lie in a plane in TpM
n and form angles equal

to 2π/3 with each other. Then it is easy to see that γ satisfies the stationarity

condition, but γ1 is not a geodesic (and does not correspond to a closed geodesic

in any obvious way). (However, observe that γ can be represented by a strongly

stationary 1-cycle from Γ3 .)

So, the stationarity of γ does not guarantee the smoothness of curves γi , which

can have many points where they fail to be smooth and, thus, consist of many

geodesic segments. (Moreover, the number of non-smooth points of γi can even be

infinite.) However, if γ is stationary and γi is C2 -smooth, then the formula for

the first variation of the arclength immediately implies that γi is a geodesic (after

a suitable reparametrization). So, in the presence of condition 1) the condition 2) is

essentially equivalent (up to a reparametrization) to the smoothness of γi . Thus,

the purpose of condition 2) is to ensure that k is the number of geodesic segments

forming γ .

Vice versa, assume that the condition 2) is satisfied. Then the formula for the
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first variation of the arclength implies that the condition 1) becomes equivalent

to the following condition: Assume that several of the curves γi share a common

endpoint p . Consider all non-constant curves γi such that p is one of their

endpoints. For each of these curves consider the unit tangent vector at p directed

from p . Then the sum of these vectors must be zero. So, we see that the Definition

3 is equivalent to Definition 1.

The stationarity condition 1) comes from geometric measure theory, where it is

used to define stationary varifolds (cf. [A2], [P]). Note that condition 2) implies

that a strongly stationary 1-cycle γ ∈ Γk has an additional degree of stationarity:

The cycle γ is stationary with respect to variations of γ associated with vector

fields along curves γi such that the values of these vector fields at common end-

points of γi and γj (for all i, j ) are equal. (The last requirement implies, in

particular, that if γi is a geodesic loop, then the values of the corresponding vector

field at the beginning and the end of γi must be the same.) Note that the main

difference between a vector field along γi and a restriction of a vector field on the

ambient manifold to γi is that the former can have different values for values of

the parameter corresponding to a point of self-intersection of γi . It is because

of this additional degree of stationarity we decided to adopt the term “strongly

stationary” in Definition 3.

Note that a strongly stationary 1-cycle made of one geodesic segment must be a

geodesic loop and therefore must be a closed geodesic. (Two unit vectors tangent

to the geodesic loop at its origin must cancel each other.) A strongly stationary

1-cycle made of two geodesic segments either consists of two geodesic segments

connecting two different points or consists of two geodesic loops. In the first case it

is easy to see that it is a closed geodesic. In the second case we have two subcases.

If these geodesic loops are based at different points, then both of them must be

closed geodesics. If they are based at the same origin, then we see that the sum

of the four unit tangent vectors at the origin of the loops must be equal to zero

(see Fig. 2(a)). If the dimension of the manifold is greater than two, then, in

principle, these two geodesic loops need not form a closed geodesic. However, if

the dimension of the manifold is equal to 2 , then this condition implies that the

strongly stationary 1-cycle is just a self-intersecting closed geodesic. So, we obtain

the following lemma.
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Lemma. A non-trivial strongly stationary 1-cycle made of 2 segments on a two-

dimensional manifold is either a closed geodesic or the union of a closed geodesic

and a point or a closed geodesic.

Remark. The assertion of this Lemma (with a minor inaccuracy) can be found

in [ClCo], p. 547-548.

3. A Morse-theoretic type lemma for Γk

The main technical results of this section resemble Theorem 4.3 in [P] (though

they do not directly follow from it). They also resemble a basic result from the

Morse theory asserting that if there are no critical points of a smooth function

F : M −→ R on a compact manifold M in the set F−1([x1, x2]) then the sublevel

set F−1((−∞, x1]) is a deformation retract of the sublevel set F−1((−∞, x2]) .

(The deformation retraction can be obtained using the gradient flow of F .) Our

goal is to obtain a result of such type for the length functional on Γk . The main

technical problem is that Γk is not an infinite-dimensional manifold, but consists of

finitely many intersecting pieces (each of which is an infinite-dimensional manifold).

In this section we are going to prove that in the absence of strongly stationary

1 -cycles, spheres in Γx
k are contractible to a point, under a certain additional

condition. This is done in two steps. The first step is to show that if there is no

strongly stationary 1 -cycles of length ≤ x then Γx
k can be deformed to the zero

level, (see Lemma 3). In particular, that implies that spheres can be deformed to

the zero level. The second step is to contract the spheres in the zero level to a

point, (see Proposition 4).

Lemma 3. Assume that there are no non-trivial strongly stationary 1-cycles on

Mn of length ≤ x made of k geodesic segments. Then Γ0
k is a deformation

retract of Γx
k .

Proposition 4. Assume that there are no non-trivial strongly stationary 1-cycles

on Mn of length ≤ x made of k geodesic segments. Let i be an arbitrary positive

integer number, and F : Si −→ Γx
k be a continuous map. For each j = 1, . . . , k

consider the map Fj : Si −→Mn defined by the formula Fj(p) = (F (p))j(0.5) for

any p ∈ Si . If all these maps Fj are contractible, then F is contractible.

Remark. Of course, the choice of the point 0.5 ∈ [0, 1] is completely arbitrary.
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We could choose instead, for example, one of the endpoints of the interval [0, 1] .

Proof of Proposition 4 assuming Lemma 3: Lemma 3 implies that there

exists a homotopy H between F and a map of Si into Γ0
k . Note that H(1) can

be regarded as a map of Si into (Mn)k . Therefore it is sufficient to check only that

k maps H(1)j are contractible. But each of these maps can be connected with Fj

by a homotopy Q that can be defined by the formula Q(t)(p) = (H(t)(p))j(0.5)

for any t ∈ [0, 1] , p ∈ Si . QED.

Proof of Lemma 3:

The proof of Lemma 3 is long but not difficult. Here we present a short version

of the proof.

We will present a detailed proof of this Lemma in Appendix A to this paper.

3.1 Reduction to a finite-dimensional case A standard and very old idea

in the study of closed geodesics (apparently due to Birkhoff) is to use a length

non-increasing deformation of the space of all piecewise-smooth closed curves on a

Riemannian manifold to its finite-dimensional subspace that consists of piecewise

geodesics.

We can apply this idea in our situation. It is easy to see that there exists

a deformation of Γx
k to a finite-dimensional space gx

k,N defined as the space of

all elements of Γx
k such that each of its k segments is a broken geodesic with N

segments of length ≤ inj(Mn)/4 , (see fig. 5). Here inj(Mn) denotes the injectivity

radius of Mn and N = N(Mn, x) is an explicit large number. (For example, one

can take N = [4x/inj(Mn)]+1 .) We call this deformation the Birkhoff deformation.

Note that this deformation is not the Birkhoff curve-shortening process used in

many papers about closed geodesics but just its first stage. Also, note that the

endpoints of k segments remain fixed during this deformation.

3.2 For our purposes we need the spaces Gx
k,N defined almost as gx

k,N with

only one distinction: Each of small geodesic segments is allowed to have length

≤ inj(Mn)/2 instead of inj(Mn)/4 in the definition of gx
k,N . Now our goal will

be to prove that there exists a deformation of gx
k,N into g0

k,N inside Gx
k,N such

that points of g0
k,N are fixed. This assertion immediately implies Lemma 3.

3.3 The vector of the steepest descent The idea is to construct a flow

that behaves like a gradient flow. It is not difficult to see what is the direction of

the steepest descent for the length functional on Gx
k,N : A tangent vector to an
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element of Gx
k,N can be thought as a collection of tangent vectors to Mn at every

endpoint of many geodesic segments that compose the element. For the steepest

descent vector each of these tangent vectors is equal to the sum of unit vectors

tangent to all geodesic segments meeting at the endpoint and directed from the

endpoint, (see fig. 6). However the steepest descent vector is not a continuous

function on Gx
k,N , (see fig. 7).

3.4 Therefore choose a fine net in Gx
k,N , an open covering of Gx

k,N by small

metric balls centered at the points of the net and obtain the desired gradient-like

vector field as a linear combination of the steepest descent vectors at the points

of the net with coefficients equal to functions of a partition of unity subordinate

to the open covering. Here we use the parallel translation along geodesics on Mn

in order to translate a tangent vector at a point of Mn to all sufficiently close

points. (Thus, a steepest descent vector at a point of Gx
k,N can be translated to

all sufficiently close points.)

3.5 A small technical complication arises due to the fact that the steepest descent

vectors are defined only at the points of Gx
k,N \G0

k,N , and this space is not compact.

Therefore, if we would like to go all the way down to G0
k,N (and not just to Gδ

k,N

for some small δ > 0 ) we need to consider infinite countable nets on Gx
k,N \G0

k,N

and locally finite open coverings centered at the points of the net on the previous

step. As the result a priori we do not have a uniform positive lower bound for the

speed of change of the length, when the length approaches 0 .

Yet one can derive such a uniform bound by observing that each element of

Gδ
k,N for a small δ consists of several connected components that are located in

very small open balls in Mn that are very close to the balls of the same radius in

R
n . Therefore the speed of change of the length is very close to the speed of the

change of the length of corresponding small parametrized 1-cycles in R
n . But in

the Euclidean space the steepest descent vectors and the norm of the gradient of

the length functional are scale invariant. Hence we can rescale a connected 1-cycle

in R
n so that the maximal length of one of its segments is equal to one without

changing the speed of decrease of the length under the flow. Now an obvious

compactness argument yields a desired uniform positive lower bound for the speed

of change of the length. (We need such a bound in order to be sure that G0
k,N will

be reached in a finite time.)
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3.6 Another technical difficulty can arise when the value of the length of the

considered 1-cycles is ≥ inj(Mn)/4 . Namely, note that, whereas the length of the

element of Gx
k,N decreases under the constructed flow, the length of its individual

segments can increase. Since we move the endpoints of the segments and connect

them by the shortest geodesics, we do not want the distance between two points

that are supposed to be connected by a geodesic to become ≥ inj(Mn)/2 . We

also need this restriction because we would like to stay inside Gx
k,N during the

deformation.

In order to avoid this problem we can proceed as follows. We follow the flow for a

small fixed value of time t0 (for example, one can take t0 = inj(Mn)/(8k(N+1)) ).

Then we apply the Birkhoff deformation that makes the lengths of all small geodesic

segments to be smaller than inj(Mn)/4 . Then we follow the flow for time t =

t0 , then apply the Birkhoff deformation, etc. It is clear that we need to stop

and perform the Birkhoff deformation only finitely many times before we reach

g
inj(Mn)/4
k,N . (After we reach g

inj(Mn)/4
k,N this problem cannot occur anymore, and

we do not need to apply the Birkhoff deformation.) QED

3.7 A stronger version of Lemma 3. Subsections 3.1-3.6 contain an outline

of the proof of Lemma 3. Now we are going to explain how one can prove a

slightly stronger version of Lemma 3 (and therefore of Proposition 4). (Again the

complete details can be found in Appendix A.) Namely, we can ensure that the type

of elements of Γx
k and of Gx

k,N does not change during the deformation, where the

type is defined as follows:

3.8 Types of elements of Γx
k . We define types of elements of Γk as equiv-

alence classes. Two elements are equivalent if 1) The sets of segments that are

constant curves are the same; 2) The endpoints of k segments merge with each

other in exactly the same fashion. (Note that all segments are numbered.) We refer

the reader to Appendix A for a more detailed and formal definition of types.

For example, consider types of elements of Γ2 . There are three types where

both segments are non-constant, namely, (1) Two (non-trivial) closed curves; (2)

One closed curve, where the endpoints of 2 segments are two different points on the

curve; and (3) A figure eight curve (all four endpoints of 2 segments merge). There

are two types where both segments are constant: (4) A curve that looks as two

distinct points; (5) A curve that looks as a point. There are 4 types, when one of
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two segments is constant and the other is not: ( 6i ) The i th segment is constant,

and it coincides with both endpoints of (3−i) th segment (which, therefore, forms a

closed curve); ( 7i ) The i th segment is constant, and different from the endpoints

of the (3−i) th segment; i = 1, 2 . (In the case 7i the element looks as a non-trivial

closed curve and a point.)

Note that there is a natural partial order on the set of types: We say that a type

A is higher than B if an element of type A can be obtained from an element of type

B by 1) collapsing a segment to a point without the merging of the two endpoints,

(see fig. 8 (a), (b)); 2) merging two endpoints of k segments, (see fig 8 (c)); 3) A

finite sequence of operations of the type 1) and 2). For example, for Γ2 there are

the following inequalities between types: 5 > 4 > 7i > 1 , 3 > 2 , 5 > 6i > 3 > 1 .

On the other hand, 4 and 3 are incomparable. 1 and 2 are also incomparable.

3.9 Preserving the type during deformation. In order to keep the type

constant during the deformation we must keep endpoints of segments away from

merging. It can be achieved is the following simple fashion. Stratify Gx
k,N by

strata corresponding to the types. We start the construction of the net and the

open covering from the highest type and than proceed to lower and lower types.

By doing this we can ensure that a small neighbourhood of a higher type stratum

is covered only by balls centered at points in this stratum and strata corresponding

to even higher types and does not intersect balls centered at the points of the

net located in lower type strata. We are going to consider such a covering of

Gx
k,N \G0

k,N instead of an arbitrary covering used in 3.4 above. Then proceed as

in 3.4 to construct a flow on Gx
k,N \G0

k,N .

Lemma. The type of each element of Gx
k,N \ G0

k,N remains constant under this

flow.

Sketch of the proof: The change of type of a parametrized 1-cycle is possible

only when two its endpoints merge. But before colliding they need to become close

to each other. When two endpoints in a parametrized 1-cycle become very close

to merging, they will start moving along trajectories of the same flow on Mn . To

explain this assertion assume for simplicity that the considered element of Gx
k,N

is covered by exactly one metric ball centered at a point in a higher type stratum

where these two endpoints have already merged into one point m . (The general
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case can be treated in a similar fashion; see Appendix A.) Then by the virtue of

the construction explained in 3.4 these two endpoints will be moving along the

trajectories of a vector field obtained from a tangent vector to Mn at m by the

parallel translation along the unique shortest geodesics from m to these two points.

The two endpoints will be moving along the trajectories of this flow on Mn either

until they will become sufficiently far apart at a later time, or until the flow reaches

G0
k,N . But the uniqueness theorem for ODE implies that points moving along

the trajectories of the same flow on Mn cannot collide. (And recall that during

Birkhoff deformation stages endpoints of the intervals remail fixed.) Therefore the

type of the parametrized 1-cycle cannot change. QED.

Note that keeping the type constant does not really give us much. Informally

speaking, we keep points from merging in a somewhat artificial way, and, anyway,

move them almost as if they have already been merged into one point. Yet this

feature of our flow turns out to be a (non-essential) convenience when we build

singular chains out of the discs in the spaces of parametrized 1-cycles as explained

in the next section. (More presisely, as the result, we will be able to use a very

transparent version of Almgren correspondance explained in the next section. An

alternative is to use a stronger version of Almgren correspondance outlined in Ap-

pendix B. In this case one does not need the strenghening of Lemma 3 proved in

subsections 3.7-3.9 which then can be omitted.)

Observe also that the assertion of Proposition 4 will hold with the same proof

for maps F : Si −→ Zx
(k) . For these maps there will be no need to check if the

maps Fj are contractible since Z0
(k) consists of one point, namely the zero cycle.

Finally observe that if Mn is diffeomorphic to S2 we can combine Lemma 3

in the case of k = 2 with the following observation (stated as Lemma in section

2.2 above): Each non-trivial strongly stationary 1-cycle made of 2 geodesic seg-

ments on a two-dimensional manifold is either a closed geodesic or union of a closed

geodesic with a point or another closed geodesic. As the result we obtain an el-

ementary proof of the following assertion used in our paper [NR]. (This assertion

first appeared in [ClCo].)

Proposition 5. Let M be a Riemannian manifold diffeomorphic to S2 . Let Γx
2

denote the space of parametrized 1-cycles on M made of 2 segments. Assume that

for some x there exists a non-contractible map f : S1 −→ Γx
2 . Then there exists
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a non-trivial closed geodesic of length ≤ x on M .

Proof. Proposition 4 implies the existence of a non-trivial strongly stationary

1-cycle in Γx
2 . Since M is two-dimensional, Lemma in section 2.2 implies that this

1-cycle is either a closed geodesic or contains a closed geodesic (of smaller length)

as one of its two connected components. QED.

4. Almgren correspondence

In [A] F. Almgren proved a general theorem that, in particular, immediately

implies that for every m the groups πm(Z1(M
n, Z)) and Hm+1(M

n;Z) are iso-

morphic.

Here we are going to adapt and simplify the Almgren construction, (see [A]) to

the spaces Γ that consist of parametrized 1-cycles made of finitely many closed

curves.

Assume that we are given a continuous map A from a compact polyhedron |K|

into Γk . We would like to assign to A a (dim|K|+1) - dimensional singular chain

on Mn . This assignment will be defined for all A that have a certain property

that we will call a local triviality, see def. 5 below.

The assignment will have the following property: if A is a map of Sm = ∂Dm+1

that is the restriction of a locally trivial map B of Dm+1 to ∂Dm+1 , then the

chain assigned to A is the boundary of the chain assigned to B . This assignement

will be called the Almgren correspondance.

Consider the space Γk . It can be regarded as a subset of the topological space

of all maps of the disjoint union of k copies of [0, 1] into Mn . Therefore we can

assign a continuous map θ from X = |K|×
⋃k

i=1[0, 1]i into Mn to any given map

A : |K| −→ Γx
k in the standard way: For each x ∈ |K| , i ∈ {1, . . . , k} , t ∈ [0, 1]i

θ(x, i, t) = A(x)i(t) . Further, since elements of Γk are parametrized cycles we can

identify points of 2k sets |K| × {0} , |K| × {1} that are mapped into the same

points of Mn . Denote the resulting quotient of X by XA . The map θ factors

through XA . Denote the resulting map of XA to Mn by θA . Note that the

quotient XA can be quite complicated.

However, for our purposes we will only need the situation when XA can be

triangulated with a finite number of simplices. Moreover, we are going to make

an even stronger assumption that will always hold when we apply the Almgren
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correspondance.

Definition 5. A map A : |K| −→ Γk is called locally trivial if |K| admits a

simplicial subdivision with the following property: For any open simplex σ of any

dimension of this subdivision all parametrized 1-cycles A(t) ∈ Γk, t ∈ σ have the

same type.

Now we can triangulate XA so that the map π : XA −→ |K| induced by the

projection of X on |K| becomes a simplicial map such that the inverse image of

each open simplex σ of |K| under π is the product, and the restriction of π to

π−1(σ) is the projection. We will also call such triangulations of XA locally trivial.

Consider the singular chain in Mn corresponding to the simplicial map θA

from XA endowed with a simplicial triangulation. The local triviality makes the

following assertions evident: If |K| = Sm−1 then the resulting singular m -chain

will be a singular cycle. Its homology class does not depend on the choice of a

locally trivial triangulation of XA . If A is a map of Sm−1 to Γk obtained as the

restriction of a locally trivial map B : Dm −→ Γk to ∂Dm , then for any locally

trivial triangulation of XB the boundary of the corresponding singular (m + 1) -

chain in Mn will be the singular chain obtained from XA ⊂ XB . Therefore

the singular m -cycle in Mn assigned to A : Sm−1 −→ Mn will represent 0 in

Hm(Mn) if A is contractible.

Note that if f is a map of Si−1 into Γx
k satisfying the local triviality assump-

tion, and H : Si−1 × [0, 1] −→ Γx
k is the homotopy between f and a map g of

Si−1 into Γ0
k constructed as in the proof of Lemma 3, (in the situation when there

are no non-trivial strongly stationary parametrized 1-cycles in Γx
k ), then H also

satisfies this assumption. This assertion immediately follows from the fact that the

type does not change during the deformation of Γx
k into Γ0

k constructed during

the proof of Lemma 3, (see section 3.7 - 3.9 or Appendix A for more details.) This

observation will imply the local triviality of A in situations that arise in the course

of proving Theorems 1 and 2 in Section 5.

For the sake of completeness we are also going to sketch how to modify the above

version of the Almgren correspondence to make it work in the general case, when

we do not even have the triangulability of XA . (This construction will not be used

in the present paper.) The reader will find this construction in Appendix B to this
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paper.

5. Proofs of Theorems 1 and 2.

Proof of Theorem 1. A. Outline of the proof. Assume that α(Mn) and,

in particular, l(Mn) is greater than (n+2)!d
3

. Thus, each closed curve of length
(n+2)!d

3 can be contracted to a point by a homotopy that does not increase its

length.

Consider a map f : Sq −→ Mn representing a non-zero element of πq(M
n) ,

where Sq is the standard sphere with a fine triangulation. Let [Sq] be the funda-

mental class of Sq . Since the map is non-contractible, f∗([S
q]) 6= 0 ∈ Hq(M

n) .

Let Dq+1 be a disc that has Sq as its boundary. Triangulate Dq+1 as the cone

over the triangulation of Sq (introducing one new 0-dimensional simplex at the

centre of Dq+1 ). We will try to construct a singular (q + 1) -chain in Mn , such

that f∗[S
n] will be its boundary, which is clearly impossible and will result in a

desired contradiction.

We are going to proceed inductively assigning an i -dimensional singular chain

in Mn to each i -dimensional simplex of Dq+1 on the i -th step. The induction

starts from assigning an arbitrary point of Mn to the center of Dq+1 . The new

1-dimensional simplices will correspond to the shortest geodesics connecting the

images of the endpoints in Mn . (These geodesics are regarded as singular simplices

in Mn here.) Each new 2-dimensional simplex σ ⊂ Dq+1 \Sq will correspond to a

signular chain that consists of one singular 2-simplex. This simplex will be provided

by a length non-increasing homotopy that contracts the image of the boundary of σ

in Mn . (Such length-nonincreasing homotopies exist because of our assumption.)

Now consider higher dimensions. The boundary of the singular chain that cor-

responds to an arbitrary simplex σi will be equal to the signed sum of chains

assigned to simplices of the boundary of σi . These signs will be the same as

the signs with which the corresponding simplices enter ∂σi . These singular i -

chains will be obtained from (i−1) -dimensional discs in the space of parametrized

1-cycles, particularly in Γk(i−1) for some function k(i) . Here we will use the

Almgren correspondence between discs and chains explained in section 4. In turn,

these (i − 1) -dimensional discs are obtained by contracting (i − 2) -dimensional

spheres in Γk(i−2) . And these (i − 2) -dimensional spheres are constructed from
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(i − 2) -dimensional discs in Γk(i−2) corresponding to simplices of ∂σi that were

constructed on the previous stage of induction. (The construction of (i − 2) -

dimensional spheres from the collection of (i − 2) -dimensional discs will be ex-

plained below.)

Alternatively we can describe the same procedure with more details and from a

somewhat different perspective in the following way: After the first three steps of

the induction process corresponding to simplices of dimension 0, 1 and 2 in Dq+1

we obtain a collection of maps of D1 −→ Γk(1) −→ Z(k(1)) , where k(1) = 3 . These

maps correspond to contractions of boundaries of 2-simplices in the image in Mn

of the triangles in Dq+1 \ Sq that do not increase the length. Then, inductively,

for each simplex σi in the considered triangulation of Dq+1 , ( i = 3, 4, . . . , q+1 ),

we do the following:

1) Construct a map of Si−2 into Z(k(i−1)) using (i + 1) maps of Di−2 into

Z(k(i−2)) corresponding to i + 1 (i − 1) -dimensional simplices in the boundary

of σi and obtained on the previous step of induction. In order to do that we

first observe that (Z(k(i−2)))
i+1 ⊂ Z((i+1)k(i−1)) . Therefore we obtain a map ω of

Di−2 −→ Z(k(i−1) , where, by definition, k(i− 1) = (i+1)k(i− 2) . The restriction

of this map to ∂Di−2 sends each point to the same point of Z(k(i−1)) , namely the

zero cycle. This happens because the sum of boundaries of (i+1) oriented (i−1) -

dimensional simplices constituting the boundary of σi is zero as a chain. In other

words, each simplex of dimension (i− 2) appears in this sum the same number of

times with each of two opposite orientations. This leads to the cancellation of all

1-dimensional (non-parametrized!) cycles in the corresponding sum. Therefore ω

factors through Si−1 : We just map the boundary of Di−1 to a point that will be

mapped to the zero cycle.

2) We use our assumption about non-existence of sufficiently short non-trivial

strongly stationary 1-cycles and Proposition 4 to obtain a map of Di−1 into

Z(k(i−1)) contracting this map of Si−2 . This map of Di−1 will correspond to

σi . (Formally speaking, Proposition 4 involves parametrized cycles instead of non-

parametrized cycles. But, as we observed before, Proposition 4 holds and is even

easier for non-parametrized cycles. In particular, there is no need to check the

contractibility of Fj , since all of them are constant maps into the zero cycle.)

All these maps from discs and spheres into Z(k(i)) , i = 1, 2, . . . , q , can be lifted
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to Γk(i) . In other words, we can carry out this construction with parametrized

cycles Γk(i) instead of Z(k(i)) . Ad hoc, there will be two extra difficulties here:

Firstly, on step 2) we will need to check the contractibility of maps Fj in order to

apply Proposition 4. Secondly, the map ω defined during our discussion of step 1)

will not map ∂Di−2 into the zero cycle anymore. Instead each point of ∂Di−2 is

mapped into a parametrized 1-cycle that consists from a finite number of segments,

so that each segment enter the same number of times with each of two orientations.

So, we can pair these segments with opposite orientations and contract them to the

point in the middle (which is a parametrized 1-cycle of zero length). As the result,

we obtain a homotopy H of ω|∂Di−2 to a map τ of ∂Di−2 into Γ0
k(i−1) , which

can be also regarded as a finite collection of maps from Si−3 = ∂Di−2 to Mn . If

we manage to demonstrate that these maps are null-homotopic, then we can obtain

the required map of Si−2 into Γk(i−1) by attaching to ω H and a homotopy G

contracting τ . (Here ω can be regarded as a map of a lower hemisphere of Si−2 ,

G can be regarded as a map of an upper hemisphere, and H can be regarded

as a map of the spherical annulus between the hemispheres.) So, all our technical

difficulties can be reduced to verification that certain maps of spheres into Mn are

null-homotopic.

This problem can be dealt with in two ways. First, we can just observe that

by our notations all homotopy groups of Mn in the considered dimensions are

trivial (because these dimensions are less than q ), so the problem disappears.

Alternatively, we can examine the geometry of these maps. It turns out that each

of this maps looks like a composition of a flattening of the sphere into the double

disc of the same dimension and a map of the disc into Mn , so it is null-homotopic

in the obvious way.

We continue this inductive procedure until i becomes equal to q + 1 . As the

result we obtain maps of Dq into Γk(q) corresponding to every (q+1) -dimensional

simplex of the triangulation of Dq+1 .

Then we will apply the Almgren correspondence to each of the resulting maps of

Dq into Γk(q) and sum the resulting singular (q + 1) -chains in Mn . The result

will be the required (q + 1) -chain that fills the singular cycle f∗([S
q]) , and we

obtain the desired contradiction.

B. Details. We will begin with the 0 -skeleton of Dq+1 \ Sq that consists
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of the point p , the center of the disc. We will assign to p a singular 0 -chain

that corresponds to an arbitrary point p̃ ∈ Mn . Now we will proceed to the

1 -skeleton: we will assign to the 1 -simplices of the form [vi, p] the singular 1 -

chains that correspond to minimal geodesics in Mn that connect p̃ and ṽi =

f(vi) Next, we consider the 2 -skeleton: Let σ2 = [vi, vj , p] be a 2 -simplex of

Dq+1 \ Sq . Consider its boundary ∂σ2 and the corresponding singular 1 -chain

on Mn , which equals to [ṽj , p̃]− [ṽi, p̃] + [ṽi, ṽj ] . This can be viewed as a curve of

length ≤ 2d+ ǫ . By our assumption, there is no closed geodesics of length smaller

than or equal to 2d + ǫ , so there is a curve shortening homotopy that connects

this curve with a point. Therefore, we assign to this 2 -simplex a singular 2 -chain

consisting of one singular 2-simplex that corresponds the surface generated by this

homotopy. The “extension” to the 3 -skeleton will be somewhat different. Let

σ3 = [vi0 , vi1 , vi2 , vi3 ] be a 3 -simplex of Dq+1 \ Sq . We want to find a singular

3 -chain to assign to this simplex. Consider ∂σ3 . There is a singular 2 -chain

assigned to the boundary of this simplex, which can also be viewed as a 2 -sphere

in Mn of a particular shape. Namely, to each of the faces of the boundary not

in Sq there was assigned a surface generated by a curve shortening homotopy.

Without any loss of generality we can assume that the chosen fine triangulation of

Sq and the map of Sq into Mn were chosen so that any two-dimensional simplex

of the triangulation Sq is also mapped into the surface obtained by contracting

its boundary in Mn by a homotopy that does not increase the length. As we will

see, this 2-sphere corresponds to a 1 -sphere in Γ6d+6ǫ
12 . (See figure 1 to understand

how this 1-sphere is constructed.) In order to describe this correspondence let e1 =

[ṽi0 , ṽi1 ], e2 = [ṽi0 , ṽi2 ], e3 = [ṽi0 , ṽi3 ], e4 = [ṽi1 , ṽi2 ], e5 = [ṽi1 , ṽi3 ], e6 = [ṽi2 , ṽi3 ] ,

where each [ṽis
, ṽit

] is a minimal geodesic segment on the manifold. Then we will

let γ1 = e1 + e5 − e3, γ2 = −e1 + e2 − e4, γ3 = −e2 + e3 − e6, γ4 = e6 − e5 + e4 .

Let xi be a point to which γi contracts for i = 1, ..., 4 . Then the 1 -sphere in the

space of 1 -cycles will be constructed as follows: let f̃i : D2 −→ Mn, i = 1, ..., 4

be each of the four discs that make the 2 -sphere in Mn . Those discs correspond

to four maps fi : [0, 1] −→ Z1(M
n, Z) , such that fi(0) = T{xi} = 0, fi(1) = Tγi

.

(Recall that TA denotes a linear functional on the space of 1-forms of the manifold

defined by the formula TA(λ) =
∫

A
λ .) These maps are precisely curve-shortening

homotopies used to obtain f̃i ; for any t ∈ [0, 1] fi(t) is a 1-cycle that consists of
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one closed curve. It can be regarded as an element of Z(3) if we represent γi as the

collection of three curves (=three sides of the triangle) glued at their endpoints, and

will keep track of these three curves during homotopies contracting γi . Now we

will let G1 : [0, 1] −→ Z(12) be the map that for each q ∈ [0, 1] assigns Σ4
i=1Tfi(q) ,

(see figure 1(b)). Note that G1(0) = Σ4
i=0T{xi} , which is the zero cycle, (see figure

1(a)) and that G1(1) = Σ4
i=0Tγi

, which is also the zero cycle, (see figure 1(c)).

Thus, we obtain a map from S1 to Z1(M
n,Z) .

In order to obtain the corresponding map of S1 into Γ12 note that the re-

striction of G1 to [0, 1) lifts to Γ12 in the obvious way. It remains to exhibit a

homotopy between
⋃4

i=1 γi to
⋃4

i=1{xi} , where each {xi} is counted three times

and is regarded as a constant segment, in Γ12 that lies over the zero cycle in Z(12)

in order to close the circle. This can be achieved by first cancelling in a continu-

ous way six pairs of edges ei with the opposite orientations to a point, which is

obviously possible (each pair is connected over itself to the point corresponding to

t = 1
2 counted twice), and then connecting 12 -tuples of these points regarded as

an element of Γ12 with the constant 1-cycle {x1, x2, x3, x4} regarded as the cycle

from Γ12 (each point is counted three times) using twelve continuous paths. These

paths follow our homotopies restricted to the points of edges of γi corresponding

to t = 0.5 in the chosen parametrization of these edges. As the result we obtain a

lifting to Γ12 of a map that differs from G1 only by a reparametrization.

Further, for sufficiently small ǫ > 0 Proposition 4 implies that the lifting of the

map S1 −→ Z6d+6ǫ
(12) to Γ12 is also contractible. Indeed, we just need to verify

the contractibility of 12 maps of S1 −→ Mn . (These maps were denoted by

Fj in the text of Proposition 4.) Of course, this fact follows from the simply-

connectedness on Mn . However, there is even a more straightforward geometric

reason for contractibility of these 12 circles in Mn : each of them is formed by

the trajectory of a homotopy f̃i from xi to a point in the middle of a geodesic

segment ej traversed two times in the opposite directions.

Observe that using the Almgren correspondence we see that this disc corresponds

to a 3 -chain that we will denote C̃vi0
,...,vi3

in Mn . It immediately follows from

our construction that the boundary of this chain is the (signed) sum of singular

chains (=simplices) assigned to 4 2 -dimensional simplices in the boundary of the

considered 3 -dimensional simplex of Dq+1 \ Sq . So we will assign C̃vi0
,...,vi3

to
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the simplex σ3 .

Now consider the extension to the 4 -skeleton of Dq+1 \ Sq . (see Fig. 4.)

Consider any 4 -simplex of Dq+1 \ ∂Dq+1 σ4 = [vi0 , ..., vi4] . The 3 -dimensional

cycle in Mn Cvi0
,...,vi4

=
∑4

j=0(−1)jC̃vi0
,...,v̂ij

,...,vi4
corresponds to the boundary

∂σ4 of this simplex. First, we construct the corresponding map of the 2 -disc to

Z
5(6d+6ǫ)
(60) ⊂ Z1(M

n,Z) , that takes the boundary of this disc to the zero cycle.

This map, denoted G2 will be constructed as follows: let fj : D̄2 −→ Z6d+6ǫ
(12) ⊂

Z1(M
n, Z) be the map corresponding to (−1)jC̃vi0

,...,v̂ij
,...,vi4

constructed during

the previous step of our induction process. Then let G2(q) = Σ4
j=0Tfj(q) for any

q ∈ D̄2 . Observe that this map can be lifted to Γ30d+30ǫ
(60) in the obvious way.

Let us now examine the restriction of G2 to ∂D̄2 . (see Fig. 4 (c).) We see

that for any q ∈ ∂D̄2, G2(q) corresponds to the union of 10 pairs of closed curves,

where each pair will contain the same curve with two different orientations. In

other words, the corresponding 1-cycles will have opposite signs, and will cancel.

As the result we obtain a zero cycle.

Thus, we obtained a 2 -sphere in the space of non-parametrized 1 -cycles. We

would like to apply Proposition 4. In order to do that we need first to lift G2 to

the map G̃2 : D̄2 −→ Γ60 and examine what happens to the boundary of the disc

under this map. Each point on the boundary is mapped to the 30 pairs of segments

in Mn . Each pair consists of the same segment with opposite orientations. We

want to construct a homotopy between G̃2 : ∂D̄2 −→ Γ60 and a constant map, i.e.

a map that will take a circle to 60 point curves. To construct this homotopy we

cancel pairs of parametrized 1-cycles corresponding to the 1-cycles with opposite

orientations mentioned in the previous paragraph in a continuous way. We contract

each pair γ
⋃

−γ to γ(0.5) over γ . (See Fig. 4 (d).) Thus, we obtain a circle

in the space Γ60 , where each point p ∈ S1 corresponds to 60 constant paths

(those paths are different for p 6= p′ ). This circle can be interpreted as 60 circles

on Mn . Since Mn is simply connected, these circles can be contracted to an

arbitrary point in Mn . (There is also a more straightforward reason why these

circles are contractible, see Fig. 4(e). This reason will be explained during the

proof of Theorem 2 below, where we encounter a similar situation, but Mn cannot

be assumed to be simply connected.) After contracting them we can obtain a point

in the space Γ60 made of 60 constant segments. So, combining G̃2 with these
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two homotopies, we obtain a map of the 2-disc into Γ60 such that its boundary

is mapped into a point composed of 60 constant segments. We can factor this

map through the sphere S2 obtained from the disc by identifying its boundary to

a point (say, the north pole of the sphere. In this case the southern hemisphere

is mapped by G̃2 , and the northern hemisphere is mapped into the subset of Γ60

that corresponds to the zero cycle (i.e. in I−1(0) ).) So Proposition 4 applies: We

have constructed a 2 -dimensional sphere in the space Γ60 , and can conclude that

either this sphere can be contracted along the cycles of mass ≤ 30(d + ǫ) , or we

have a stationary 1-cycle of mass controlled from above by this bound. (Here the

verification of the contractibility of maps Fj defined in the text of Proposition 4

is equivalent to the contractibility of certain 60 2-spheres in Mn . But now we

are discussing the case of q ≥ 3 , so Mn is 2-connected.) If ǫ is sufficiently small,

then the second case is impossible. In the former case, we obtain a 3 -disc in the

space of 1 -cycles, that corresponds to a 4 -chain that we will denote C̃v0,...,v4
. We

will then assign this chain to σ4 .

Now we can continue in the above manner until we fill the original q -dimensional

chain f∗([S
q]) by a (q + 1) -dimensional chain in Mn . As a corollary of our

assumption nothing will stop us until we construct the desired filling. But as it

was said before, this is impossible, and we obtain a contradiction refuting our

assumption. The constants (q+2)!/4 and (q+2)!/2 in the text of Theorem 1 can

be explained by the fact that all our 1-cycles consist of at most 4×5×6×...×(q+2)

closed curves of length not exceeding 2d+ǫ , and each of these closed curves consists

of three segments. Moreover, a quarter of these closed curves have the length ≤ 3ǫ ,

which tends to 0 , as ǫ −→ 0 .

Note that we can get a better estimate when q = 2 . In this case we need to

perform the extension process only till the dimension q + 1 = 3 . We will need

“to represent” the union of four maps of D2 to Mn corresponding to four faces

of a 3-dimensional simplex as a map of a circle to Γ6 . (Recall that these four

maps where obtained by contracting the maps of boundaries of these discs to a

point without increase of their lengths, see Fig. 1). In the body of the proof we

mapped a generic point t ∈ [0, 1] into the 1-cycle that corresponds to the union

of four curves obtained from homotopies contracting ∂D2
i at the moment t (see

Fig. 1(b)). In the particular case q = 2 we can proceed in a slighly different way.
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We can start from two points obtained as the result of contraction of the maps

of boundaries of D2
1 and D2

2 and to pass via cycles made of two closed curves

(obtained during the curve-shortening homotopies contracting the maps of ∂D2
1

and ∂D2
2 ) to the cycle made of the images of these two boundaries (see Fig.1).

The edge [v0, v2] will be passed twice with opposite orientation. Continue the

homotopy by cancelling this edge. At the end of this homotopy we obtain the

map of the boundary of D2
1

⋃

D2
2 . Now note that ∂(D2

1

⋃

D2
2) = ∂(D2

3

⋃

D2
4) .

But we can similarly construct a homotopy between ∂(D2
3

⋃

D2
4) and the zero

cycle that uses 1-cycles made of two curves obtained from the curve-shortening

homotopies contracting the maps of the boundaries of D2
3 and D2

4 . Joining these

two homotopies we obtain the desired homotopy between the zero 1-cycle and the

zero 1-cycle, i.e. the desired circle in the space of 1-cycles that passes through

1-cycles made of not more than two closed curves of length not exceeding 2d + ǫ

(each). See the proof of Theorem 1 in [NR] for more details (in the situation when

Mn is diffeomorphic to S2 . But this part of the proof is the same there as in the

more general situation.) QED.

Proof of Theorem 2. Assume α(Mn) and, in particular, l(Mn) is greater

than (n+1)nn(n+1)!
1

2 (n+2)!(volMn)
1

n . Then α(Mn) (and l(Mn) ) are greater

than (n + 2)!FillRad(Mn) . The definition of the filling radius implies that Mn

bounds in the (FillRad(Mn) + δ) -neighborhood of Mn in L∞(Mn) . Let W

“fill” Mn in the (FillRad(Mn) + δ) -neighborhood of Mn (that is Mn = ∂W ,

if Mn is orientable, and Mn = ∂W (mod 2) , if Mn is not orientable.) Without

any loss of generality we can assume that W is a polyhedron.

Suppose W together with Mn is endowed with a very fine triangulation. We are

going to try to construct a singular (n+ 1) -chain on Mn such that the boundary

of that chain is homologous to the boundary of W (regarded as a chain). That is

clearly impossible, so we will obtain a contradiction. We will construct this chain

by induction with respect to the dimension of skeleta of W . That is to each

i -simplex of W we will assing a singular i -chain on Mn . We will begin with the

0 -skeleton of W . Let vi be a vertex of W . Then F (vi) = ṽi ∈ Mn = ∂W ,

such that d(vi, ṽi) = d(vi,M
n) ≤ FillRadMn + δ . Suppose ṽi, ṽj come from

the vertices vi, vj of some simplex in W . Then d(ṽi, ṽj) ≤ 2FillRadMn + 3δ .

(We assume here that the triangulation of W is fine so that the lengths of 1-
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simplices of the triangulation are at most δ .) Next, we are going to extend F to

the 1 -skeleton. We will assign to any 1 -simplex [vi, vj] ⊂ W \Mn a singular

1 -chain that corresponds to a minimal geodesic that connects ṽi and ṽj of length

≤ 2FillRadMn+3δ . Now we can see that the boundary of each 2 -simplex in W is

sent to a singular chain that corresponds to a curve of length ≤ 6FillRadMn +9δ ,

(we will assume that all simplices in Mn are already short).

Next we are going to extend to the 2 -skeleton. Let σ2 be a 2 -simplex of W .

Consider its boundary ∂σ2 and its corresponding singular 1 -chain. There is a

curve shortening homotopy that connects the curve corresponding to that chain to

a point. So we will map σ2 to the chain that corresponds to the surface determined

by this homotopy. To “extend” F to the 3 -skeleton of W consider an arbitrary

3 -simplex σ3 . Consider its boundary ∂σ3 and the corresponding singular 2 -

chain, which can be viewed as 1 -sphere in the space Z1(M
n,Z) or in Γ12 as

in the proof of the Theorem 1. This sphere passes through 1 -cycles of length ≤

4(6FillRadMn +9δ) . Suppose this sphere cannot be contracted via the 1-cycles of

smaller mass. Then there exists minimal 1 -cycle of length ≤ 4(6FillRadMn +9δ)

contradicting our assumption. (Here we use Proposition 4 from the previous section.

One can check that our spheres in the space of non-parametrized 1-cycles can be

lifted to spaces of parametrized 1-cycles exactly as this was done in the proof of

Theorem 1 above.) So the above 1 -sphere can be “filled” by a disc that passes

through 1 -cycles of mass not exceeding the above bound. This disc corresponds to

a singular 3 -chain that has F (∂σ3) as its boundary. So we will assign this chain

to σ3 . The procedure of “extending” to 4 -skeleton is similar to the one in the

proof of the Theorem 1: At this point “the image” of ∂σ4 has been determined

and it equals to Cvi0
,...,vi4

= (−1)j
∑4

j=0 C̃vi0
,...,v̂ij

,...,vi4
. This chain is in fact

a 3-dimensional cycle in Mn , and it can be interpreted as a sphere of dim 2 in

Z1(M
n,Z) . This sphere is constructed as follows. Let fj : D̄2 −→ Z1(M

n,Z) be a

map that corresponds to (−1)jC̃vi0
,...,v̂ij

,...,vi4
. Then, let G2 : D̄2 −→ Z1(M

n,Z)

be a map that assigns to every q ∈ D̄2 a point Σ4
j=0Tfj(x) . Then it is easy to

see that the boundary of the disc is mapped to the zero 1-cycle, and we obtain

a 2-sphere in Z(60) . Now we want to use Proposition 4, so we need to lift this

map of the 2-sphere to Γ60 . First we lift G2 in the obvious way and consider

G̃2 : D̄2 −→ Γ60 . Next consider what happens to G̃2 : ∂D̄2 −→ Γ60 . We see that
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each point is mapped to the union of 30 pairs of segments. Each pair consists of

the same segment with different orientation. Those segments can be continuously

contracted to their middles, (namely contract γ ∪−γ to γ(0.5) ). Thus we obtain

a homotopy between the original circle and the circle that passes through constant

parametrized 1-cycles only. This circle corresponds to 60 circles on a manifold,

which we want to contract. Now unlike the proof of Theorem 1 above we cannot

assume that Mn is simply connected. But we can contract these circles using the

following simple construction that will similarly work for all dimensions: Consider

the disc G̃2 : D̄2 −→ Γ60 . For any p ∈ D̄2 G̃2(p) = {γp
1 , ..., γ

p
60} . For each

p consider {γp
1(0.5), ..., γp

60(0.5)} . This determines a 2 -dimensional disc in Γ60

that passes only through constant parametrized 1-cycles. This disc corresponds to

60 discs on the manifold. Now our circles can all be contracted over these discs,

which establishes a homotopy between ∂D̄2 and a point in Γ60 . Now we can

construct the required map of the 2 -dimensional sphere into Γ60 providing the

desired lifting to Γ60 exactly as this was done in the proof of Theorem 1. Also,

note that in our present situation maps Fj defined in the text of Proposition 4 are

60 maps of S2 to Mn defined as follows: For p in the southern hemisphere Fj(p)

is defined as (G̃2(p))j(0.5) . (Here we identify the southern hemisphere with D2 .)

For p in the northern hemisphere between the equator and a certain parallel Fj(p)

is constant on every meridian. (This stage corresponds to contracting oppositely

directed pairs of segments to the points in the middle corresponding to t = 0.5 .)

Finally, Fj maps the part of the northern hemisphere north of this parallel using

(G̃2(p))j(0.5) again. So, up to a homotopy Fj maps both hemispheres of S2

in the same way. Hence Fj is contractible by the obvious homotopy. Therefore

we can apply Proposition 4: Since our 2-sphere passes only through sufficiently

short parametrized 1-cycles and because of our assumption, it can be contracted

through sufficiently short parametrized 1-cycles. The 3-disc contracting this sphere

corresponds to a 4-chain in Mn filling the 3-cycle we started from. (Here we have

used the Almgren correspondence explained in the previous section). And so on.

It becomes obvious, that we can go on like that until we “extend” F to the

(n + 1) -skeleton of W thereby obtaining a (n + 1) -singular chain in Mn filling

the fundamental homology class of Mn which is clearly impossible. (If Mn is

non-orientable, then we must reduce the corresponding singular chain modulo Z2 .
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By definition, in the non-orientable case the fundamental homology class of Mn is

the non-trivial element of Hn(Mn,Z2) = Z2 .) The resulting contradiction proves

the theorem. QED.
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Appendix A. A detailed proof of Lemma 3

For convenience of the reader the proof will be split in several steps.

A.1. Recall that a deformation of a space X into its subset A is, by definition,

a continuous map g of X into itself homotopic to the identity map X −→ X

such that g(X) ⊂ A . (But we do not require that the restriction of g on A is

the identity map.) More generally, if B is a subset of X such that A ⊂ B we

say that a map g : B −→ A is a deformation in X if there exists a homotopy

G : B × [0, 1] −→ X such that for any b ∈ B G(b, 0) = b and G(b, 1) = g(b) .

But sometimes by a deformation we will mean the whole homotopy G and not just

g(b) = G(b, 1) .

A.2. Birkhoff curve-shortening process for Γx
k . First, we are going to

proceed as in the first step of the Birkhoff curve shortening process described in

[C] or [ClCo]: Let inj(Mn) denote the injectivity radius of Mn . Choose N =

[4x/inj(Mn)]+1 . Let γ be an element of Γx
k . Divide each of k segments γi of γ

into N pieces of equal length by points γi(tij), j ∈ {0, 1, . . . , N}, ti0 = 0, tiN = 1 .

Consider the unique minimizing geodesic segments between γi(tij) and γ(ti,j+1)

for all j . The length of each of these segments does not exceed inj(Mn)/4 . For any

i N such geodesic segments form a piecewise geodesic γ̄i connecting γ̄i(0) = γi(0)

with γ̄i(1) = γi(1) . The length of γ̄i does not exceed the length of γi . There exists

the following homotopy between γi and γ̄i : At the moment of time τ ∈ [0, 1] we

follow each of the N segments of γi (between γi(tij) and γi(ti,j+1) ) from γi(tij)

to γi(τtij +(1−τ)ti,j+1) and then make a shortcut from γi(τtij +(1−τ)ti,j+1) to

γi(ti,j+1) along the shortest geodesic. Then we reparametrize the resulting curve

proportionally to its arc length. It is easy to see that the length of the curve does not

increase during this homotopy. Denote the resulting homotopy by hi . Combining

all of these k homotopies hi we obtain a homotopy between the parametrized

1-cycle γ and the parametrized 1-cycle γ̄ = (γ̄1, . . . , γ̄k) made of k piecewise

geodesics with N breaks. This homotopy depends on γ in a continuous way.

Therefore we obtain a deformation of Γx
k into its subset gx

k,N defined as the set

of all parametrized 1-cycles γ̄ = (γ̄1, . . . , γ̄k) from Γx
k such that for any i γ̄i is a

piecewise geodesic made of N geodesic segments of non-zero length ≤ inj(Mn)/4

parametrized proportionally to its arclength. Let us denote this deformation by

BN . Below we will refer to it as the the Birkhoff deformation. We regard gx
k,N as
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the subset of a larger set Gx
k,N defined as the set of all elements γ = (γ1, . . . , γk)

of Γx
k such that for any i γi is a piecewise geodesic made of at most N geodesic

segments of non-zero length ≤ inj(Mn)/2 . In other words, the only difference

between gx
k,N and Gx

k,N is that we allow elements of Gx
k,N to have somewhat

longer geodesic segments.

Now we are going to prove that gx
k,N can be deformed into its subset g0

k,N = Γ0
k

inside Γx
k .

A.3 A classification of elements of Γx
k and GN

k,x . Let us define an equiva-

lence relation on Γx
k . For any element γ = (γ1, . . . , γk) of Γx

k or Gx
k,N consider its

2k endpoints γi(0), γi(1) . We will call these points multiple points of γ . The set of

these 2k points can be partitioned into J non-empty sets Aj , ( J ∈ {1, . . . , k} ),

such that 1) Each set Aj contains the equal number of points of the form γi(0)

(for some i ) and γl(1) (for some l ); 2) γi(t1) = γl(t2) for some i, l ∈ {1, . . . , k}

and t1, t2 ∈ {0, 1} if and only if γi(ti) and γl(t2) are in the same set Aj for

some j ∈ {1, . . . , J} . The number J will be called the number of multiple points

of γ . We will say that two 1-cycles γ and β from Γx
k are of the same type if

these partitions for γ and β coincide, and the set of all i such that γi is constant

coincides with the set of values of i such that βi is constant.

For example, let k = 2 . In these case there will be three types of parametrized

1 -cycles from Γx
k when neither γ1 nor γ2 is constant: (a) γ1(0) = γ1(1) 6=

γ2(0) = γ2(1) ( 1 -cycle that consists of 2 closed curves that do not intersect at

their endpoints); (b) γ1(0) = γ2(1) 6= γ2(0) = γ1(1) ( 1 -cycles that consist of one

closed curve obtained by glueing together γ1 and γ2 , where endpoints of γ1 (and

of γ2 ) are different; and (c) γ1(0) = γ1(1) = γ2(0) = γ2(1) ( γ1 and γ2 are loops

with the common endpoint. Such 1 -cycle can be considered as either made of

two closed curves or of one closed curve with the self-intersection.) There will be

two types when both γ1 and γ2 are constant, namely, γ1 6= γ2 and γ1 = γ2 .

For each i = 1, 2 there will also be two types corresponding to the case when

γi is constant and γ3−i is a non-constant loop: One type corresponds to the

case when γi(t) = γ3−i(0) = γ3−i(1) and the other type corresponds to the case

γi(t) 6= γ3−i(0) = γ3−i(1) .

However, we will also need a stronger equivalence relation on Gx
k,N ⊂ Γx

k . For

each γ ∈ Gx
k,N we will consider kN geodesic segments γij in k parametrized
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curves γi forming γ . Consider (N − 1)k endpoints of these geodesic segments

that are not endpoints of k curves γi . We will call them double points in order

to emphasize that there are exactly two geodesic segments meeting at any of these

points. (However note, that it is possible that precisely two geodesic segments meet

at some of the multiple points as well). We will say that two elements α, β of Gx
k,N

are of the same type as elements of Gx
k,N if they are of the same type as elements of

Γx
k and for each i = 1, . . . , k , j = 1, . . . , N the geodesic segment αij is constant if

and only if βij is constant. Also note that the type of γ as an element of Gx
k,N and

the (vectors of) positions of J multiple points and (N − 1)k double points on the

manifold determine an element of GN
k,x uniquely. Therefore for any specific type of

γ we can identify an element γ = (γi)
k
i=1 of Gx

k,N with the corresponding element

of (Mn)J+(N−1)k , where J is the number of multiple points of γ . Note that

copies of (Mn)J+(N−1)k corresponding to individual types can be simultaneously

embedded into the ambient manifold (Mn)(k+1)N by the corresponding diagonal

embeddings that identify endpoints of k intervals in accordance with the type.

A.3.A A partial order on types of elements of Gx
k,N . We will say that a

type A is higher than a type B , if: 1) Multiple points of A can be obtained by

merging some of the multiple points of B . (In other words the partition considered

in A.3 for A is coarser than the partition for B .); 2) If for some 1-cycle β of type

B , for i = 1, 2, . . . , k , and for some j = 1, . . .N the geodesic segment βij is

constant, then for any element γ of type A γij is also constant.

The resulting relation is a partial order on the set of types. For example, the

maximal types among types that correspond to cycles of non-zero length are the

types with just one multiple point m , Nk − 2 constant geodesic segments, and

just two non-constant geodesic segments. These two segments correspond to the

minimal geodesic connecting m with the only double point, d , and traverse this

geodesic in opposite directions.

A.4. Some general remarks about deformations of gx
k,N that will be

constructed below. These deformations will consist of finitely many steps. Each

of these steps constitute either the Birkhoff deformation described in A.2, or will be

a deformation inside Gx
k,N . In the last case in order to describe the deformation

we need to describe the trajectories of individual multiple and double points. More

formally, during a deformation of the last type we will be deforming each individual
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cycle γ as an element of (Mn)(N+1)k . Each multiple or double point will move

along trajectories obtained as a projection of trajectories of a vector field defined

in an open set in (Mn)(N+1)k that contains the union of all diagonnaly embedded

copies of (Mn)J+(N−1)k corresponding to various types of elements of Gx
k,N .

We will construct this vector field in such a way that will not allow the type of

the elements of Gx
k,N to change during these stages of the deformation, but at the

very end of the deformation, when the trajectory of the flow hits G0
k,N , and the

length of the element becomes zero. This is achieved by defining the components

of the vector fields that correspond to the individual multiple and double points of

γ so that in the situation when the distance between two distinct multiple and/or

double points becomes small, they will move along the trajectories of the same

smooth vector field on Mn . (Here we are talking only about pairs of points the

collision of which can change the type.) Moreover, since the type of any 1-cycle

from gx
k,N regarded as an element from Γx

k cannot change during the Birkhoff

deformation (since all multiple points remain unchanged), Γx
k types of 1-cycles

remain unchanged through the whole deformation until its very last moment. We

will not need this feature of our construction in the proof of Lemma 3, but it will

turn out to be convenient for the next section.

However, we can encounter the following problem: We need to ensure that the

distance between any two (double or multiple) points that should be connected by

a geodesic segment is less than inj(Mn) . We will resolve this technical compli-

cation in the following way. Our choice of N ensures that at the beginning these

distances do not exceed inj(Mn)/4 for any γ ∈ gx
k,N . Therefore we can deform

our parametrized 1-cycles using a flow that will be constructed below for a certain

safe amount of time which is sufficiently small to ensure that lengths of segments

grow by not more than inj(Mn)/4 . Then we stop and apply the Birkhoff defor-

mation with N breaks BN again. That is, we forget that the k curves forming

an element of Gx
k,N are already piecewise geodesics with N breaks, divide them

into N equal pieces (of length ≤ x/N ≤ inj(Mn)/4 ) by N − 1 points and re-

place the curve by another piecewise geodesic consisting of N geodesic segments

of length ≤ inj(Mn)/4 with vertices in these points. (Of course, this replacement

is made using the length non-increasing homotopy described in A.2 that was used

in the definition of the Birkhoff deformation.) At this point, in principle, the type
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of γ as an element of Gx
k,N can change because new double points can merge in

a different pattern from what was before the Birkhoff stage. (Note however that

the Γx
k type remain unchanged since BN does not affect multiple points.) Now we

are ready to continue the deformation using the same flow again, etc... The vector

fields and the times of these deformations will be chosen so that at each stage of

the deformation every element of Gx
k,N will become shorter by at least a certain

δ = δ(Mn, N, k, x) > 0 . Therefore we will need only a finite number of stages to

reach G0
k,N .

A.5. The direcion of the steepest descent. We will start the construction of

the flow from the following observation: Since there is no strongly stationary 1-cycle

of positive length ≤ x , then for any piecewise geodesic 1-cycle γ from Gx
k,N there

exists a system of vectors at all multiple and double points such that a small defor-

mation of γ (regarded as an element of (Mn)J+(N−1)k ) in the direction of these

vectors leads to an element of Gx
k,N of the same type but of a smaller length. These

vectors are constructed as follows: Any multiple point corresponds to a set Aj of

the partition. The vector at this point is calculated as Σγl(ti)∈Aj ;ti=0 or 1vl(ti) ,

where vl(ti) is the unit vector tangent to γl at ti directed from the multiple

point. If we will regard all Nk geodesic segments as curves in Mn , then each

double point is adjacent to two geodesic segments of the curve (with the exception

of the case, when this double point is connected by a sequence of geodesic segments

of zero length with a multiple point. In this last case the double point coincides

with the multiple point, and we define the component of v corresponding to this

double point to be equal to the already determined component of v corresponding

to the multiple point.) The component of v at this double point is calculated as the

sum of two unit vectors tangent to two geodesic segments that meet at this point

and are directed from it. Our assertion now follows directly from the first variation

formula for the length functional. We will call the system of J +(N − 1)k tangent

vectors of Mn a deformation vector for γ and will denote it by v(γ) . Note that

v(γ) is the collection of zero vectors if and only if γ is a strongly stationary 1-cycle.

The first variation of the length of γ in the direction of v(γ) is equal to

−‖v(γ)‖2 , where ‖v(γ)‖2 is calculated as follows: When we deal with J compo-

nents of v corresponding to multiple points we just sum their squares. We are going

to say that a pair of double points merges if they are connected by a sequence of
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constant geodesic segments. We define a cluster of double points as a maximal set of

double points such that each pair of them merges. We say that a cluster is negligible

if one of double points in the cluster is connected by a sequence of constant segments

with a multiple point (so geometrically, all double points in this cluster coincide

with the multiple point). Our definition of v implies that components of v corre-

sponding to double points in a cluster point are equal. When we calculate ‖v(γ)‖2

we by definition disregard all double points in each negligible cluster and count the

squared norm of the component of v corresponding to all double points in a clus-

ter only once for each non-negligible cluster. In other words we define ‖v(γ)‖2 as

Σmi;i=1,...J‖v(γ)(mi)‖
2 + ΣNon−negligible clusters of double points‖v(γ)(di)‖

2 , where

the first summation is over the set of all multiple points and the second summation

is over the set of all non-negligible clusters of double points.

A.6. The deformation vector for γ can be used to decrease the length

for all γ∗ sufficiently close to γ . Unfortunately, the dependence of v(γ) on γ

is not continuous. This happens because the type of element of Gx
k,N changes in

a discontinuous manner. Yet, it is easy to see that for any γ ∈ Gx
k,N there exists

a sufficiently small open neighborhood U of γ in Gx
k,N and a positive µ such

that for any γ∗ ∈ U a sufficiently small deformation of γ∗ in the direction of the

deformation vector T γ∗

γ (v(γ)) defined below decreases the length of γ∗ , and the

first variation of the length in the direction of T γ∗

γ (v(γ)) is less than or equal to

−‖v(γ)‖2/2 . The above deformation vector, T γ∗

γ (v(γ)) is obtained from v(γ) by

the parallel transport of all J + Σi(Ni − 1) vector components of v(γ) along the

shortest geodesics connecting the vertices of γ with the corresponding vertices of

γ∗ .

More precisely, one first chooses U so small that: 1) different multiple or double

points of γ cannot merge in U ; 2) For any γ∗ ∈ U any of its multiple points has

the unique closest multiple point of γ , and any double point of γ∗i has the unique

closest double or multiple point of γi at the distance not exceeding inj(Mn)/4 .

But note that, in principle, each multiple point of γ can split into two multiple

points (that can be connected or not connected by a geodesic segment) or into

a pair multiple point - double point for an arbitrarily small U . Also note that

if Ni < N then each double point of γi can bifurcate into two distinct double

points connected by a very short geodesic. If one of k segments γi is a constant
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geodesic loop, then the corresponding multiple point can bifurcate into a pair of

points that consists of the multiple point and a double point that is very close to

the multiple point. These points are connected by two oppositely oriented copies

of the shortest geodesic, together forming a short piece-wise geodesic loop based at

the multiple point. Finally note that a finite number of bifurcations of these types

can occur simultaneously. So, the dimension of T γ∗

γ (v(γ)) can be greater than

the dimension of v(γ) . But condition 2) in the definition of U implies that even

if a multiple or a double point of γ bifurcates into a finite number of (multiple

and/or double) points we know unambigiously how to define the corresponding

component of T γ∗

γ (v(γ)) for each of them: we just perform the parallel transport

of the corresponding component of v(γ) along the (unique) shortest geodesic.

Now the assertion immediately follows from the continuity on U of the first

variation of the length in the direction of the field X(γ∗) = T γ∗

γ (v(γ)) . This

continuity follows from the first variation formula for the length functional. One

just needs to perform easy calculations verifying this continuity for all cases of

elementary mergers. That is, it is necessary to consider the particular cases, when

γi −→ γ , where all γi are of the same type, which can be obtained from (the type

of) γ by either 1) a splitting of a multiple point into two multiple points (connected

or not connected by a very short geodesic segment converging to the point) or into

the pair “multiple point-double point” (on one of the segments adjacent to the

multiple point); or 2) a splitting of a double point into two double points connected

by a very short geodesic (converging to the double point). The general case of

this formula follows by induction. We will omit the details of this straightforward

verification.

A.7. After these preliminaries we are going to prove that:

A. There exists a sufficiently small positive τ∗ ≤ x such that gτ∗

k,N can be deformed

to Γ0
k ; and

B. For any positive τ ≤ x there exists a deformation of gx
k,N to gτ

k,N inside Gx
k,N .

In fact, as it was already noted, we are going to construct the deformation by

first definining a vector flow on an open subset of (Mn)(N+1)k , that includes the

image of Gx
N,k under the embedding discussed above. This flow will be the same for

both A and B. So the division of our deformation into these two parts is somewhat

artificial. Yet we encounter different difficulties in these two situations: When the
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length is small, our main problem will be the lack of compactness at zero length of

the space Gx
N,k \ G0

N,k , and we need to prove that our flow decreases the length

with a speed bounded from zero by a constant. When the length is large, we do not

want the distances between double points that must be connected by a geodesic

segment, to become large, so from time to time we stop and perform the Birkhoff

deformation.

A.8. In order to prove A we would first like to establish a positive lower bound

for ‖v(γ)‖ for all γ ∈ Gτ0

k,N \ G0
k,N for a sufficiently small positive τ0 . The key

idea is to observe that this statement will be true for the Euclidean space Rn in-

stead of Mn : Assume that there exists a sequence of 1-cycles γi in Rn made

of at most Nk straight line segments such that ‖v(γi)‖ −→ 0 . Rescale γi in

Rn so that the maximal length of an edge equals to one. (This does not affect

‖v(γi)‖ .) Choose a convergent subsequence. Then its limit must be a non-trivial

stationary 1-cycle in Rn of length ≥ 1 . (Here we must check what happens

with ‖v‖ when an edge collapses to a point in the limit. It is easy to see that

‖v(limi−→∞(γi)‖ ≤ 2 lim supi−→∞ ‖v(γi)‖ in the situation, when we have a se-

quence of γi of the same type, and exactly one segment of γi collapses to a point

in the limit. The number of such collapses is bounded from above by Nk − 1 .

Therefore the norm of the deformation vector of the limit 1-cycle will be zero.) But

it is very easy to see that there are no stationary 1-cycles in Rn . So, we obtain

a contradiction thereby proving the existence of a uniform positive lower bound

for ‖v(γ)‖ for all parametrized 1-cycles that consists of at most Nk straight line

segments in Rn .

If τ0 = τ0(M
n, N, k) is sufficiently small, then any parametrized 1-cycle from

Gτ0

k,N splits into several connected components contained in very small balls in

Mn . Applying the inverse of the exponential map we obtain “almost” a 1-cycle in

the tangent space to Mn with “almost” the same angles. Now the existence of a

uniform positive lower bound for the norm of the deformation vectors of elements

of Gk,N for Rn implies the existence of such uniform lower bound for all 1-cycles

from Gτ0

k,N .

A.9. Construction of a deformation of gτ0

k,N into Γ0
k . Now it is easy to

find a countable set {γl} ⊂ Gτ0

k,N \ Γ0
k , a locally finite covering of Gτ0

k,N \ Γ0
k by

open balls Ul centered at γl and a subordinate partition of unity that can be used
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to obtain a continuous function φ assigning to every element γ of Gτ0

k,N \ Γ0
k a

system of tangent vectors to Mn at each of its multiple or double points such that

the variation of length of the cycles in direction of φ(γ) is bounded from below by

a positive constant δ . (In order to obtain a formal proof of the last assertion we

just need to establish the continuity of the first variation of the length. This will

be done in A.10.)

We construct this γl and Ul inductively with respect to the partial order on

types of elements of Gx
k,N introduced in section A.3.A above. We start from

elements of Gx
k,N \ G0

k,N of the highest possible type that form strata of a high

codimension that are closed in Gx
k,N \ G0

k,N . Construct a locally finite covering

(in Gx
k,N ) of the union of these strata, so that all centers of open balls forming

the covering are on the considered strata. Automatically an open neighborhood of

the union of these strata will be covered. Then we proceed to strata corresponding

to types of the second highest order. Points of closure of the union of these strata

in Gx
k,N \ G0

k,N that are not in these strata are in strata corresponding to the

highest type, and were already covered. Therefore we can choose the covering so

that no open ball from this covering intersects an open neighborhood of strata

corresponding to the highest types that were previously covered. Also the centers

of all balls should be on the strata that are being covered. We continue inductively

in this way until we cover the whole Gx
k,N \ G0

k,N . On each step of the inductive

procedure we consider the union strata corresponding to the maximal types that

were not yet covered. A neighborhood of the union of all strata corresponding to

higher types was already covered on previous steps of the inductive procedure. So

we complete the covering of of the union of strata that are being considered on

the current step by adding open balls centered at the considered strata that have

empty intersections with a neighborhood of the union of all already covered strata

corresponding to all higher types.

After the covering is completed, and a subordinate partition of unity is chosen,

we define φ(γ) as the weighted sum of T γ
γi

(v(γi)) over the set of indices i such

that γ ∈ Ui . (Recall that components of T γ
γi

(v(γi)) are obtained by the parallel

transport of the corresponding components of v(γi) along the shortest geodesics

between corresponding multiple or double points of γi and γ . Of course, Ui

should be sufficiently small in order for this definition to be unambigious, as we
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explained above.) The weights are equal to the corresponding functions from the

partition of unity. This construction provides us with the flow Φt that deforms

gτ
k,N to Γ0

k in a finite time for each sufficiently small τ (as we will see below).

A.10. The type cannot change during this deformation; the first vari-

ation of the length is continuous. Let p1 , p2 ∈ γ ∈ Gx
k,N \G0

k,N be either two

multiple points, or a multiple point and a double point connected by a segment,

or two double points connected by a segment. Note that if the distance between

p1 , p2 of γ is very small, then γ is in a small neighborhood of a stratum corre-

sponding to a higher type of cycles, where p1 and p2 merge into one point p . If

this neighborhood is sufficiently small, then all balls of the covering that cover γ

are centered at strata corresponding to higher types, where p1 and p2 are merged

into one point p . But then p1 and p2 will be deformed (for some period of time)

using the same vector fields on Mn . This will be happening all the time while

they will be sufficiently close to each other. But since different integral trajectories

of a smooth vector field do not intersect, p1 and p2 cannot merge at least until

the moment of the deformation, when the total length of the 1-cycle becomes zero.

Also, observe that in the considered situation (when γ is close to a stratum

corresponding to a higher type) the first variation of the length in the direction

of the vector field that we constructed will be equal to a linear combination of

variations in the direction of vector fields of the form T γ
γl

(v(γl)) , considered in

A.6. (Here γl are located in strata corresponding to higher types, where p1 and

p2 merge into one point. The coefficients in the linear combination will be the

corresponding functions from the partition of unity.) Therefore we can prove the

continuity of the first variation of length with respect to γ as in A.6.

A.11. Note that for any γ ∈ Gτ
k,N Φt(γ) is defined only until the moment

of time t(γ) , when the length of Φt(γ) will become zero. But one can extend

the domain of definition of Φt by defining Φt(γ) = Φt(γ)(γ) for t > t(γ) . More

precisely, we take τ∗ = min{x, τ0, δ, inj(M
n)/4} , where τ0 is as in 3.8, and δ is

the lower bound of the speed of decrease of the length introduced at the beginning of

3.9, and just follow the flow until we hit Γ0
k . It is clear that: 1) For any element γ ∈

gτ
k,N we will reach Γ0

k in time t(γ) ≤ 1 ; 2) Since the total length of γ decreases,

the distance between any two points on Mn that should be connected by the

shortest geodesic in order to obtain Φt(γ) does not exceed inj(Mn)/4 . Therefore
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Φt(γ) is unambigiously defined. (Recall that we move multiple and double points of

γ along trajectories of vector fields determined by the corresponding components of

φ(γ) . In order to obtain Φt(γ) we connect these points by the shortest geodesics.)

3) t(γ) depends on γ continuously (by virtue of the implicit function theorem. In

order to apply the implicit function theorem we need to establish the continuous

differentiability of the length as a function of γ , but it is equivalent to the continuity

of the first variation of the length of γ in the direction of the vector field that was

established in the previous subsection.)

Therefore the map assigning to γ the point Φt(γ)(γ) ∈ Γ0
k , where the trajectory

of the flow reaches Γ0
k is continuous, and is the deformation of Gτ

k,N to Γ0
k .

A.12. It remains to prove the existence of a deformation of gx
k,N to gτ∗

k,N inside

Γx
k . Use the compactness of the closure S of Gx

k,N \ G
τ∗/2
k,N to find a finite open

covering of S by open neighborhoods Ul of γl ∈ S such that for any γ∗ ∈ Ul the

first variation of the length of γ in the direction of T γ∗

γl
(v(γl)) does not exceed

−‖v(γl)‖
2/2 . (Recall that we have proved the existence of an open neighborhood

U with this property for any γ ∈ Gx
k,N \ Γ0

k .) Using a subordinate partition of

unity αl(γ) define a vector field φ(γ) by the formula φ(γ) = Σlαl(γ)T γ
γl

(v(γl)) ,

where we perform the summation only over indices l such that γ ∈ Ul .

Here the construction of this open covering is similar to that in section A.9: We

construct it inductively starting from the strata that correspond to the highest type

and then proceed to cover strata corresponding to lower types. On each step we

add only open balls centered at points on the considered strata that do not intersect

with an open neighborhood of the already covered strata corresponding to higher

types. As the result the Gx
k,N type will not be changing during the considered

stage of the deformation, and the proof of this fact coincides with the proof in

section A.10 above almost verbatim.

Rescale φ(γ) by a continuous function equal to zero on G
τ∗/2
k,N and to one on

Gτ∗

k,N . Denote the resulting vector field by ψ(γ) . Let t∗ = inj(Mn)/(16k) .

Consider the flow Ψt(γ) defined for all γ ∈ gx
k,N at t ∈ [0, t∗] and determined

by the vector field ψ(γ) . Our choice of t∗ guarantees that Ψt(γ) will be in

Gx
k,N . (In other words, the distance between any pair of points that need to be

connected by a geodesic segment will not exceed inj(Mn)/2 .) Observe that for

any γ ∈ gx
k,N \ Gτ∗

k,N the difference between the length of γ and the length of
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Ψt∗(γ) will be at least δt∗ , where δ = 1
2 minl

i=1 ‖v(γl)‖
2 .

Now recall that the Birkhoff curve shortening process provides us with the de-

formation BN of Γx
k into gx

k,N . The restriction of BN to Gx
k,N ⊂ Γx

k is a

deformation of Gx
k,N into gx

k,N inside Γx
k . Apply BN . The composition of BN

and Ψt∗ is a curve-shortening deformation of gx
k,N into g

max{x−δt∗,τ∗}
k,N inside Γx

k .

Now we can apply Ψt∗ and then BN again and again, etc. Let K = [ 1
δt∗

] + 1 .

It is easy to see that (BNΨt∗)K is the required deformation of gx
k,N to gτ∗

k,N inside

Γx
k . QED.

Observation. We would like to mention again that the defined in A.3 (or 3.8)

type of elements of Γx
k does not change during the considered deformation until

possibly the very last moment, when the length becomes zero.

Appendix B. Almgren correspondence without the local triviality as-

sumption

Recall that at the beginning of the proof of Lemma 3 we introduced N =

N(Mn, x) = [4x/inj(Mn)] + 1 , the spaces gx
k,N and Gx

k,N made of parametrized

1-cycles of length ≤ x formed by k piecewise geodesics made of at most N

geodesic segments of length ≤ inj(Mn)/4 and ≤ inj(Mn)/2 , correspondingly,

parametrized proportionally to the arclength. We also defined the curve-shortening

Birkhoff deformation of Γx
k into gx

k,N . Further recall that gx
k,N and Gx

k,N can be

regarded as subsets of MkN . It is easy to prove that there exists a subset ḡx
k,N

of MkN containing gx
k,N and contained in Gx

k,N that can be triangulated. (The

shortest formal way to prove the last assertion is the following: Approximate the

Riemannian metric on Mn in C3 -topology by an analytic Riemannian metric so

that the distances on the resulting Riemannian manifold M̄n do not exceed corre-

sponding distances on Mn . Now observe that metric balls of radius ≤ inj(Mn)/2

on M̄n are subanalytic sets, the restriction of the distance function to such metric

balls is a subanalytic function, and that according to a well-known theorem of H.

Hironaka subanalytic sets are triangulable (cf. [B] for more details. See also [BM]

for the definition and basic properties of subanalytic sets and function, including

the proof of the mentioned theorem of H. Hironaka.) Therefore we can define ḡx
k,N

as gx
k,N but using the distance function on M̄n instead of the distance function

on Mn .) It is easy to see that one can triangulate ḡx
k,N so that the type of
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parametrized 1-cycles is constant on every simplex of the triangulation. Therefore

we can take x = maxy∈K l(A(y)) , compose BN with A , and take a simplicial

approximation Ā of the resulting composition BNA : K −→ ḡx
k,N . Now we can

consider the quotient XĀ defined as above. It is easy to see how to triangulate

XĀ . Therefore we can proceed as above, and consider the corresponding singu-

lar chain in Mn . It is clear that if K = Sm−1 , then this chain is a cycle, and

this cycle represents 0 ∈ Hm−1(M
n) if and only if A is contractible. A small

technical complication that arises here is the following: Assume that we apply the

Almgren correspondence to a map B : Dm −→ Γx
k and to the restriction A of B

to Sm−1 = ∂Dm . Then the values of x defined for these two mappings will , in

general, be different. Therefore the cycle in Mn corresponding to A will not, in

general, coincide with the boundary of the chain corresponding to B . Yet, it is

easy to construct a homology between these two cycles.

In the case of a map of a polyhedron into Z(k) one can consider a sufficiently

fine subdivision of the polyhedron K . For any simplex of this subdivision the

restriction of our map onto this simplex lifts to Γk . Then we can proceed as in

the parametrized case (for this simplex). Finally sum the resulting chains over all

simplices of the triangulation.
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