VOLUME, DIAMETER AND THE MINIMAL
MASS OF A STATIONARY 1-CYCLE

A. NABUTOVSKY AND R. ROTMAN

ABSTRACT. In this paper we present upper bounds on the minimal mass of a non-
trivial stationary 1 -cycle. The results that we obtain are valid for all closed Riemann-

ian manifolds. The first result is that the minimal mass of a stationary 1 -cycle on a

closed n -dimensional Riemannian manifold M™ is bounded from above by W ,

where d is the diameter of a manifold M™ . The second result is that the minimal
mass of a stationary 1 -cycle on a closed Riemannian manifold M™ is bounded from
above by (n 4 2)!FillRad(M™) < (n 4+ 2)!(n 4+ 1)n"/(n + 1)!(vol(M™))*/™ | where
FillRad(M™) is the filling radius of a manifold, and wvol(M™) is its volume.

1. Introduction.

Let I[(M™) denote the length of a shortest closed geodesic on a Riemannian
manifold M"™ . In 1983 M. Gromov asked whether there exists a constant ¢(n) such
that [(M™) < ¢(n)(vol(M™))% , (see [G], p. 135). This problem also appeared as
Problem 87 in a list of open problems in Differential Geometry composed by S.-T.
Yau ([Y], p. 689, or [SY], p. 297). In the same spirit it might be interesting to
know whether there exists ¢(n) such that I[(M™) < &(n)d, where d denotes the
diameter of M™.

At the moment the only known explicit upper bounds for the length of a shortest
closed geodesic on an arbitrary closed Riemannian manifold M"™ are the estimates
that were found in [NR]; see also the earlier paper [R]. Those estimates, however,
use information about either the sectional curvature or the injectivity radius of the
manifold.

In the present paper we prove the existence of a stationary 1-cycle such that
its mass satisfies these inequalities. In fact, our proofs demonstrate the existence

of a stationary 1-cycle of a special type which we will call strongly stationary such
1



2 NABUTOVSKY AND ROTMAN

that its mass satisfies these inequalities. Strongly stationary 1-cycles are defined

as follows.

Definition 1. A strongly stationary 1-cycle consists of finitely many points py, ...,
and a finite collection of (not necessarily distinct) geodesic segments that start and
end at these points so that the following two conditions are satisfied for each point
pi, t=1,2,...1:

1) (Cycle condition) The number of geodesic segments meeting at p; is even. (Here
each geodesic loop based at p; s counted twice; multiple geodesic segments are
counted with their multiplicities.)

2) (Stationarity Condition) The sum of unit vectors in T, M™ tangent to all ge-
odesic segments meeting at p; (counted with their multiplicities) is equal to zero.

Here each tangent vector is directed from p; .

In other words, stationary 1-cycles are immersed finite multigraphs such that all
edges are realized by geodesic segments, each vertex has an even degree, and for
each vertex the stationarity condition 2) holds.

Each closed geodesic can be regarded as a strongly stationary 1-cycle. A geodesic
loop is a strongly stationary 1-cycle if and only if it is a closed geodesic. Some simple
examples of strongly stationary 1-cycles that do not correspond to closed geodesics
are shown on Fig. 2. Informally speaking, strongly stationary 1l-cycles can be
viewed as a homological analog of closed geodesics.

In section 2 we are going to give a slightly different but equivalent definition of
strongly stationary 1-cycles, which will explain the term “strongly stationary”, (see
def. 4).

Definition 1 can be compared with the definition of geodesic nets in the paper
of J. Hass and F. Morgan [HM]. Geodesic nets satisfy the stationarity condition
but need not satisfy the cycle condition. However, Hass and Morgan require that
all geodesics forming a geodesic net must be embedded and cannot intersect each
other. They also do not allow multiple geodesics with the same endpoints.

The mass or length of a strongly stationary 1-cycle is defined as the sum of
lengths of all its geodesic segments counted with their multiplicities. (The terms
mass and length will be used interchangeably.) A strongly stationary 1-cycle is

called non-trivial if its mass is not equal to zero. (The geodesic segments in the
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definition of a strongly stationary 1-cycle are allowed to be trivial geodesics.)

We also obtain an explicit upper bound for the total number of all geodesic
segments (counted with their multiplicities) in a non-trivial strongly stationary
1-cycle of mass not exceeding é(n)diam(M™) (or c¢(n)vol(M™)% ) in terms of n.

Of course, our estimates would give the estimates on the length of a shortest
closed geodesic if the strongly stationary 1-cycle we obtain is realized by a closed
geodesic. And, in fact, when M™" is diffeomorphic to the 2-dimensional sphere,
this technique produces a closed geodesic, as was observed by J. Pitts, E. Calabi
and J. Cao, (see [ClCo]). This fact enabled us to obtain estimates for the length
of a shortest closed geodesic on a manifold diffeomorphic to S?, (see [NR1]) im-
proving previously known results by C.B. Croke and M. Maeda, (see [C], [Ma]).
Similar results were independently obtained by S. Sabourau in [S1]. Sabourau had
also found curvature free upper bounds on the length of a shortest geodesic loop on
a compact Riemannian manifold, (see [S2]). To compare the results of the present
paper with this result of Sabourau note that for each point of M"™ there are infin-
itely many geodesic loops based at this point. So the set of all geodesic loops on
M™ is uncountable. However strongly stationary 1-cycles are critical points of a
certain functional (see below). Therefore a standard argument implies that there
are only countably many strongly stationary 1-cycles for a generic analytic metric
on M™".

We refer the reader to a survey written by C. B. Croke and M. Katz ([CK]) for
an exposition of other curvature-free estimates in Riemannian geometry as well as
of the theory of systolic freedom developed by 1. Babenko, M. Katz, A. Suciu. (This
theory enables one to prove that some plausibly looking curvature-free estimates in
fact do not hold.)

The techniques that we use in the present paper were partially inspired by the
geometric measure theory approach to the existence of minimal submanifolds de-
veloped by F. J. Almgren and J. Pitts, (see [P]). However, since we deal only with
“nice” 1-dimensional cycles we find ourselves in a much more geometrical situation
and do not need almost anything from the elaborate language and machinery of
geometric measure theory. Sections 2-4 contain the adaptation of all the necessary
results and ideas from GMT to our context. (Our main results will be proven in

section 5.)
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We also use an appropriate generalization of obstruction to an extension tech-
nique used by M. Gromov in [G] (see section 1.2 of [G] as well as the proof of
Proposition on p. 136 of [G]), and in the case of the Theorem 2 below we use
Gromov’s upper bound for the filling radius in terms of volume.

Now we are going to state our main results.

Theorem 1. Let M"™ be a closed simply-connected Riemannian manifold of di-
mension n. Let q(< n) denote the minimal dimension i such that m;(M™) #0.

Then there exists a non-trivial strongly stationary 1-cycle on M™ that consists
of at most @ geodesic segments such that its mass does not exceed @d. If
q = 2 then there exists a strongly stationary 1-cycle of length < 4d that is either a

closed geodesic or consists of two geodesic loops emanating from the same point p .

Remark. It is well-known (and easy to prove) that if M™ is not simply-
connected then there is a closed geodesic on M™ of length < 2d.
In order to state the next theorem we will need the following definitions and the

following result of M. Gromov (see [G]).

Definition 2.A. Let M™ be a manifold topologicaly imbedded into an arbitrary
metric space X . Then its filling radius, denoted FillRad(M C X), is the infimum
of € >0, such that M"™ bounds in the e -neighborhood N (M™), i.e. homomor-
phism H,(M™) — H,(N(M™)) induced by the inclusion map vanishes, where
H, (M) denotes the singular homology group of dimension n with coefficients in

7., when M is orientable, and with coefficients in Zo , when M is not orientable.

Definition 2.B. Let M™ be an abstract manifold. Then its filling radius, denoted
FillRadM™ will be FillRad(M C X), where X = L (M), i.e. the Banach space
of bounded Borel functions f on M™ and the imbedding of M™ into X 1is the
map that assigns to each point p of M™ the distance function p — f, = d(p,q) .

Theorem A ([G]). Let M™ be a closed connected Riemannian manifold. Then
FillRadM™ < (n+ 1)n"(n + 1)!2 (vol M™)% .

Theorem 2. Let M™ be a closed Riemannian manifold. Then there exists a non-
trivial strongly stationary 1-cycle in M™ made of at most (n + 2)!/2 geodesic
segments such that its mass is bounded from above by (n + 2)!FillRadM™ < (n +
N(n+ 1) (n+1)'2n(vol (M™)) .
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Remark. Note that M. Katz proved that the filling radius of a manifold M™"
does not exceed idiam(M™) (and this estimate is exact), [K]. Therefore Theorem
2 immediately implies a slightly weaker version of Theorem 1 (with a worse value
of the constant).

Now we will present the main ideas of the proof of Theorem 1. For the sake of
simplicity, let us assume that w9 (M) # {0} . Let us begin with any non-contractible
f:8% — M. Then f£.([S?]) does not bound in M . Assume that the minimal
length of a non-trivial strongly stationary 1-cycle is greater than 6d. Then [(M) >
6d. We will find a 3-chain that has f.([S?]) as its boundary, thus obtaining a
contradiction.

Assuming S? has a sufficiently fine triangulation, triangulate D? as a cone over
S? . To construct a 3 -chain we will use the following ”extension” procedure, which
will be inductive to skeleta of D3 . We let the only additional 0-vertex of D3, i.e.
its center p, be mapped to an arbitrary point p of M , and we will let the edges,
i.e. line segments [v;,p] connecting vertices of the triangulation of S? with p, be
mapped to minimal geodesic segments of length at most d that connect p with
the corresponding vertices v; = f(v;) .

Next we are going to extend to the 2-skeleton. We consider an arbitrary 2 -
simplex [v;,v;,p] and notice that its boundary is mapped to a closed curve of length
of at most 2d+ 4, (that is, assuming that the diameter of each simplex is less than
d). Now, if § is sufficiently small, so that (M) > 2d+ ¢ by our assumption, then
each such curve can be contracted to a point without length increase, thus for each
such curve we obtain a disc, and we can map each 2 -simplex to the corresponding
disc.

At the next step we want to "extend” to the 3-skeleton. At this stage we will
use some basic Morse theory on the space of 1-cycles.

In order to "extend” to the 3-skeleton, consider an arbitrary 3-dimensional
simplex. Consider its boundary that consists of four faces. We want to construct
a loop in the space of 1-cycles that corresponds to this boundary. Here is how we
do it. Each face corresponds to a line segment in AM , the space of continuous
closed curves on M , that begins with a constant curve and ends with the curve
that is the image of the boundary of the corresponding face. This line segment

passes through curves of length less than or equal to 2d + 6. Now the main idea
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is to consider those line segments ”"together”, thus obtaining a line segment in the
space of cycles. This segment begins with a 1-cycle of length 0 (consisting of
four points each counted with multiplicity three) and ends with a four properly
oriented images of the boundaries of the corresponding faces. If we considered
1-cycles as functionals on the space of 1-forms (as it is customary in geometric
measure theory), then the sum of the above boundaries would have constituted the
zero cycle. So, we would have obtained a loop in the space of 1-cycles of length
< 6d+66 . But here we consider 1-cycles that consist of parametrized segments, so
no cancellation of oppositely directed segments would occur. Therefore we group
4 x 3 = 12 parametrized segnents into 6 pairs of segments with the identical image
but opposite orientations and shrink each pair to its midpoint. The resulting 12
points are then connected by some paths with original 4 x 3 = 12 points, which
will close the loop. Thus, we obtain a loop in the space of 1-cycles of length at
most 6d + 66 .

We next use a Morse-theoretic lemma (see Proposition 4, below) to claim that
either we can contract the loop to a point along cycles of length at most 6d + 60 ,
or there exists a “nice” stationary cycle below this loop (i.e. the length of the
stationary 1-cycle does not exceed 6d + 64 ). In the former case we can, indeed,
contract each such loop to a point, and obtain corresponding 2-discs in the space
of 1-cycles, which correspond to 3-chains on a manifold. Each of these 3-chains
consists of all 1-cycles in the image of the corresponding 2 -disc, (see section 4 for
more details). Add those 3-chains and note that the boundary of the sum will be

f«([S?]), thus, obtaining a contradiction. We can now let § go to zero.

2. Basic definitions.

2.1 Spaces of 1-cycles that will be used in the present paper Now we
would like to introduce some spaces of “nice” 1-cycles that are especially useful for
our purposes. Following [ClCo] it is convenient to consider spaces of parametrized
1-cycles made of at most £k closed curves: Define I'y as the space of all k-tuples
(71,--- ,7&) of Lipschitz maps of [0,1] to M™ such that ©¥_,+,;(0) = ©F_ (1) .
Endow TI'p with the following metric topology: First, because of the Nash embed-
ding theorem we can assume without any loss of generality that M™ is isometrically

embedded into the Euclidean space R of a large dimension. Define the distance
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by the formula:

1,

1
A(0n,. - on). (e 0)) = mgdenmi(t),%(t))m?:l\/ [ et =ity
0
It is easy to see that the length functional

(v, ) = Sy l(n)

is a continuous functional on this space. Observe that we can assign to each element
A of Ty a bounded linear functional T4 on the space Q;(M") of 1-forms on M™"
by the formula Ty(w) = [, w = XF, f%w. Thus, we obtain the map [ : I' =
Uy — (21(M™))* to the dual space of the space of 1-forms. Denote the image
of T' under this map by Z;(M™,7Z). This space will be called the space of non-
parametrized 1-cycles on M™. Denote the image of I'y under I by Z(). We
will call Zy the space of (non-parametrized) 1-cycles on M™ made of at most
k closed curves. Observe that I'y contains all collections of at most k suitably
parametrized closed curves in M"™. (see Fig. 3 for examples of elements of T’ .)
Therefore Z1y C Zoy C Z(3) C ..., and ;2 Z;) = Z1(M™,Z) . Also, for any x
let the subset of 'y formed by all v = (71,...,vx) such that I(y) = XF_,I(y;) <=z
be denoted by I'}, and the image of I'; under I be denoted by Zgﬁk) . We will
call Z(””k) the space of 1-cycles on M™ of length < x made of at most k curves.
Similarly, we will call elements of 'y parametrized 1-cycles made of k curves, k
will be called the order of parametrized cycles from I'y, and elements of I'y will
be called parametrized 1-cycles of length < x made of k curves.

The fundamental difference between spaces Z(;) and Iy is that if we go along
a curve v and then backtrack via the same curve, we obtain the trivial non-
parametrized cycle, but a non-trivial parametrized cycle. This feature of non-
parametrized cycles makes some of our constructions easier and more transparent
when they are carried out for Z(; . Therefore we first explain how to perform some
of our constructions in Z;) before explaining how they can be done in T’ (which
is what is actually needed for our purposes). In the present paper we will be using
non-parametrized cycles only for illustrative purposes.

2.2 Strongly stationary 1-cycles

Let X be asmooth vector field on M™ . It determines a one-parameter group of

diffeomorphisms ® x () of M™. For any v € I'y, consider the one-parameter family
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of parametrized 1-cycles ®x(t)(7). Now one can consider the function Lx ~(t)

defined as the total length of k& Lipschitz curves that together form ®x(¢)(vy).

Definition 3. Let v € 'y be a parametrized 1-cycle. We say that vy is strongly

stationary if it satisfies the following two conditions: 1) (Stationarity) For any

smooth vector field X def’” (0)=0; and 2) For each i =1,...k ~; is a geodesic.

If v is strongly stationary, then its image I(7y) in Zy, is called a stationary (non-
parametrized) 1-cycle. For each v € Ty, and each smooth vector field X on M"
the value of the derivative of Lx . at t = 0 will be called the first variation of
the length of ~ in the direction of X . We will denote the minimal length of a

non-trivial strongly stationary parametrized 1 -cycle in M™ by a(M™).

On the first glance it might seem that the condition 2) in this definition is
extraneous. The following example shows that this is not so:

Example 1. Let £ = 1. Assume that v = 3 € I'; is a three-petal curve
that consists of three geodesic loops emanating from the same point p. Consider
three angles formed by pairs of tangent vectors for each petal (=geodesic loop) at
p (see Fig. 2(b). As usual, we direct the tangent vectors from p.) Assume further
that: 1) These three angles have equal values that are strictly less than 27/3; 2)
The bisectors of these three angles lie in a plane in T, M™ and form angles equal
to 2m/3 with each other. Then it is easy to see that ~ satisfies the stationarity
condition, but ~; is not a geodesic (and does not correspond to a closed geodesic
in any obvious way). (However, observe that - can be represented by a strongly
stationary 1-cycle from T's.)

So, the stationarity of v does not guarantee the smoothness of curves ~; , which
can have many points where they fail to be smooth and, thus, consist of many
geodesic segments. (Moreover, the number of non-smooth points of 7; can even be
infinite.) However, if v is stationary and ~; is C?-smooth, then the formula for
the first variation of the arclength immediately implies that ~y; is a geodesic (after
a suitable reparametrization). So, in the presence of condition 1) the condition 2) is
essentially equivalent (up to a reparametrization) to the smoothness of ;. Thus,
the purpose of condition 2) is to ensure that & is the number of geodesic segments
forming .

Vice versa, assume that the condition 2) is satisfied. Then the formula for the
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first variation of the arclength implies that the condition 1) becomes equivalent
to the following condition: Assume that several of the curves ~; share a common
endpoint p. Consider all non-constant curves ~; such that p is one of their
endpoints. For each of these curves consider the unit tangent vector at p directed
from p. Then the sum of these vectors must be zero. So, we see that the Definition

3 is equivalent to Definition 1.

The stationarity condition 1) comes from geometric measure theory, where it is
used to define stationary varifolds (cf. [A2], [P]). Note that condition 2) implies
that a strongly stationary 1-cycle v € I'y has an additional degree of stationarity:
The cycle v is stationary with respect to variations of ~ associated with vector
fields along curves +; such that the values of these vector fields at common end-
points of v; and 7, (for all ¢,j) are equal. (The last requirement implies, in
particular, that if ~; is a geodesic loop, then the values of the corresponding vector
field at the beginning and the end of +; must be the same.) Note that the main
difference between a vector field along ~; and a restriction of a vector field on the
ambient manifold to 7; is that the former can have different values for values of
the parameter corresponding to a point of self-intersection of ;. It is because
of this additional degree of stationarity we decided to adopt the term “strongly

stationary” in Definition 3.

Note that a strongly stationary 1-cycle made of one geodesic segment must be a
geodesic loop and therefore must be a closed geodesic. (Two unit vectors tangent
to the geodesic loop at its origin must cancel each other.) A strongly stationary
1-cycle made of two geodesic segments either consists of two geodesic segments
connecting two different points or consists of two geodesic loops. In the first case it
is easy to see that it is a closed geodesic. In the second case we have two subcases.
If these geodesic loops are based at different points, then both of them must be
closed geodesics. If they are based at the same origin, then we see that the sum
of the four unit tangent vectors at the origin of the loops must be equal to zero
(see Fig. 2(a)). If the dimension of the manifold is greater than two, then, in
principle, these two geodesic loops need not form a closed geodesic. However, if
the dimension of the manifold is equal to 2, then this condition implies that the
strongly stationary 1-cycle is just a self-intersecting closed geodesic. So, we obtain

the following lemma.
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Lemma. A non-trivial strongly stationary 1-cycle made of 2 segments on a two-
dimensional manifold is either a closed geodesic or the union of a closed geodesic

and a point or a closed geodesic.

Remark. The assertion of this Lemma (with a minor inaccuracy) can be found
in [ClCo], p. 547-548.

3. A Morse-theoretic type lemma for I';

The main technical results of this section resemble Theorem 4.3 in [P] (though
they do not directly follow from it). They also resemble a basic result from the
Morse theory asserting that if there are no critical points of a smooth function
F: M — R on a compact manifold M in the set F~!([x1,x2]) then the sublevel
set F~1((—oo0,x1]) is a deformation retract of the sublevel set F~!((—o0,s]).
(The deformation retraction can be obtained using the gradient flow of F'.) Our
goal is to obtain a result of such type for the length functional on I'y. The main
technical problem is that I'y is not an infinite-dimensional manifold, but consists of
finitely many intersecting pieces (each of which is an infinite-dimensional manifold).

In this section we are going to prove that in the absence of strongly stationary
1-cycles, spheres in I'y are contractible to a point, under a certain additional
condition. This is done in two steps. The first step is to show that if there is no
strongly stationary 1-cycles of length < z then I'f can be deformed to the zero
level, (see Lemma 3). In particular, that implies that spheres can be deformed to
the zero level. The second step is to contract the spheres in the zero level to a

point, (see Proposition 4).

Lemma 3. Assume that there are mo non-trivial strongly stationary 1-cycles on
M™ of length < x made of k geodesic segments. Then T9 is a deformation

retract of '} .

Proposition 4. Assume that there are no non-trivial strongly stationary I1-cycles
on M™ of length < x made of k geodesic segments. Let 1 be an arbitrary positive
integer number, and F : S* — T'Y be a continuous map. For each j=1,...,k
consider the map F;: S* — M™ defined by the formula F;(p) = (F(p));(0.5) for
any p € S*. If all these maps F; are contractible, then F' is contractible.

Remark. Of course, the choice of the point 0.5 € [0, 1] is completely arbitrary.
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We could choose instead, for example, one of the endpoints of the interval [0,1].

Proof of Proposition 4 assuming Lemma 3: Lemma 3 implies that there
exists a homotopy H between F and a map of S? into I') . Note that H(1) can
be regarded as a map of S* into (M™)* . Therefore it is sufficient to check only that
k maps H(1); are contractible. But each of these maps can be connected with F)
by a homotopy @ that can be defined by the formula Q(t)(p) = (H(t)(p)),(0.5)
for any t € [0,1], p € S*. QED.

Proof of Lemma 3:

The proof of Lemma 3 is long but not difficult. Here we present a short version
of the proof.

We will present a detailed proof of this Lemma in Appendix A to this paper.

3.1 Reduction to a finite-dimensional case A standard and very old idea
in the study of closed geodesics (apparently due to Birkhoff) is to use a length
non-increasing deformation of the space of all piecewise-smooth closed curves on a
Riemannian manifold to its finite-dimensional subspace that consists of piecewise
geodesics.

We can apply this idea in our situation. It is easy to see that there exists
a deformation of I'y to a finite-dimensional space gy  defined as the space of
all elements of I'y such that each of its k£ segments is a broken geodesic with N
segments of length < inj(M™)/4, (see fig. 5). Here inj(M™) denotes the injectivity
radius of M™ and N = N(M",x) is an explicit large number. (For example, one
can take N = [4x/inj(M™)]+1.) We call this deformation the Birkhoff deformation.

Note that this deformation is not the Birkhoff curve-shortening process used in
many papers about closed geodesics but just its first stage. Also, note that the
endpoints of k segments remain fixed during this deformation.

3.2 For our purposes we need the spaces Gj y defined almost as gy y with
only one distinction: Each of small geodesic segments is allowed to have length
< inj(M")/2 instead of inj(M")/4 in the definition of gf \,. Now our goal will
be to prove that there exists a deformation of gj  into 927 n inside GY y such
that points of g,?:’ n are fixed. This assertion immediately implies Lemma 3.

3.3 The vector of the steepest descent The idea is to construct a flow
that behaves like a gradient flow. It is not difficult to see what is the direction of

the steepest descent for the length functional on G7 5 : A tangent vector to an
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element of Gy y can be thought as a collection of tangent vectors to M" at every
endpoint of many geodesic segments that compose the element. For the steepest
descent vector each of these tangent vectors is equal to the sum of unit vectors
tangent to all geodesic segments meeting at the endpoint and directed from the
endpoint, (see fig. 6). However the steepest descent vector is not a continuous

function on Gf v, (see fig. 7).

3.4 Therefore choose a fine net in Gy y , an open covering of G} y by small
metric balls centered at the points of the net and obtain the desired gradient-like
vector field as a linear combination of the steepest descent vectors at the points
of the net with coefficients equal to functions of a partition of unity subordinate
to the open covering. Here we use the parallel translation along geodesics on M™
in order to translate a tangent vector at a point of M™ to all sufficiently close
points. (Thus, a steepest descent vector at a point of Gf.y can be translated to

all sufficiently close points.)

3.5 A small technical complication arises due to the fact that the steepest descent
vectors are defined only at the points of G} N\G% ~ » and this space is not compact.
Therefore, if we would like to go all the way down to G% n (and not just to Gi, N
for some small § > 0) we need to consider infinite countable nets on G y \ Gg’ N
and locally finite open coverings centered at the points of the net on the previous
step. As the result a priori we do not have a uniform positive lower bound for the

speed of change of the length, when the length approaches 0.

Yet one can derive such a uniform bound by observing that each element of
G% y for a small ¢ consists of several connected components that are located in
very small open balls in M™ that are very close to the balls of the same radius in
R"™ . Therefore the speed of change of the length is very close to the speed of the
change of the length of corresponding small parametrized 1-cycles in R™ . But in
the Euclidean space the steepest descent vectors and the norm of the gradient of
the length functional are scale invariant. Hence we can rescale a connected 1-cycle
in R™ so that the maximal length of one of its segments is equal to one without
changing the speed of decrease of the length under the flow. Now an obvious
compactness argument yields a desired uniform positive lower bound for the speed
of change of the length. (We need such a bound in order to be sure that Gg’ N will

be reached in a finite time.)
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3.6 Another technical difficulty can arise when the value of the length of the
considered 1-cycles is > inj(M™)/4 . Namely, note that, whereas the length of the
element of G} n decreases under the constructed flow, the length of its individual
segments can increase. Since we move the endpoints of the segments and connect
them by the shortest geodesics, we do not want the distance between two points
that are supposed to be connected by a geodesic to become > inj(M™)/2. We
also need this restriction because we would like to stay inside Gf  during the

deformation.

In order to avoid this problem we can proceed as follows. We follow the flow for a
small fixed value of time ¢y (for example, one can take to = inj(M™)/(8k(N+1)) ).
Then we apply the Birkhoff deformation that makes the lengths of all small geodesic
segments to be smaller than inj(M™)/4. Then we follow the flow for time ¢ =
to, then apply the Birkhoff deformation, etc. It is clear that we need to stop
and perform the Birkhoff deformation only finitely many times before we reach
g,i?]{](M")/ * (After we reach g,i?]{](M")/ * this problem cannot occur anymore, and
we do not need to apply the Birkhoff deformation.) QED

3.7 A stronger version of Lemma 3. Subsections 3.1-3.6 contain an outline
of the proof of Lemma 3. Now we are going to explain how one can prove a
slightly stronger version of Lemma 3 (and therefore of Proposition 4). (Again the
complete details can be found in Appendix A.) Namely, we can ensure that the type
of elements of I'y and of G} y does not change during the deformation, where the
type is defined as follows:

3.8 Types of elements of I'Y . We define types of elements of I'j, as equiv-
alence classes. Two elements are equivalent if 1) The sets of segments that are
constant curves are the same; 2) The endpoints of k segments merge with each
other in exactly the same fashion. (Note that all segments are numbered.) We refer
the reader to Appendix A for a more detailed and formal definition of types.

For example, consider types of elements of I'y. There are three types where
both segments are non-constant, namely, (1) Two (non-trivial) closed curves; (2)
One closed curve, where the endpoints of 2 segments are two different points on the
curve; and (3) A figure eight curve (all four endpoints of 2 segments merge). There
are two types where both segments are constant: (4) A curve that looks as two

distinct points; (5) A curve that looks as a point. There are 4 types, when one of
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two segments is constant and the other is not: (6; ) The ith segment is constant,
and it coincides with both endpoints of (3—14) th segment (which, therefore, forms a
closed curve); (7;) The ith segment is constant, and different from the endpoints
of the (3—1) th segment; ¢ =1,2. (In the case 7; the element looks as a non-trivial
closed curve and a point.)

Note that there is a natural partial order on the set of types: We say that a type
A is higher than B if an element of type A can be obtained from an element of type
B by 1) collapsing a segment to a point without the merging of the two endpoints,
(see fig. 8 (a), (b)); 2) merging two endpoints of k segments, (see fig 8 (c)); 3) A
finite sequence of operations of the type 1) and 2). For example, for I's there are
the following inequalities between types: 5 >4>7,>1, 3>2,5>6; >3>1.
On the other hand, 4 and 3 are incomparable. 1 and 2 are also incomparable.

3.9 Preserving the type during deformation. In order to keep the type
constant during the deformation we must keep endpoints of segments away from
merging. It can be achieved is the following simple fashion. Stratify Gy y by
strata corresponding to the types. We start the construction of the net and the
open covering from the highest type and than proceed to lower and lower types.
By doing this we can ensure that a small neighbourhood of a higher type stratum
is covered only by balls centered at points in this stratum and strata corresponding
to even higher types and does not intersect balls centered at the points of the
net located in lower type strata. We are going to consider such a covering of
Gin \ Ggﬁ y instead of an arbitrary covering used in 3.4 above. Then proceed as

in 3.4 to construct a flow on Gf y \ G%N .

Lemma. The type of each element of Gj \ G%N remains constant under this

flow.

Sketch of the proof: The change of type of a parametrized 1-cycle is possible
only when two its endpoints merge. But before colliding they need to become close
to each other. When two endpoints in a parametrized 1-cycle become very close
to merging, they will start moving along trajectories of the same flow on M™. To
explain this assertion assume for simplicity that the considered element of Gy y
is covered by exactly one metric ball centered at a point in a higher type stratum

where these two endpoints have already merged into one point m. (The general
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case can be treated in a similar fashion; see Appendix A.) Then by the virtue of
the construction explained in 3.4 these two endpoints will be moving along the
trajectories of a vector field obtained from a tangent vector to M"™ at m by the
parallel translation along the unique shortest geodesics from m to these two points.
The two endpoints will be moving along the trajectories of this flow on M™ either
until they will become sufficiently far apart at a later time, or until the flow reaches
Gg’ n - But the uniqueness theorem for ODE implies that points moving along
the trajectories of the same flow on M™ cannot collide. (And recall that during
Birkhoff deformation stages endpoints of the intervals remail fixed.) Therefore the
type of the parametrized 1-cycle cannot change. QED.

Note that keeping the type constant does not really give us much. Informally
speaking, we keep points from merging in a somewhat artificial way, and, anyway,
move them almost as if they have already been merged into one point. Yet this
feature of our flow turns out to be a (non-essential) convenience when we build
singular chains out of the discs in the spaces of parametrized 1-cycles as explained
in the next section. (More presisely, as the result, we will be able to use a very
transparent version of Almgren correspondance explained in the next section. An
alternative is to use a stronger version of Almgren correspondance outlined in Ap-
pendix B. In this case one does not need the strenghening of Lemma 3 proved in
subsections 3.7-3.9 which then can be omitted.)

Observe also that the assertion of Proposition 4 will hold with the same proof
for maps F : S' — Zgﬁk) . For these maps there will be no need to check if the
maps F} are contractible since Z?k) consists of one point, namely the zero cycle.

Finally observe that if M™ is diffeomorphic to S? we can combine Lemma 3
in the case of kK = 2 with the following observation (stated as Lemma in section
2.2 above): Each non-trivial strongly stationary 1-cycle made of 2 geodesic seg-
ments on a two-dimensional manifold is either a closed geodesic or union of a closed
geodesic with a point or another closed geodesic. As the result we obtain an el-
ementary proof of the following assertion used in our paper [NR]. (This assertion
first appeared in [ClCo].)

Proposition 5. Let M be a Riemannian manifold diffeomorphic to S*. Let T'%
denote the space of parametrized 1-cycles on M made of 2 segments. Assume that

for some x there exists a mon-contractible map f : S' — T'S . Then there exists
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a non-trivial closed geodesic of length < x on M .

Proof. Proposition 4 implies the existence of a non-trivial strongly stationary
l-cycle in I'§ . Since M is two-dimensional, Lemma in section 2.2 implies that this
1-cycle is either a closed geodesic or contains a closed geodesic (of smaller length)

as one of its two connected components. QED.
4. Almgren correspondence

In [A] F. Almgren proved a general theorem that, in particular, immediately
implies that for every m the groups m,,(Z1(M",Z)) and H,,+1(M™;Z) are iso-
morphic.

Here we are going to adapt and simplify the Almgren construction, (see [A]) to
the spaces I' that consist of parametrized 1-cycles made of finitely many closed
curves.

Assume that we are given a continuous map A from a compact polyhedron |K|
into I'y, . We would like to assign to A a (dim|K|+1) - dimensional singular chain
on M™. This assignment will be defined for all A that have a certain property
that we will call a local triviality, see def. 5 below.

The assignment will have the following property: if A is a map of S™ = gD™*!
that is the restriction of a locally trivial map B of D™*! to 9D™*! | then the
chain assigned to A is the boundary of the chain assigned to B . This assignement
will be called the Almgren correspondance.

Consider the space I'y . It can be regarded as a subset of the topological space
of all maps of the disjoint union of k copies of [0, 1] into M™. Therefore we can
assign a continuous map 6 from X = |K| X Ule[O, 1]; into M™ to any given map
A:|K| — TI'{ in the standard way: For each z € |K|, i € {1,... ,k}, t € [0,1];
O(x,i,t) = A(x);(t) . Further, since elements of I'j, are parametrized cycles we can
identify points of 2k sets |K| x {0}, |K| x {1} that are mapped into the same
points of M™. Denote the resulting quotient of X by X, . The map 6 factors
through X4 . Denote the resulting map of X4 to M"™ by 64 . Note that the
quotient X 4 can be quite complicated.

However, for our purposes we will only need the situation when X4 can be
triangulated with a finite number of simplices. Moreover, we are going to make

an even stronger assumption that will always hold when we apply the Almgren
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correspondance.

Definition 5. A map A : |K| — Ty is called locally trivial if |K| admits a
simplicial subdivision with the following property: For any open simplex o of any
dimension of this subdivision all parametrized 1-cycles A(t) € Ty, t € 0 have the

same type.

Now we can triangulate X4 so that the map m : X4 — |K| induced by the
projection of X on |K| becomes a simplicial map such that the inverse image of
each open simplex o of |K| under 7 is the product, and the restriction of 7 to
7~ 1(o) is the projection. We will also call such triangulations of X 4 locally trivial.

Consider the singular chain in M™ corresponding to the simplicial map 64
from X, endowed with a simplicial triangulation. The local triviality makes the
following assertions evident: If |K| = S™~! then the resulting singular m -chain
will be a singular cycle. Its homology class does not depend on the choice of a
locally trivial triangulation of X 4. If A is a map of S™~! to I',, obtained as the
restriction of a locally trivial map B : D™ — T'y to D™, then for any locally
trivial triangulation of Xp the boundary of the corresponding singular (m + 1) -
chain in M"™ will be the singular chain obtained from X, C Xpg. Therefore
the singular m-cycle in M"™ assigned to A : S™~! — M"™ will represent 0 in
H,,(M™) if A is contractible.

Note that if f is a map of S*~! into I'{ satisfying the local triviality assump-
tion, and H : S*~! x [0,1] — T'¥ is the homotopy between f and a map g of
S=1 into T constructed as in the proof of Lemma 3, (in the situation when there
are no non-trivial strongly stationary parametrized 1-cycles in I'} ), then H also
satisfies this assumption. This assertion immediately follows from the fact that the
type does not change during the deformation of I'¥ into T') constructed during
the proof of Lemma 3, (see section 3.7 - 3.9 or Appendix A for more details.) This
observation will imply the local triviality of A in situations that arise in the course
of proving Theorems 1 and 2 in Section 5.

For the sake of completeness we are also going to sketch how to modify the above
version of the Almgren correspondence to make it work in the general case, when
we do not even have the triangulability of X4 . (This construction will not be used

in the present paper.) The reader will find this construction in Appendix B to this
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paper.
5. Proofs of Theorems 1 and 2.

Proof of Theorem 1. A. Outline of the proof. Assume that a(M™) and,

. . ny\ - (n+2)'d
in particular, I(M") is greater than %"=

(n+2)!d
3

. Thus, each closed curve of length
can be contracted to a point by a homotopy that does not increase its
length.

Consider a map f : S9 — M"™ representing a non-zero element of 7, (M"),
where S? is the standard sphere with a fine triangulation. Let [S?] be the funda-
mental class of S?. Since the map is non-contractible, f.([S]) # 0 € Hy(M").
Let D! be a disc that has SY as its boundary. Triangulate D97 as the cone
over the triangulation of S? (introducing one new 0O-dimensional simplex at the
centre of DIT1). We will try to construct a singular (q + 1)-chain in M™ , such
that f.[S™] will be its boundary, which is clearly impossible and will result in a
desired contradiction.

We are going to proceed inductively assigning an ¢-dimensional singular chain
in M™ to each i-dimensional simplex of DYt on the i-th step. The induction
starts from assigning an arbitrary point of M™ to the center of Dt!. The new
1-dimensional simplices will correspond to the shortest geodesics connecting the
images of the endpoints in M™ . (These geodesics are regarded as singular simplices
in M™ here.) Each new 2-dimensional simplex o C D971\ §9 will correspond to a
signular chain that consists of one singular 2-simplex. This simplex will be provided
by a length non-increasing homotopy that contracts the image of the boundary of o
in M™. (Such length-nonincreasing homotopies exist because of our assumption.)

Now consider higher dimensions. The boundary of the singular chain that cor-
responds to an arbitrary simplex o’ will be equal to the signed sum of chains
assigned to simplices of the boundary of o?. These signs will be the same as
the signs with which the corresponding simplices enter do?. These singular i-
chains will be obtained from (i — 1) -dimensional discs in the space of parametrized
I-cycles, particularly in I'y;_q) for some function k(i). Here we will use the
Almgren correspondence between discs and chains explained in section 4. In turn,
these (i — 1)-dimensional discs are obtained by contracting (i — 2)-dimensional

spheres in I'y;_2). And these (i — 2)-dimensional spheres are constructed from
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(i — 2) -dimensional discs in I'y(;_2) corresponding to simplices of 0o’ that were
constructed on the previous stage of induction. (The construction of (i — 2)-
dimensional spheres from the collection of (i — 2)-dimensional discs will be ex-
plained below.)

Alternatively we can describe the same procedure with more details and from a
somewhat different perspective in the following way: After the first three steps of
the induction process corresponding to simplices of dimension 0, 1 and 2 in D!
we obtain a collection of maps of D' — i) — Zk)) » where k(1) = 3. These
maps correspond to contractions of boundaries of 2-simplices in the image in M™"
of the triangles in D971\ S? that do not increase the length. Then, inductively,
for each simplex o° in the considered triangulation of DIt (i =3,4,...,q+1),
we do the following:

1) Construct a map of S'"? into Z(;_1)) using (i + 1) maps of D'~? into
Z(j(i—2)) corresponding to i + 1 (i — 1)-dimensional simplices in the boundary
of o' and obtained on the previous step of induction. In order to do that we
first observe that (Z(k(i_g)))”l C Z((i+1)k(i—1)) - Therefore we obtain a map w of
D=2 — Zi—1) , where, by definition, k(i —1) = (i+1)k(i —2) . The restriction
of this map to dD*~2 sends each point to the same point of Z(k(i—1)) , namely the
zero cycle. This happens because the sum of boundaries of (i+1) oriented (i—1)-
dimensional simplices constituting the boundary of &' is zero as a chain. In other
words, each simplex of dimension (i — 2) appears in this sum the same number of
times with each of two opposite orientations. This leads to the cancellation of all
1-dimensional (non-parametrized!) cycles in the corresponding sum. Therefore w
factors through S*~!: We just map the boundary of D*~! to a point that will be
mapped to the zero cycle.

2) We use our assumption about non-existence of sufficiently short non-trivial
strongly stationary 1-cycles and Proposition 4 to obtain a map of D'~! into
Z(k(i—1)) contracting this map of S'~2. This map of D'~! will correspond to
o' . (Formally speaking, Proposition 4 involves parametrized cycles instead of non-
parametrized cycles. But, as we observed before, Proposition 4 holds and is even
easier for non-parametrized cycles. In particular, there is no need to check the
contractibility of Fj, since all of them are constant maps into the zero cycle.)

All these maps from discs and spheres into Z;)), i =1,2,...,q, can be lifted
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to I'y;) . In other words, we can carry out this construction with parametrized
cycles I'y(;) instead of Z((;)) . Ad hoc, there will be two extra difficulties here:
Firstly, on step 2) we will need to check the contractibility of maps F} in order to
apply Proposition 4. Secondly, the map w defined during our discussion of step 1)
will not map 9D*2 into the zero cycle anymore. Instead each point of 9D*"2 is
mapped into a parametrized 1-cycle that consists from a finite number of segments,
so that each segment enter the same number of times with each of two orientations.
So, we can pair these segments with opposite orientations and contract them to the
point in the middle (which is a parametrized 1-cycle of zero length). As the result,
we obtain a homotopy H of w|ppi-2 to a map 7 of dD"~? into Fg(i—l) , which
can be also regarded as a finite collection of maps from S°~3 = 9D*=2 to M". If
we manage to demonstrate that these maps are null-homotopic, then we can obtain
the required map of S*~2 into I'yi—1) by attaching to w H and a homotopy G
contracting 7. (Here w can be regarded as a map of a lower hemisphere of S*=2
G can be regarded as a map of an upper hemisphere, and H can be regarded
as a map of the spherical annulus between the hemispheres.) So, all our technical
difficulties can be reduced to verification that certain maps of spheres into M" are
null-homotopic.

This problem can be dealt with in two ways. First, we can just observe that
by our notations all homotopy groups of M™ in the considered dimensions are
trivial (because these dimensions are less than ¢), so the problem disappears.
Alternatively, we can examine the geometry of these maps. It turns out that each
of this maps looks like a composition of a flattening of the sphere into the double
disc of the same dimension and a map of the disc into M™ , so it is null-homotopic
in the obvious way.

We continue this inductive procedure until ¢ becomes equal to ¢+ 1. As the
result we obtain maps of DY into I'y(,) corresponding to every (g+1)-dimensional
simplex of the triangulation of Dt .

Then we will apply the Almgren correspondence to each of the resulting maps of
D? into I'y(,) and sum the resulting singular (g + 1)-chains in M™ . The result
will be the required (g + 1)-chain that fills the singular cycle f.([SY]), and we
obtain the desired contradiction.

B. Details. We will begin with the 0-skeleton of D9t \ S% that consists
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of the point p, the center of the disc. We will assign to p a singular 0-chain
that corresponds to an arbitrary point p € M"™. Now we will proceed to the
1 -skeleton: we will assign to the 1 -simplices of the form [v;,p] the singular 1-
chains that correspond to minimal geodesics in M™ that connect p and v; =

f(v;) Next, we consider the 2-skeleton: Let o>

= [v;,v;,p] be a 2-simplex of
D1\ 89, Consider its boundary 902 and the corresponding singular 1-chain
on M™, which equals to [0}, p] — [0;,P] + [0, ;] . This can be viewed as a curve of
length < 2d + €. By our assumption, there is no closed geodesics of length smaller
than or equal to 2d + €, so there is a curve shortening homotopy that connects
this curve with a point. Therefore, we assign to this 2-simplex a singular 2 -chain
consisting of one singular 2-simplex that corresponds the surface generated by this
homotopy. The “extension” to the 3-skeleton will be somewhat different. Let
0% = vy, Viy, Viy, Vis] be a 3-simplex of D1\ §7. We want to find a singular
3-chain to assign to this simplex. Consider do3. There is a singular 2-chain
assigned to the boundary of this simplex, which can also be viewed as a 2-sphere
in M™ of a particular shape. Namely, to each of the faces of the boundary not
in 59 there was assigned a surface generated by a curve shortening homotopy.
Without any loss of generality we can assume that the chosen fine triangulation of
S? and the map of S? into M™ were chosen so that any two-dimensional simplex
of the triangulation S? is also mapped into the surface obtained by contracting
its boundary in M™ by a homotopy that does not increase the length. As we will
see, this 2-sphere corresponds to a 1-sphere in F?g%e . (See figure 1 to understand
how this 1-sphere is constructed.) In order to describe this correspondence let e; =
[Vig, iy |, €2 = [Vig, iy, €3 = [U4g, Vig ], €4 = [0y, Uiy ], €5 = [Diy, Vi), €6 = [Diy, Vig)
where each [0;_,0;,] is a minimal geodesic segment on the manifold. Then we will
let y1 =e1+e5—e3,72 = —€e1+e2—e€4,73 = —€2+€3—€6,74 =€ — €5+ €4.
Let z; be a point to which ~; contracts for ¢ = 1,...,4. Then the 1-sphere in the
space of 1-cycles will be constructed as follows: let fl :D? — M™,i=1,..4
be each of the four discs that make the 2-sphere in M™ . Those discs correspond
to four maps f; : [0,1] — Z1(M",Z), such that f;(0) = T,y =0, fi(1) =T, .
(Recall that T4 denotes a linear functional on the space of 1-forms of the manifold

defined by the formula T4 (A) = [, A.) These maps are precisely curve-shortening
homotopies used to obtain f;; for any t € [0,1] fi(t) is a l-cycle that consists of
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one closed curve. It can be regarded as an element of Z(3) if we represent 7; as the
collection of three curves (=three sides of the triangle) glued at their endpoints, and
will keep track of these three curves during homotopies contracting ~; . Now we
will let Gy : [0,1] — Z(12) be the map that for each ¢ € [0,1] assigns 37_ T, (q) »
(see figure 1(b)). Note that G1(0) = £{_(T},,} , which is the zero cycle, (see figure
1(a)) and that G;(1) = X}_,T,, which is also the zero cycle, (see figure 1(c)).
Thus, we obtain a map from S* to Z;(M",7Z).

In order to obtain the corresponding map of S' into I';s note that the re-
striction of G7 to [0,1) lifts to I';5 in the obvious way. It remains to exhibit a
homotopy between U?Zl v to Ule{a:i} , where each {z;} is counted three times
and is regarded as a constant segment, in I'1o that lies over the zero cycle in Z(;9)
in order to close the circle. This can be achieved by first cancelling in a continu-
ous way six pairs of edges e; with the opposite orientations to a point, which is
obviously possible (each pair is connected over itself to the point corresponding to
t = % counted twice), and then connecting 12-tuples of these points regarded as
an element of I'1o with the constant 1-cycle {xi,x2,z3, x4} regarded as the cycle
from T';5 (each point is counted three times) using twelve continuous paths. These
paths follow our homotopies restricted to the points of edges of ; corresponding
to t = 0.5 in the chosen parametrization of these edges. As the result we obtain a

lifting to I'12 of a map that differs from G; only by a reparametrization.

Further, for sufficiently small € > 0 Proposition 4 implies that the lifting of the

6d+6¢€
(12)

the contractibility of 12 maps of S' — M"™. (These maps were denoted by

map S! — Z to I'12 is also contractible. Indeed, we just need to verify
F; in the text of Proposition 4.) Of course, this fact follows from the simply-
connectedness on M"™ . However, there is even a more straightforward geometric
reason for contractibility of these 12 circles in M™: each of them is formed by
the trajectory of a homotopy f; from z; to a point in the middle of a geodesic

segment e; traversed two times in the opposite directions.

Observe that using the Almgren correspondence we see that this disc corresponds
to a 3-chain that we will denote évio,---,vis in M"™. It immediately follows from
our construction that the boundary of this chain is the (signed) sum of singular
chains (=simplices) assigned to 4 2-dimensional simplices in the boundary of the

considered 3 -dimensional simplex of D!\ S9. So we will assign évio,---,vis to
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the simplex o3.

Now consider the extension to the 4-skeleton of D!\ S7. (see Fig. 4.)
Consider any 4-simplex of DT\ 9D9*1 ¢* = [v;,,...,v;,] . The 3-dimensional

cyclein M™ Cy, . v, = Z?ZO(—DJC’

Vigreeesi ey corresponds to the boundary

Oo* of this simplex. First, we construct the corresponding map of the 2-disc to
Z?G(S)d%e) C Z1(M™,7Z), that takes the boundary of this disc to the zero cycle.
This map, denoted Gy will be constructed as follows: let f; : D?> — Z(E"f?)'f"e C
Z1(M™, Z) be the map corresponding to (—1)3'5’1,1.07”.7%,m,vi4 constructed during
the previous step of our induction process. Then let Go(q) = E?:onj(q) for any
q € D?. Observe that this map can be lifted to F:(%gg)+305 in the obvious way.

Let us now examine the restriction of Gy to dD?. (see Fig. 4 (c).) We see
that for any ¢ € 0D?, G5(q) corresponds to the union of 10 pairs of closed curves,
where each pair will contain the same curve with two different orientations. In
other words, the corresponding 1-cycles will have opposite signs, and will cancel.

As the result we obtain a zero cycle.

Thus, we obtained a 2 -sphere in the space of non-parametrized 1-cycles. We
would like to apply Proposition 4. In order to do that we need first to lift Gs to
the map Gs : D? — T4y and examine what happens to the boundary of the disc
under this map. Each point on the boundary is mapped to the 30 pairs of segments
in M™. Each pair consists of the same segment with opposite orientations. We
want to construct a homotopy between Gs : dD? — I'gy and a constant map, i.e.
a map that will take a circle to 60 point curves. To construct this homotopy we
cancel pairs of parametrized 1-cycles corresponding to the 1-cycles with opposite
orientations mentioned in the previous paragraph in a continuous way. We contract
each pair y|J—v to v(0.5) over . (See Fig. 4 (d).) Thus, we obtain a circle
in the space I'go, where each point p € S' corresponds to 60 constant paths
(those paths are different for p # p’ ). This circle can be interpreted as 60 circles
on M™. Since M"™ is simply connected, these circles can be contracted to an
arbitrary point in M"™. (There is also a more straightforward reason why these
circles are contractible, see Fig. 4(e). This reason will be explained during the
proof of Theorem 2 below, where we encounter a similar situation, but M"™ cannot
be assumed to be simply connected.) After contracting them we can obtain a point

in the space I'qp made of 60 constant segments. So, combining G, with these
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two homotopies, we obtain a map of the 2-disc into I'gy such that its boundary
is mapped into a point composed of 60 constant segments. We can factor this
map through the sphere S? obtained from the disc by identifying its boundary to
a point (say, the north pole of the sphere. In this case the southern hemisphere
is mapped by G , and the northern hemisphere is mapped into the subset of T'gg
that corresponds to the zero cycle (i.e. in I71(0)).) So Proposition 4 applies: We
have constructed a 2-dimensional sphere in the space I'gp, and can conclude that
either this sphere can be contracted along the cycles of mass < 30(d + ¢) , or we
have a stationary 1-cycle of mass controlled from above by this bound. (Here the
verification of the contractibility of maps F}; defined in the text of Proposition 4
is equivalent to the contractibility of certain 60 2-spheres in M" . But now we
are discussing the case of ¢ > 3, so M" is 2-connected.) If € is sufficiently small,
then the second case is impossible. In the former case, we obtain a 3-disc in the
space of 1-cycles, that corresponds to a 4 -chain that we will denote évo,...,v4 . We

will then assign this chain to o* .

Now we can continue in the above manner until we fill the original g -dimensional
chain f.([S9) by a (¢ + 1)-dimensional chain in M™. As a corollary of our
assumption nothing will stop us until we construct the desired filling. But as it
was said before, this is impossible, and we obtain a contradiction refuting our
assumption. The constants (¢+2)!/4 and (¢+2)!/2 in the text of Theorem 1 can
be explained by the fact that all our 1-cycles consist of at most 4 x5x6x... X (g+2)
closed curves of length not exceeding 2d+¢, and each of these closed curves consists
of three segments. Moreover, a quarter of these closed curves have the length < 3¢,

which tends to 0, as ¢ — 0.

Note that we can get a better estimate when ¢ = 2. In this case we need to
perform the extension process only till the dimension ¢ +1 = 3. We will need
“to represent” the union of four maps of D? to M™ corresponding to four faces
of a 3-dimensional simplex as a map of a circle to I's. (Recall that these four
maps where obtained by contracting the maps of boundaries of these discs to a
point without increase of their lengths, see Fig. 1). In the body of the proof we
mapped a generic point ¢ € [0,1] into the 1-cycle that corresponds to the union
of four curves obtained from homotopies contracting dD? at the moment ¢ (see

Fig. 1(b)). In the particular case ¢ = 2 we can proceed in a slighly different way.
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We can start from two points obtained as the result of contraction of the maps
of boundaries of D} and D3 and to pass via cycles made of two closed curves
(obtained during the curve-shortening homotopies contracting the maps of D3
and 9D32) to the cycle made of the images of these two boundaries (see Fig.1).
The edge [vg,v2] will be passed twice with opposite orientation. Continue the
homotopy by cancelling this edge. At the end of this homotopy we obtain the
map of the boundary of D?|JD2. Now note that 9(D?|JD3) = 9(D3JD3).
But we can similarly construct a homotopy between 9(D3|JD3) and the zero
cycle that uses 1-cycles made of two curves obtained from the curve-shortening
homotopies contracting the maps of the boundaries of D3 and D% . Joining these
two homotopies we obtain the desired homotopy between the zero 1-cycle and the
zero 1-cycle, i.e. the desired circle in the space of 1-cycles that passes through
1-cycles made of not more than two closed curves of length not exceeding 2d + €
(each). See the proof of Theorem 1 in [NR] for more details (in the situation when
M™ is diffeomorphic to S?. But this part of the proof is the same there as in the

more general situation.) QED.

Proof of Theorem 2. Assume a(M™) and, in particular, [(M™) is greater
than (n+1)n"(n+1)12 (n+2)!(volM™)% . Then a(M™) (and I[(M™)) are greater
than (n 4 2)!FillRad(M™). The definition of the filling radius implies that M"
bounds in the (F'illRad(M™) + ¢)-neighborhood of M™ in L*(M™). Let W
“fAll” M™ in the (FillRad(M™) + 0)-neighborhood of M™ (that is M™ = oW,
if M™ is orientable, and M"™ = OW (mod 2), if M™ is not orientable.) Without
any loss of generality we can assume that W is a polyhedron.

Suppose W together with M™ is endowed with a very fine triangulation. We are
going to try to construct a singular (n+ 1)-chain on M™ such that the boundary
of that chain is homologous to the boundary of W (regarded as a chain). That is
clearly impossible, so we will obtain a contradiction. We will construct this chain
by induction with respect to the dimension of skeleta of W . That is to each
1-simplex of W we will assing a singular i-chain on M™. We will begin with the
0-skeleton of W . Let v; be a vertex of W . Then F(v;) = 0; € M™ = OW |
such that d(v;, ;) = d(v;, M™) < FillRadM™ + §. Suppose 7;,7; come from
the vertices v;,v; of some simplex in W . Then d(9;,7;) < 2FillRadM™ + 36 .
(We assume here that the triangulation of W is fine so that the lengths of 1-
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simplices of the triangulation are at most §.) Next, we are going to extend F' to
the 1-skeleton. We will assign to any 1-simplex [v;,v;] C W\ M™ a singular
1 -chain that corresponds to a minimal geodesic that connects ©; and v; of length
< 2FillRadM™+36 . Now we can see that the boundary of each 2 -simplexin W is
sent to a singular chain that corresponds to a curve of length < 6 FillRadM™+99 ,

(we will assume that all simplices in M™ are already short).

Next we are going to extend to the 2-skeleton. Let o2 be a 2-simplex of W .
Consider its boundary dc? and its corresponding singular 1-chain. There is a
curve shortening homotopy that connects the curve corresponding to that chain to
a point. So we will map o2 to the chain that corresponds to the surface determined
by this homotopy. To “extend” F to the 3-skeleton of W consider an arbitrary

3. Consider its boundary dc® and the corresponding singular 2-

3 -simplex o
chain, which can be viewed as 1-sphere in the space Z;(M",Z) or in I'j5 as
in the proof of the Theorem 1. This sphere passes through 1-cycles of length <
4(6 F'illRadM™ +9¢) . Suppose this sphere cannot be contracted via the 1-cycles of
smaller mass. Then there exists minimal 1-cycle of length < 4(6FillRadM™ + 99)
contradicting our assumption. (Here we use Proposition 4 from the previous section.
One can check that our spheres in the space of non-parametrized 1-cycles can be
lifted to spaces of parametrized 1-cycles exactly as this was done in the proof of
Theorem 1 above.) So the above 1-sphere can be “filled” by a disc that passes
through 1-cycles of mass not exceeding the above bound. This disc corresponds to
a singular 3-chain that has F(d03) as its boundary. So we will assign this chain

3. The procedure of “extending” to 4 -skeleton is similar to the one in the

to o
proof of the Theorem 1: At this point “the image” of do* has been determined
and it equals to Cy, | ., = (—1)7 Z?:o évio,...,mj,---,vm . This chain is in fact
a 3-dimensional cycle in M™ , and it can be interpreted as a sphere of dim 2 in
Z1(M™,Z) . This sphere is constructed as follows. Let f; : D* — Z1(M™,Z) be a
wi, - Then, let G3 : D? — Z{(M"™,7)

be a map that assigns to every ¢ € D? a point E?:onj(x) . Then it is easy to

map that corresponds to (—l)jé’vi07___7@ij7___
see that the boundary of the disc is mapped to the zero 1-cycle, and we obtain
a 2-sphere in Zgg) . Now we want to use Proposition 4, so we need to lift this
map of the 2-sphere to I'gp. First we lift G5 in the obvious way and consider

Gy :D? — I'¢o . Next consider what happens to Gy :0D? — I'go . We see that
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each point is mapped to the union of 30 pairs of segments. Each pair consists of
the same segment with different orientation. Those segments can be continuously
contracted to their middles, (namely contract vU —vy to 7(0.5) ). Thus we obtain
a homotopy between the original circle and the circle that passes through constant
parametrized 1-cycles only. This circle corresponds to 60 circles on a manifold,
which we want to contract. Now unlike the proof of Theorem 1 above we cannot
assume that M™ is simply connected. But we can contract these circles using the
following simple construction that will similarly work for all dimensions: Consider
the disc Gy : D> — Tg9. For any p € D* Ga(p) = {+,...,7%}. For each
p consider {~7(0.5),...,76,(0.5)} . This determines a 2-dimensional disc in Tgg
that passes only through constant parametrized 1-cycles. This disc corresponds to
60 discs on the manifold. Now our circles can all be contracted over these discs,
which establishes a homotopy between OD? and a point in I'sy. Now we can
construct the required map of the 2-dimensional sphere into I'gy providing the
desired lifting to I'gg exactly as this was done in the proof of Theorem 1. Also,
note that in our present situation maps Fj; defined in the text of Proposition 4 are
60 maps of S? to M™ defined as follows: For p in the southern hemisphere Fj(p)
is defined as (G2(p));(0.5) . (Here we identify the southern hemisphere with D?.)
For p in the northern hemisphere between the equator and a certain parallel F}(p)
is constant on every meridian. (This stage corresponds to contracting oppositely
directed pairs of segments to the points in the middle corresponding to ¢t = 0.5.)
Finally, F; maps the part of the northern hemisphere north of this parallel using
(ég(p))j(0.5) again. So, up to a homotopy F; maps both hemispheres of S?
in the same way. Hence Fj is contractible by the obvious homotopy. Therefore
we can apply Proposition 4: Since our 2-sphere passes only through sufficiently
short parametrized 1-cycles and because of our assumption, it can be contracted
through sufficiently short parametrized 1-cycles. The 3-disc contracting this sphere
corresponds to a 4-chain in M™ filling the 3-cycle we started from. (Here we have

used the Almgren correspondence explained in the previous section). And so on.

It becomes obvious, that we can go on like that until we “extend” F' to the
(n 4 1) -skeleton of W thereby obtaining a (n + 1) -singular chain in M" filling
the fundamental homology class of M™ which is clearly impossible. (If M™ is

non-orientable, then we must reduce the corresponding singular chain modulo Zs .
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By definition, in the non-orientable case the fundamental homology class of M™ is
the non-trivial element of H,,(M™,Zs) = Zs .) The resulting contradiction proves

the theorem. QED.
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The curve obtained after moving for a
small time in the direction of the steepest descent vector.

The steepest descent vector V=(., vy, )

Figure 6.
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Appendix A. A detailed proof of Lemma 3
For convenience of the reader the proof will be split in several steps.

A.1. Recall that a deformation of a space X into its subset A is, by definition,
a continuous map g of X into itself homotopic to the identity map X — X
such that ¢g(X) C A. (But we do not require that the restriction of g on A is
the identity map.) More generally, if B is a subset of X such that A C B we
say that a map g : B — A is a deformation in X if there exists a homotopy
G : B x[0,1] — X such that for any b € B G(b,0) = b and G(b,1) = ¢g(b).
But sometimes by a deformation we will mean the whole homotopy G and not just
g(b) = G(b,1).

A.2. Birkhoff curve-shortening process for I'y. First, we are going to
proceed as in the first step of the Birkhoff curve shortening process described in
[C] or [ClCol: Let inj(M™) denote the injectivity radius of M™. Choose N =
[4z/inj(M™)]4+1. Let v be an element of I'} . Divide each of k segments ~; of v
into N pieces of equal length by points 7;(t;;),j € {0,1,... ,N}, tio=0,t;xy =1.
Consider the unique minimizing geodesic segments between ~;(t;;) and y(t; j+1)
for all j. The length of each of these segments does not exceed inj(M™)/4. For any
i N such geodesic segments form a piecewise geodesic 7; connecting 7;(0) = ;(0)
with 4;(1) = v;(1) . The length of 4; does not exceed the length of ;. There exists
the following homotopy between ~; and 4;: At the moment of time 7 € [0,1] we
follow each of the N segments of v; (between ~;(¢;;) and v;(£; j+1) ) from ~;(¢i;)
to vi(7ti; +(1—7)t; j41) and then make a shortcut from ~;(7t;; + (1 —7)t; j41) to
vi(ti j+1) along the shortest geodesic. Then we reparametrize the resulting curve
proportionally to its arc length. It is easy to see that the length of the curve does not
increase during this homotopy. Denote the resulting homotopy by h;. Combining
all of these k£ homotopies h; we obtain a homotopy between the parametrized
l-cycle v and the parametrized l-cycle ¥ = (91,...,7%) made of k piecewise
geodesics with NN breaks. This homotopy depends on =~ in a continuous way.
Therefore we obtain a deformation of I'y into its subset gy y defined as the set
of all parametrized 1-cycles ¥ = (1,...,%%) from I'Y such that for any i ¥; is a
piecewise geodesic made of N geodesic segments of non-zero length < inj(M™)/4
parametrized proportionally to its arclength. Let us denote this deformation by

By . Below we will refer to it as the the Birkhoff deformation. We regard gy y as
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the subset of a larger set Gy y defined as the set of all elements v = (V1yee k)
of I'Y such that for any 7 ~; is a piecewise geodesic made of at most N geodesic
segments of non-zero length < inj(M™)/2. In other words, the only difference
between gy y and Gj  is that we allow elements of G y to have somewhat
longer geodesic segments.

Now we are going to prove that gj y can be deformed into its subset g; y = T}
inside I'f .

A.3 A classification of elements of '} and G{X - Let us define an equiva-
lence relation on I'y . For any element v = (vy1,...,7%) of I'f or G,y consider its
2k endpoints 7;(0),~;(1) . We will call these points multiple points of ~ . The set of
these 2k points can be partitioned into J non-empty sets A;, (J € {1,...,k}),
such that 1) Each set A; contains the equal number of points of the form ~;(0)
(for some i) and ~;(1) (for some 1); 2) ~;(t1) = vi(t2) for some 3,1 € {1,... k}
and t1,t2 € {0,1} if and only if 7,;(¢;) and ~;(t2) are in the same set A, for
some j € {1,...,J}. The number J will be called the number of multiple points
of 7. We will say that two 1-cycles v and B from I'f are of the same type if
these partitions for v and [ coincide, and the set of all ¢ such that ~; is constant
coincides with the set of values of ¢ such that (; is constant.

For example, let k = 2. In these case there will be three types of parametrized
1-cycles from I'y when neither ; nor - is constant: (a) 71(0) = 71 (1) #
72(0) = ~2(1) (1-cycle that consists of 2 closed curves that do not intersect at
their endpoints); (b) v1(0) = 72(1) # 72(0) = v1(1) (1-cycles that consist of one
closed curve obtained by glueing together v; and ~s , where endpoints of ~; (and
of 2 ) are different; and (¢) 71(0) = ~v1(1) = 72(0) = v2(1) (71 and 72 are loops
with the common endpoint. Such 1-cycle can be considered as either made of
two closed curves or of one closed curve with the self-intersection.) There will be
two types when both v, and -, are constant, namely, v; # v and v = 7.
For each i = 1,2 there will also be two types corresponding to the case when
v; is constant and 73_; is a non-constant loop: One type corresponds to the
case when ~;(t) = v3-;(0) = v3_;(1) and the other type corresponds to the case
7i(t) # 3-i(0) = y3-i(1) .

However, we will also need a stronger equivalence relation on Gy y C I'y. For

each v € G} 5 we will consider kN geodesic segments ~;; in k parametrized
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curves 7y; forming ~. Consider (N — 1)k endpoints of these geodesic segments
that are not endpoints of k£ curves ~;. We will call them double points in order
to emphasize that there are exactly two geodesic segments meeting at any of these
points. (However note, that it is possible that precisely two geodesic segments meet
at some of the multiple points as well). We will say that two elements «, 3 of Gin
are of the same type as elements of G}, y if they are of the same type as elements of
I'Y andforeach i =1,... ,k, j=1,...,N the geodesic segment o; is constant if
and only if 3;; is constant. Also note that the type of v as an element of G},  and
the (vectors of) positions of J multiple points and (N — 1)k double points on the
manifold determine an element of G]kv’ . uniquely. Therefore for any specific type of
v we can identify an element v = (7;)%_, of G% n Wwith the corresponding element
of (M™)/+(N=Dk " where J is the number of multiple points of 7. Note that
copies of (M™)7+(N=Dk corresponding to individual types can be simultaneously
embedded into the ambient manifold (M ”)(kH)N by the corresponding diagonal
embeddings that identify endpoints of k intervals in accordance with the type.

A.3.A A partial order on types of elements of Gj . We will say that a
type A is higher than a type B, if: 1) Multiple points of A can be obtained by
merging some of the multiple points of B . (In other words the partition considered
in A.3 for A is coarser than the partition for B .); 2) If for some 1-cycle (8 of type
B, for i = 1,2,...,k, and for some j = 1,...N the geodesic segment (3;; is
constant, then for any element « of type A ~;; is also constant.

The resulting relation is a partial order on the set of types. For example, the
maximal types among types that correspond to cycles of non-zero length are the
types with just one multiple point m, Nk — 2 constant geodesic segments, and
just two non-constant geodesic segments. These two segments correspond to the
minimal geodesic connecting m with the only double point, d, and traverse this
geodesic in opposite directions.

A.4. Some general remarks about deformations of gj , that will be
constructed below. These deformations will consist of finitely many steps. Each
of these steps constitute either the Birkhoff deformation described in A.2, or will be
a deformation inside G y . In the last case in order to describe the deformation
we need to describe the trajectories of individual multiple and double points. More

formally, during a deformation of the last type we will be deforming each individual
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(N+Dk - Each multiple or double point will move

cycle v as an element of (M™)
along trajectories obtained as a projection of trajectories of a vector field defined
in an open set in (M™)N+DE that contains the union of all diagonnaly embedded

copies of (M™)7T(N=1k corresponding to various types of elements of Gin -

We will construct this vector field in such a way that will not allow the type of
the elements of G y to change during these stages of the deformation, but at the
very end of the deformation, when the trajectory of the flow hits Gg’ ~ » and the
length of the element becomes zero. This is achieved by defining the components
of the vector fields that correspond to the individual multiple and double points of
~ so that in the situation when the distance between two distinct multiple and/or
double points becomes small, they will move along the trajectories of the same
smooth vector field on M™. (Here we are talking only about pairs of points the
collision of which can change the type.) Moreover, since the type of any 1-cycle
from g; y regarded as an element from Iy cannot change during the Birkhoff
deformation (since all multiple points remain unchanged), I'y types of l-cycles
remain unchanged through the whole deformation until its very last moment. We
will not need this feature of our construction in the proof of Lemma 3, but it will

turn out to be convenient for the next section.

However, we can encounter the following problem: We need to ensure that the
distance between any two (double or multiple) points that should be connected by
a geodesic segment is less than inj(M™). We will resolve this technical compli-
cation in the following way. Our choice of N ensures that at the beginning these
distances do not exceed inj(M")/4 for any v € gj y . Therefore we can deform
our parametrized 1-cycles using a flow that will be constructed below for a certain
safe amount of time which is sufficiently small to ensure that lengths of segments
grow by not more than inj(M™)/4. Then we stop and apply the Birkhoff defor-
mation with N breaks By again. That is, we forget that the k curves forming
an element of G} y are already piecewise geodesics with N breaks, divide them
into N equal pieces (of length < z/N < inj(M™)/4) by N —1 points and re-
place the curve by another piecewise geodesic consisting of N geodesic segments
of length <inj(M™)/4 with vertices in these points. (Of course, this replacement
is made using the length non-increasing homotopy described in A.2 that was used

in the definition of the Birkhoff deformation.) At this point, in principle, the type
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of 7 as an element of G} y can change because new double points can merge in
a different pattern from what was before the Birkhoff stage. (Note however that
the I'Y type remain unchanged since By does not affect multiple points.) Now we
are ready to continue the deformation using the same flow again, etc... The vector
fields and the times of these deformations will be chosen so that at each stage of
the deformation every element of Gy n will become shorter by at least a certain
§ =0(M™ N,k,x) > 0. Therefore we will need only a finite number of stages to

reach Gg N -

A.5. The direcion of the steepest descent. We will start the construction of
the flow from the following observation: Since there is no strongly stationary 1-cycle
of positive length < z, then for any piecewise geodesic 1-cycle v from G y there
exists a system of vectors at all multiple and double points such that a small defor-

J+(N=1k) in the direction of these

mation of 7 (regarded as an element of (M™)
vectors leads to an element of Gy of the same type but of a smaller length. These
vectors are constructed as follows: Any multiple point corresponds to a set A; of
the partition. The vector at this point is calculated as X, 4,)ea;;t;=0 or wr(ts)
where v;(¢;) is the unit vector tangent to ~; at t¢; directed from the multiple
point. If we will regard all Nk geodesic segments as curves in M"™, then each
double point is adjacent to two geodesic segments of the curve (with the exception
of the case, when this double point is connected by a sequence of geodesic segments
of zero length with a multiple point. In this last case the double point coincides
with the multiple point, and we define the component of v corresponding to this
double point to be equal to the already determined component of v corresponding
to the multiple point.) The component of v at this double point is calculated as the
sum of two unit vectors tangent to two geodesic segments that meet at this point
and are directed from it. Our assertion now follows directly from the first variation
formula for the length functional. We will call the system of J 4 (N — 1)k tangent
vectors of M™ a deformation vector for  and will denote it by v(7). Note that

v(7y) is the collection of zero vectors if and only if « is a strongly stationary 1-cycle.

The first variation of the length of ~ in the direction of w(y) is equal to

— v I
nents of v corresponding to multiple points we just sum their squares. We are going

, where |lv(7)||* is calculated as follows: When we deal with J compo-

to say that a pair of double points merges if they are connected by a sequence of
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constant geodesic segments. We define a cluster of double points as a maximal set of
double points such that each pair of them merges. We say that a cluster is negligible
if one of double points in the cluster is connected by a sequence of constant segments
with a multiple point (so geometrically, all double points in this cluster coincide
with the multiple point). Our definition of v implies that components of v corre-
sponding to double points in a cluster point are equal. When we calculate |v(v)]?
we by definition disregard all double points in each negligible cluster and count the
squared norm of the component of v corresponding to all double points in a clus-
ter only once for each non-negligible cluster. In other words we define |[v(v)[|? as
I I

+ ENon—negligible clusters of double points||v(7) (d1> ’ where

Smai=1,..7[v(y) (M)
the first summation is over the set of all multiple points and the second summation

is over the set of all non-negligible clusters of double points.

A.6. The deformation vector for v can be used to decrease the length
for all ~, sufficiently close to . Unfortunately, the dependence of v(7y) on ~
is not continuous. This happens because the type of element of Gi’ N changes in
a discontinuous manner. Yet, it is easy to see that for any v € G  there exists
a sufficiently small open neighborhood U of v in Gy y and a positive p such
that for any v, € U a sufficiently small deformation of ~, in the direction of the
deformation vector TJ*(v(7)) defined below decreases the length of ~., and the
first variation of the length in the direction of T7J*(v(v)) is less than or equal to
—|lv(7)]?/2 . The above deformation vector, TJ+(v(7)) is obtained from wv(7y) by
the parallel transport of all J + X;(/N; — 1) vector components of v(y) along the
shortest geodesics connecting the vertices of v with the corresponding vertices of
V-

More precisely, one first chooses U so small that: 1) different multiple or double
points of 7 cannot merge in U ; 2) For any ~. € U any of its multiple points has
the unique closest multiple point of 7, and any double point of ~,; has the unique
closest double or multiple point of ~; at the distance not exceeding inj(M™)/4.
But note that, in principle, each multiple point of v can split into two multiple
points (that can be connected or not connected by a geodesic segment) or into
a pair multiple point - double point for an arbitrarily small U . Also note that
if N; < N then each double point of ~; can bifurcate into two distinct double

points connected by a very short geodesic. If one of k£ segments ~; is a constant
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geodesic loop, then the corresponding multiple point can bifurcate into a pair of
points that consists of the multiple point and a double point that is very close to
the multiple point. These points are connected by two oppositely oriented copies
of the shortest geodesic, together forming a short piece-wise geodesic loop based at
the multiple point. Finally note that a finite number of bifurcations of these types
can occur simultaneously. So, the dimension of TJ*(v(7y)) can be greater than
the dimension of v(v). But condition 2) in the definition of U implies that even
if a multiple or a double point of ~ bifurcates into a finite number of (multiple
and/or double) points we know unambigiously how to define the corresponding
component of T7*(v(y)) for each of them: we just perform the parallel transport
of the corresponding component of v(7y) along the (unique) shortest geodesic.

Now the assertion immediately follows from the continuity on U of the first
variation of the length in the direction of the field X (v.) = Tf (v(v)). This
continuity follows from the first variation formula for the length functional. One
just needs to perform easy calculations verifying this continuity for all cases of
elementary mergers. That is, it is necessary to consider the particular cases, when
~vi — 7y, where all 7; are of the same type, which can be obtained from (the type
of) 7 by either 1) a splitting of a multiple point into two multiple points (connected
or not connected by a very short geodesic segment converging to the point) or into
the pair “multiple point-double point” (on one of the segments adjacent to the
multiple point); or 2) a splitting of a double point into two double points connected
by a very short geodesic (converging to the double point). The general case of
this formula follows by induction. We will omit the details of this straightforward
verification.

A.7. After these preliminaries we are going to prove that:
A. There exists a sufficiently small positive 7, < x such that g,::*N can be deformed
to Fg ; and
B. For any positive 7 < z there exists a deformation of g n to gj y inside G} y .

In fact, as it was already noted, we are going to construct the deformation by
first definining a vector flow on an open subset of (M™)N+Dk that includes the
image of G, under the embedding discussed above. This flow will be the same for
both A and B. So the division of our deformation into these two parts is somewhat

artificial. Yet we encounter different difficulties in these two situations: When the
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length is small, our main problem will be the lack of compactness at zero length of
the space G \ G?v, . » and we need to prove that our flow decreases the length
with a speed bounded from zero by a constant. When the length is large, we do not
want the distances between double points that must be connected by a geodesic
segment, to become large, so from time to time we stop and perform the Birkhoff

deformation.

A.8. In order to prove A we would first like to establish a positive lower bound
for [lo(v)[| for all v € Gi°y \ G}y for a sufficiently small positive 7. The key
idea is to observe that this statement will be true for the Euclidean space R" in-
stead of M™: Assume that there exists a sequence of 1-cycles ~; in R™ made
of at most Nk straight line segments such that ||v(v;)|| — 0. Rescale ~; in
R™ so that the maximal length of an edge equals to one. (This does not affect
|lv(7:)]| -) Choose a convergent subsequence. Then its limit must be a non-trivial
stationary 1-cycle in R™ of length > 1. (Here we must check what happens
with ||v|| when an edge collapses to a point in the limit. It is easy to see that
|lo(lim;—— oo (74)]] < 2limsup, ., ||[v(ys)]] in the situation, when we have a se-
quence of ~; of the same type, and exactly one segment of ~; collapses to a point
in the limit. The number of such collapses is bounded from above by Nk — 1.
Therefore the norm of the deformation vector of the limit 1-cycle will be zero.) But
it is very easy to see that there are no stationary 1-cycles in R™. So, we obtain
a contradiction thereby proving the existence of a uniform positive lower bound
for ||v(7)|| for all parametrized 1-cycles that consists of at most Nk straight line
segments in R".

If 79 = 79(M™, N, k) is sufficiently small, then any parametrized 1-cycle from
GZ?N splits into several connected components contained in very small balls in
M™ . Applying the inverse of the exponential map we obtain “almost” a 1-cycle in
the tangent space to M™ with “almost” the same angles. Now the existence of a
uniform positive lower bound for the norm of the deformation vectors of elements
of Gy n for R™ implies the existence of such uniform lower bound for all 1-cycles
from G’ .

A.9. Construction of a deformation of g]Z?N into T'). Now it is easy to
find a countable set {v} C G’y \ I'% | a locally finite covering of Gn \ % by

open balls U; centered at 7; and a subordinate partition of unity that can be used
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to obtain a continuous function ¢ assigning to every element v of G;?N \TY a
system of tangent vectors to M™ at each of its multiple or double points such that
the variation of length of the cycles in direction of ¢(v) is bounded from below by
a positive constant ¢. (In order to obtain a formal proof of the last assertion we
just need to establish the continuity of the first variation of the length. This will
be done in A.10.)

We construct this 7; and U; inductively with respect to the partial order on
types of elements of Gf y introduced in section A.3.A above. We start from
elements of Gf y \ G% n of the highest possible type that form strata of a high
codimension that are closed in Gy y \ Gg’ n - Construct a locally finite covering
(in Gf n ) of the union of these strata, so that all centers of open balls forming
the covering are on the considered strata. Automatically an open neighborhood of
the union of these strata will be covered. Then we proceed to strata corresponding
to types of the second highest order. Points of closure of the union of these strata
in Gi n \ G% y that are not in these strata are in strata corresponding to the
highest type, and were already covered. Therefore we can choose the covering so
that no open ball from this covering intersects an open neighborhood of strata
corresponding to the highest types that were previously covered. Also the centers
of all balls should be on the strata that are being covered. We continue inductively
in this way until we cover the whole Gf y \ Ggﬁ ~ - On each step of the inductive
procedure we consider the union strata corresponding to the maximal types that
were not yet covered. A neighborhood of the union of all strata corresponding to
higher types was already covered on previous steps of the inductive procedure. So
we complete the covering of of the union of strata that are being considered on
the current step by adding open balls centered at the considered strata that have
empty intersections with a neighborhood of the union of all already covered strata

corresponding to all higher types.

After the covering is completed, and a subordinate partition of unity is chosen,
we define ¢(v) as the weighted sum of T2 (v(v;)) over the set of indices i such
that v € U;. (Recall that components of T} (v(7;)) are obtained by the parallel
transport of the corresponding components of v(7;) along the shortest geodesics
between corresponding multiple or double points of ~; and ~. Of course, U;

should be sufficiently small in order for this definition to be unambigious, as we
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explained above.) The weights are equal to the corresponding functions from the
partition of unity. This construction provides us with the flow &, that deforms

gk n to T} in a finite time for each sufficiently small 7 (as we will see below).

A.10. The type cannot change during this deformation; the first vari-
ation of the length is continuous. Let p1, ps € v € Gf v \G%N be either two
multiple points, or a multiple point and a double point connected by a segment,
or two double points connected by a segment. Note that if the distance between
p1, p2 of ~ is very small, then ~ is in a small neighborhood of a stratum corre-
sponding to a higher type of cycles, where p; and ps merge into one point p. If
this neighborhood is sufficiently small, then all balls of the covering that cover ~
are centered at strata corresponding to higher types, where p; and ps are merged
into one point p. But then p; and p; will be deformed (for some period of time)
using the same vector fields on M™. This will be happening all the time while
they will be sufficiently close to each other. But since different integral trajectories
of a smooth vector field do not intersect, p; and ps cannot merge at least until

the moment of the deformation, when the total length of the 1-cycle becomes zero.

Also, observe that in the considered situation (when ~ is close to a stratum
corresponding to a higher type) the first variation of the length in the direction
of the vector field that we constructed will be equal to a linear combination of
variations in the direction of vector fields of the form T2 (v(v;)), considered in
A.6. (Here ~; are located in strata corresponding to higher types, where p; and
p2 merge into one point. The coefficients in the linear combination will be the
corresponding functions from the partition of unity.) Therefore we can prove the
continuity of the first variation of length with respect to v as in A.6.

A.11. Note that for any v € G y ®¢(y) is defined only until the moment
of time t(vy), when the length of ®;(v) will become zero. But one can extend
the domain of definition of ®; by defining ®;(y) = ®4)(y) for ¢t > t(y). More
precisely, we take 7, = min{z, 79,0, inj(M™)/4}, where 7 is as in 3.8, and § is
the lower bound of the speed of decrease of the length introduced at the beginning of
3.9, and just follow the flow until we hit T' . It is clear that: 1) For any element ~ €
gr.n we will reach I'Y in time ¢(y) < 1;2) Since the total length of v decreases,
the distance between any two points on M™ that should be connected by the
shortest geodesic in order to obtain ®;(y) does not exceed inj(M™)/4. Therefore



NABUTOVSKY AND ROTMAN 47

®,(y) is unambigiously defined. (Recall that we move multiple and double points of
~ along trajectories of vector fields determined by the corresponding components of
¢(7) . In order to obtain ®;(y) we connect these points by the shortest geodesics.)
3) t(y) depends on 7 continuously (by virtue of the implicit function theorem. In
order to apply the implicit function theorem we need to establish the continuous
differentiability of the length as a function of ~, but it is equivalent to the continuity
of the first variation of the length of v in the direction of the vector field that was
established in the previous subsection.)

Therefore the map assigning to v the point ®;,)(7y) € I'% | where the trajectory
of the flow reaches T') is continuous, and is the deformation of Gi.n to ro.

A.12. It remains to prove the existence of a deformation of gy y to g,:jN inside
Iy . Use the compactness of the closure S of Gy y \ G;’:]@ to find a finite open
covering of S by open neighborhoods U; of ~; € S such that for any ~, € U; the
first variation of the length of ~ in the direction of T7(v(v;)) does not exceed
—[lv(y)]|?/2 . (Recall that we have proved the existence of an open neighborhood
U with this property for any vy € Gy y \I'%.) Using a subordinate partition of
unity «;(7) define a vector field ¢(y) by the formula ¢(v) = Zau(y)T73, (v(v))
where we perform the summation only over indices [ such that v € U;.

Here the construction of this open covering is similar to that in section A.9: We
construct it inductively starting from the strata that correspond to the highest type
and then proceed to cover strata corresponding to lower types. On each step we
add only open balls centered at points on the considered strata that do not intersect
with an open neighborhood of the already covered strata corresponding to higher
types. As the result the G y type will not be changing during the considered
stage of the deformation, and the proof of this fact coincides with the proof in
section A.10 above almost verbatim.

Rescale ¢(v) by a continuous function equal to zero on GZ’:I/VQ

Tx

n - Denote the resulting vector field by (y). Let t. = inj(M")/(16k).
Consider the flow W;(y) defined for all v € gi y at t € [0,¢,] and determined

and to one on

by the vector field (7). Our choice of t. guarantees that W.(y) will be in
kN - (In other words, the distance between any pair of points that need to be
connected by a geodesic segment will not exceed inj(M™)/2.) Observe that for

any v € gy n \ G;’;N the difference between the length of ~ and the length of



48 NABUTOVSKY AND ROTMAN

U, () will be at least dt, , where 0 = %minézl lo(y)|I? .

Now recall that the Birkhoff curve shortening process provides us with the de-
formation By of I'y into g n. The restriction of By to Gy y C I'y is a
deformation of G}  into gj y inside I';. Apply By . The composition of By
and W is a curve-shortening deformation of gy y into ggj?\;{{m_ét*’n} inside I'f .

Now we can apply ¥, and then By again and again, etc. Let K = [%] +1.
It is easy to see that (ByV, )X is the required deformation of gr.n to gg'y inside
'y . QED.

Observation. We would like to mention again that the defined in A.3 (or 3.8)
type of elements of I'; does not change during the considered deformation until

possibly the very last moment, when the length becomes zero.

Appendix B. Almgren correspondence without the local triviality as-

sumption

Recall that at the beginning of the proof of Lemma 3 we introduced N =
N(M",x) = [4z/inj(M")] + 1, the spaces gy x and Gy y made of parametrized
1-cycles of length < z formed by k piecewise geodesics made of at most N
geodesic segments of length < inj(M™)/4 and < inj(M™)/2, correspondingly,
parametrized proportionally to the arclength. We also defined the curve-shortening
Birkhoff deformation of I'y into gy y . Further recall that gy y and Gf y can be
regarded as subsets of M*V . It is easy to prove that there exists a subset Gk N
of M*N containing gr.y and contained in Gy y that can be triangulated. (The
shortest formal way to prove the last assertion is the following: Approximate the
Riemannian metric on M™ in C?-topology by an analytic Riemannian metric so
that the distances on the resulting Riemannian manifold M™ do not exceed corre-
sponding distances on M™ . Now observe that metric balls of radius < inj(M™)/2
on M™ are subanalytic sets, the restriction of the distance function to such metric
balls is a subanalytic function, and that according to a well-known theorem of H.
Hironaka subanalytic sets are triangulable (cf. [B] for more details. See also [BM]
for the definition and basic properties of subanalytic sets and function, including
the proof of the mentioned theorem of H. Hironaka.) Therefore we can define gy v
as gy n but using the distance function on M™ instead of the distance function

on M™.) It is easy to see that one can triangulate gy ,, so that the type of
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parametrized 1-cycles is constant on every simplex of the triangulation. Therefore
we can take x = maxycx [(A(y)), compose By with A, and take a simplicial
approximation A of the resulting composition ByA : K — g n - Now we can
consider the quotient X z defined as above. It is easy to see how to triangulate
X 5. Therefore we can proceed as above, and consider the corresponding singu-
lar chain in M™. It is clear that if K = S™~!, then this chain is a cycle, and
this cycle represents 0 € H,,_1(M") if and only if A is contractible. A small
technical complication that arises here is the following: Assume that we apply the
Almgren correspondence to a map B : D™ — I'} and to the restriction A of B
to S™~1 = @D™ . Then the values of x defined for these two mappings will , in
general, be different. Therefore the cycle in M™ corresponding to A will not, in
general, coincide with the boundary of the chain corresponding to B . Yet, it is
easy to construct a homology between these two cycles.

In the case of a map of a polyhedron into Z() one can consider a sufficiently
fine subdivision of the polyhedron K . For any simplex of this subdivision the
restriction of our map onto this simplex lifts to I'y, . Then we can proceed as in
the parametrized case (for this simplex). Finally sum the resulting chains over all
simplices of the triangulation.
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