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Abstract

We present a procedure for recovering the conformal factor of an anisotropic con-
ductivity matrix in a known conformal class, in a domain in Rn with n ≥ 2. The
method requires one internal measurement, together with a priori knowledge of the
conformal class of the conductivity matrix. This problem arises in the medical imaging
modality of Current Density Impedance Imaging (CDII) and the interior data needed
can be obtained using MRI-based techniques for measuring current densities (CDI)
and diffusion tensors (DTI). We show that the corresponding electric potential is the
unique solution of a constrained minimization problem with respect to a weighted to-
tal variation functional defined in terms of the physical measurements. Further, we
show that the associated equipotential surfaces are area minimizing with respect to a
Riemannian metric obtained from the data. The results are also extended to allow the
presence of perfectly conducting and/or insulating inclusions.

Keywords: Anisotropic, Hybrid Problems, Interior Data, Conductivity, Diffusion Tensor
Imaging, Current Density Impedance Imaging

1 Introduction

Biological tissues such as muscle or nerve fibres are known to be electrically anisotropic
(see e.g. [38, 40]). In this paper, we consider the problem of recovering an anisotropic
electric conductivity σ of a body Ω from measurement of one current J in the interior. Such
interior data can be obtained by Current Density Imaging (CDI), a method pioneered at the
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University of Toronto ([18, 41]) which makes use of a Magnetic Resonance Imager (MRI)
in a novel way. We also rely on the MRI-based Diffusion Tensor Imaging (DTI) method
to determine the conformal class of σ, as in the new DT-CD-II method recently introduced
and tested experimentally in [26, 25]. Thus, we assume that the matrix-valued conductivity
function is of the form:

σ(x) = c(x)σ0(x), (1)

with σ0(x) known from, e.g., DTI and with the so-called “cross-property” factor c(x) a scalar
function to be determined. This assumption is motivated by a number of physical studies
which have shown a linear relationship between the conductivity tensor and the diffusion
tensor (see e.g. [8, 25] and further references therein).

We show that, in dimension n ≥ 2, the cross-property factor c(x) can be determined
from knowedge of the current J in Ω and of the corresponding prescribed voltage f on the
boundary ∂Ω. In fact, the only internal data we require is the scalar function

a = (σ−1
0 J · J)

1
2 (2)

(with σ−1
0 denoting the inverse of the matrix σ0). This turns out to be the appropriate

extension of the corresponding earlier result for isotropic conductivities appearing in [35],
where the interior data was the magnitude |J |.

The method we will be presenting is based on the minimization of a weighted total
variation functional defined in terms of a(x) and σ0(x). The reader is referred to Theorem
1.3 for the precise statement.

More generally, we will show that when Ω contains perfectly conducting and/or insulating
inclusions, then knowledge of a, σ0 and f determines the location of these inclusions in all
but exceptional cases, as well as the function c(x), and thus also the anisotropic conductivity
σ, in their complement.

1.1 Background and Motivation

Mathematical work on non-invasive determination of internal conductivity has focused largely
on the classical method of Electrical Impedance Tomography (EIT). There have been major
advances in the understanding of this nonlinear inverse boundary value problem (see [43]
for an excellent review; in particular, see [13, 19] for recent results on recovering anisotropic
conductivities in a given conformal class for the special case of admissible manifolds). It has
also been shown that the EIT problem is severely ill-posed, yielding images of low resolution
[16, 28].

In a new class of inverse problems, which includes the one studied here, one seeks to
overcome the limitations of the reconstructions obtainable from classical boundary measure-
ments by using data that can be measured noninvasively in the interior of the object. These
are known in the literature as hybrid problems (also as coupled physics, interior data or
multi-wave problems), as they couple two imaging modalities to obtain internal measure-
ments. For overviews of such methods see [6, 21]. For imaging the electric conductivity,
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there are several approaches that combine aspects of EIT with MRI: MREIT, CDII, Elec-
tric Properties Imaging (see [37, 42] for recent reviews) or with ultrasound measurements:
Acousto-Electrical Tomography [44, 3, 22], Impedance-Acoustic Tomography [14].

The starting point for the method presented here is the measurement of one applied
current J(x) at all points x inside a bounded region Ω. We briefly recall the influential idea
of [18, 41] for obtaining such interior measurements using MRI. The current J induces a
magnetic field B(x). The component of B parallel to the static field of the imager can be
determined at any point inside Ω from the corresponding change in the phase of the measured
magnetization at that location. By performing rotations of the object and repeating the
experiment with the same applied current, all three components of B can be recovered, and
J(x) is then computed using Ampére’s law:

J(x) =
1

µ0

∇×B(x)

where µ0 is the magnetic permeability (essentially constant in tissue). For our purposes, it
is important to note that this Current Density Imaging (CDI) method works equally well in
anisotropic media, as no knowledge of the conductivity is needed for the determination of
the current density J(x).

Inside the body being imaged the electric potential u(x) corresponding to the voltage
f(x) on the boundary solves the following Dirichlet problem for the conductivity equation:

∇ · σ∇u = 0, x ∈ Ω ⊂ Rn (3)

u |∂Ω = f

where σ is the (generally tensorial) conductivity of the material. In the case of isotropic
conductivities, (i.e. scalar σ) considered in [37, 36, 35, 34, 32] and in the absence of insulating
or perfectly conducting inclusions one can replace σ in the above equation using Ohm’s law
|J | = σ|∇u| to obtain the quasilinear, degenerate elliptic, variable coefficient 1-Laplacian
equation:

∇ · (|J | ∇u
|∇u|

) = 0, x ∈ Ω. (4)

The above equation was first introduced, with the above derivation, in the article [20], where
the Neumann problem was considered and examples of non-existence and non-uniqueness
were given to explain that additional data was needed for determining the conductivity. In
the article [34] it was shown that equipotential surfaces, namely the level sets of u(x), are

minimal surfaces with respect to the conformal metric |J |
2

n−1 In, with In the n × n identity
matrix; this result was then used to treat the Cauchy problem for equation (4). It turns
out that the Dirichlet problem for equation (4) can have infinitely many solutions (see [35]).
This difficulty was resolved in [35], where the partial differential equation (4) was replaced
by the study of the variational problem for which it is the Euler-Lagrange equation. It was
shown that the solution of (3) is the unique minimizer for this problem. We recall these
results in the following theorem.
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Theorem 1.1. ([35])Let Ω ⊂ Rn, n ≥ 2 be a bounded domain with a connected C1,α bound-
ary, α > 0, and let µ denote Lebesgue measure on Ω . Let (f, |J |) ∈ C1,α(∂Ω)×Cα(Ω) with
|J | 6= 0 µ-a.e. be associated with an unknown conductivity σ ∈ Cα(Ω̄). Then

uσ = argmin
v∈W 1,1(Ω)

⋂
C(Ω̄)

{
∫

Ω

|J ||∇v|µ(dx) : v |∂Ω = f and µ({∇v = 0}) = 0}

exists and is unique.
Furthermore, σ = |J |

|∇uσ | is the unique Cα(Ω) scalar conductivity associated to the pair

(f, |J |).

A generalization of the above result was later obtained in the article [32] where the
isotropic conductivity was shown to be determined from knowledge of |J | on the complement
of open regions on which σ may be zero (in the case of insulating inclusions) or infinite (for
perfectly conducting inclusions). A further extension was recently obtained in [31] to the
class of functions in BV (Ω) which is more natural for the above variational problem.

1.2 Statement of Results and Outline of the Paper

In this article we will extend the imaging method described above to the case in which the
conductivity is anisotropic and known to be of the form σ(x) = c(x)σ0(x) where c(x) is an
unknown scalar function and σ0 is a symmetric positive definite matrix-valued anisotropic
term, assumed known.

We denote by Mat+(R, n) the set of symmetric, positive-definite n × n matrices with
real-valued entries. Cα(Ω,Mat+(R, n)) will denote the set of Mat+(R, n)-valued Hölder
continuous functions on Ω of order α > 0. Similarly, Cα

+(Ω) will denote the space of scalar-
valued, strictly positive Hölder continuous functions of order α > 0 on Ω. We let µ denote
the Lebesgue measure on sets in Ω.

We shall first prove an anisotropic analogue to Theorem 1.1 as a prelude to the more
general results accounting for inclusions. For this, we will need to precisely define the class
of data that arises from physical measurements.

Definition 1.2 (First notion of admissibility). Let Ω be a bounded domain with C1,α bound-
ary. A triple (f, σ0, a) ∈ C1,α(∂Ω)×Cα(Ω,Mat+(R, n))×Cα(Ω) shall be said to be admissible
if there exists a c(x) ∈ Cα

+(Ω) such that

a = (σ−1
0 J · J)

1
2 ,

where
J = −cσ0∇u

is the current corresponding to the potential u ∈ C1,α(Ω) solving the following BVP{
∇ · (cσ0∇u) = 0, x ∈ Ω
u |∂Ω = f.

(5)
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We then have the following result.

Theorem 1.3. Let Ω ⊂ Rn be a bounded domain with a connected C1,α boundary, α > 0,
and let (f, σ0, a) be an admissible triplet as in Definition 1.2, with this same α, and with
a > 0, µ− a.e. in Ω. Then the following convex minimization problem

argmin
v |∂Ω=f

{
∫

Ω

a(σ0∇v · ∇v)
1
2dµ : v ∈ BV (Ω)} (6)

has a unique solution uσ.
Furthermore, the unique Cα(Ω,Mat+(R, n)) conductivity generating the current density

J while maintaining the boundary voltage f is given by σ = c(x)σ0(x) with the conformal
factor c determined from the formula

c =
a

(σ0∇uσ · ∇uσ)
1
2

.

In Section 2 we shall prove a weaker version of the above, Theorem 2.3, where we minimize
over W 1,1(Ω)∩C(Ω) rather than BV (Ω). This is for the expository purpose of presenting the
main ideas while avoiding the more technical details dealt with in the subsequent sections.
The result in the form presented above will then be a special case of Theorem 1.4, in the
absence of inclusions.

Following this we establish, in the remainder of section 2, the geometrical result that
equipotential sets u−1(λ) B {u(x) = λ} ∩ Ω are in fact minimal surfaces with respect to a
certain Riemannian metric on Ω which is defined in terms of σ0(x) and a(x); see Corollary
2.5.

After the above preliminary results, in Section 3 we will introduce some tools from geo-
metric measure theory required for the proof of the main uniqueness result of the paper. We
will need to work with a weighted total variation functional

∫
Ω
|Dv|ϕ, where the weight ϕ is

defined in terms of a and σ0 and where |Dv|ϕ is a weighted distributional gradient discussed
in section 3. Most of the results presented in this section originated in the article [2]. In
section 4 we formulate a more general notion of admissibility, in Definition 4.1, suitable for
the presence of inclusions, which involves some technical extensions of the criteria in Defi-
nition 1.2. Our uniqueness result also requires certain natural assumptions on the regions
of perfect and zero conductivity O∞ and O0, respectively, as is discussed in greater detail in
that section. Further, we assume mild topological conditions on the set S = {a = 0}, and
refer to equation (16) for the definition of the space BV (Ω, S). If S = ∅ the results are valid
in the standard space BV (Ω) of functions with bounded variation.

Theorem 1.4. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with connected C1,α boundary,
with α > 0, and let (f, σ0, a) be an admissible triplet generated by an unknown conductivity
σ in the sense of Definition 4.1 with the same α. Then the potential u is a minimizer of the
problem

min{
∫

Ω

|Dv|ϕ : v ∈ BV (Ω, S) and v|∂Ω = f}, (7)
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and if ũ is another minimizer of the above problem, then ũ = u in Ω\{a = 0}. The corre-
sponding conductivity is then

σ =
a

(σ0∇u · ∇u)
1
2

σ0 ∈ Cα(Ω \ Z)

where, in the above, Z is an open set consisting of insulators, perfect conductors, and possibly
singular inclusions as discussed in Section 4.

The above summarizes the results in Theorems 4.2 and Corollary 4.3.
With this shown, we prove in Section 5 (see Theorem 5.5) that level sets of solutions of

the above variational problem are not only minimal surfaces, but actually area minimizers.
More precisely, they minimize the area functional

A(Σ) =

∫
Σ

a(x)(σ0n · n)
1
2dS

which is the area of Σ induced by the Riemannian metric determined by the data as defined
in (14), (see Proposition 5.5).

Finally, technical facts on existence and uniqueness of solutions to a limiting form of the
conductivity equation, as well as an equivalent variational formulation are briefly presented
in Section 6. Sections 7 and 8 present conclusions and acknowledgments.

2 Anisotropic Current Density Impedance Imaging in

the Absence of Inclusions.

In this section we present a simplified exposition of the main results of this paper, in order
to illustrate the basic ideas used in the argument and to motivate the more general results
to be presented later. We also use this section to briefly introduce some of the key geometric
measure-theoretic concepts we will need and expand upon later; some excellent references
thereon may be found in [11, 12, 15, 27, 33].

2.1 Existence and Uniqueness for the Variational Problem

Assume that the conductivity σ is of the form c(x)σ0(x) with c(x), (σ0)ij(x) ∈ Cα(Ω), α > 0,
c(x) > 0 and σ0 symmetric and positive-definite throughout Ω.

Throughout the paper we will be using the notation

(ξ, η)σ0 B (σ0ξ) · η, |ξ|σ0 B ((σ0ξ) · ξ)
1
2 , ξ, η ∈ Cα(Ω,Rn) (8)

to denote the inner product induced by σ0, and the corresponding norm, where · will always
be taken to denote the Euclidean dot product. In what follows ∇ denotes the usual (i.e.
non-covariant) partial differentiation and we use the Einstein summation convention over
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repeated upper/lower indices. We will also denote by µ the standard Lebesgue measure on
Lebesgue-measurable sets.

We begin by showing that the solution u to the BVP (5) is a minimizer of a functional
on Ω that is defined in terms of the internal density magnitude |J |σ−1

0
. This generalizes the

corresponding result for isotropic conductivities in [35].

Lemma 2.1. Assume that (f, σ0, a) is an admissible triplet in the sense of Definition 1.2
and let u be a solution to the corresponding forward problem (5). Then u is a minimizer of
the functional F [ · ] defined by the following

F [v] B

∫
Ω

a(x)|∇v|σ0dµ, (9)

i.e. the relation
F [v] ≥ F [u] (10)

holds for all v ∈ W 1,1(Ω) satisfying v |∂Ω = f .

Proof. Let v ∈ W 1,1(Ω). Since a comes from an admissible triple, there is exists a c(x) such
that a(x) takes the form a = |J |σ−1

0
for J = −c(x)σ0∇u with u the solution of (5). Then

F [v] =

∫
Ω

|J |σ−1
0
|∇v|σ0dµ

=

∫
Ω

c(x)|∇u|σ0|∇v|σ0dµ

≥
∫

Ω

c(x)(∇u,∇v)σ0dµ (11)

=

∫
Ω

σ∇u · ∇vdµ

=

∫
∂Ω

fσ
∂u

∂n
dS (12)

= −
∫
∂Ω

fJ · ndS

with n an outer-oriented normal to ∂Ω and where, in line (12), we have integrated by parts
and applied the conductivity equation on u. We use dS for the Lebesgue surface measure on
∂Ω. Equality holds in line (11) if and only if ∇u and ∇v are parallel µ− a.e. In particular,
we have

F [u] = −
∫
∂Ω

fJ · ndS

which, on comparing with the above, shows that u is a minimizer, as claimed.
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In order to prove the main result of this section we shall need to recall some basic notions
from geometric measure theory. Firstly, by Hd(Σ) we denote the d-dimensional Hausdorff
measure of a set Σ ⊂ Ω defined as

Hd(Σ) B lim
δ↓0

inf{
∞∑
j=1

(diamEj)
d,

⋃
j∈N

Ej ⊃ Σ, diamEj ≤ δ}

The super-level set of a non-negative function u(x) ∈ W 1,1(Ω), given by Et B Ω∩{u > t} has
so-called locally finite perimeter, in the sense that the vector-valued Radon measure ∇χEt
satisfies

∫
Ω
|∇χEt | <∞ for almost all t. For such sets we shall be concerned with the reduced

boundary.

Definition 2.2. The reduced boundary ∂∗E of a set with locally finite perimeter is the set
of points in Rn for which the following hold;

i. For all ε > 0 one has
∫
B(x,ε)

|∇χE| > 0

ii. The measure-theoretic outer normal ν(x) determined by

ν(x) B − lim
ε↓0

∫
B(x,ε)

∇χE∫
B(x,ε)

|∇χE|

exists, and satisfies |ν(x)| = 1.

For a super-level set Et the unit normal νt(x) exists Hn−1−a.e x ∈ ∂∗Et (see the remarks
in [35]).

We now present the main result of this section.

Theorem 2.3. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with a connected C1,α boundary,
α > 0, and let (f, σ0, a) ∈ C1,α(∂Ω) × Cα(Ω,Mat+(R, n)) × Cα(Ω) be an admissible triple
in the sense of Definition 1.2 with a > 0 µ− a.e. in Ω. Denote by σ ∈ Cα(Ω) the unknown
generating conductivity for this triplet and uσ the corresponding solution to the BVP (5).

Then uσ is the unique solution of the following minimization problem

argmin
v |∂Ω=f

{
∫

Ω

a(σ0∇v · ∇v)
1
2dµ : v ∈ W 1,1(Ω) ∩ C(Ω)}. (13)

Further, the anisotropic conductivity σ is recovered from the given data by the formula σ(x) =
c(x)σ0(x) with

c =
a

|∇uσ|σ0

.

Proof. The proof is similar to the proof of Theorem 1.1 given in [35]. First note that since
the triple (f, σ0, a) is assumed admissible, uσ is a solution of the minimization problem (13).
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To show uniqueness, assume to the contrary that another minimizer to problem 13, say
ũ ∈ W 1,1 ∩ C(Ω), exists. Recalling the proof of Lemma 2.1 one sees that ∇ũ = λ(x)∇uσ
for some non-negative λ, µ− a.e.. We will show that this implies equality of the minimizers
away from Lebesgue-negligible sets.

As shown in Lemma 2.2 of [35], the super-level set Et = {uσ > t} ∩ Ω has a measure-
theoretic normal νt(x) = − ∇uσ|∇uσ | which is continuously extendible from the reduced boundary

∂∗Et ∩ Ω to the topological boundary ∂Et ∩ Ω. It then follows (using Theorem 4.11 in [15])
that, for almost all t, the region ∂Et ∩ Ω is a C1-hypersurface with unit normal νt(x). Let
γ(s) be any C1 curve contained in a connected component of ∂Et ∩ Ω. Then

d

ds
ũ(γ(s)) = λ(γ(s))∇uσ(γ(s)) · γ′(s) = 0.

Therefore ũ is constant on any connected component of ∂Et ∩ Ω.
When ∂Et is a C1-hypersurface, each connected component Πt of ∂Et intersects ∂Ω.

This was shown in [35] and rests on the Alexander duality theorem [30]. The fact that
ũ |∂Ω = uσ |∂Ω then implies that ũ |∂Et = uσ |∂Et for almost all t. We shall now use the fact
that ∇uσ 6= 0 µ-a.e. to show that ũ and uσ agree on a dense subset of Ω.

Define G B {t ∈ R : ũ |∂Et = uσ |∂Et} ⊂ R. As established above, the complement of G,
Gc, has measure 0. Suppose, towards a contradiction, that there exists a ball B ⊂ Ω whose
closure is contained in Ω and such that B ∩ {x : uσ(x) ∈ G} = ∅. Since uσ is continuous
it must map B to an interval [α, β] and since |∇uσ| |B 6= 0 µ − a.e. we have α 6= β. By
construction, [α, β] ⊂ Range(uσ)\G, contradicting the fact that Gc has measure zero. Thus
uσ and ũ agree on a dense subset of Ω, and since both functions are continuous, they agree
on all of Ω, establishing the desired uniqueness.

Finally, with J = −cσ0∇uσ we have a = (σ−1
0 J · J)

1
2 = (c2σ0∇uσ · ∇uσ)

1
2 . This gives the

desired formula for c(x).

2.2 Equipotential Sets are Minimal Surfaces in a Riemannian met-
ric Determined from the Data

We close this section with some interesting geometrical results about the level sets of solutions
to (5). Given σ0 and the magnitude |J |σ−1

0
of the current, we define a Riemannian metric on Ω

and show that the level sets of the corresponding potential function have zero mean curvature
in this metric. In section 5 we will prove the stronger statement that these equipotential sets
are in fact area minimizing. These are generalizations to anisotropic conductivites of results
proved in [36, 34] for the isotropic case.

As is customary, we denote |A| B detA for A ∈Mat(R, n) (which should not be mistaken
for the norm |V |σ0 of a vector field V , as we hope shall be clear from the context).

Proposition 2.4. Let Ω ⊂ Rn, n ≥ 2 be a bounded domain with C1,α boundary and u ∈
C1,α(Ω̄), α > 0. Assume the conductivity σ is of the form c(x)σ0(x) for c, σ0 ∈ Cα(Ω) with
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σ0 a known positive-definite matrix-valued function and that |∇u|, c(x) > 0 µ-a.e. where u
is the potential corresponding to the conductivity σ and current density J via J = −σ∇u.

Define the following Riemannian metric gij on Ω:

gij B (|σ0||J |2σ−1
0

)
1

n−1 (σ−1
0 )ij. (14)

Then inside Ω one has that

∇ · (
√
|g| g

−1∇u
|g−1∇u|g

) = 0.

Proof. We begin by noticing that |σ0|
1

n−1 |J |
2

n−1

σ−1
0

σ−1
0 = c1+ 1

n−1
− n
n−1{|σ|(σ∇u · ∇u)}

1
n−1σ−1

whereby, with the above choice of gij one has that

g−1 = {|σ|(σ∇u · ∇u)}
1

1−nσ

Defining m(x) B |σ|(σ∇u · ∇u) gives |g| = m
n
n−1

|σ| . Since |g−1∇u|2g = {(g−1∇u) · g(g−1∇u)}2

we have |g−1∇u|g =
√

(g−1∇u) · ∇u. Then

∇j(
√
|g| g

ij∇iu

|g−1∇u|g
) = ∇ · (m

n+1
2(n−1)

− 1
n−1σ∇u√

|σ|σ∇u · ∇u
)

= ∇ · (
√
m(x)σ∇u√
m(x)

)

It follows from the fact that u solves the conductivity equation that

∇ · (
√
|g| g

−1∇u
|g−1∇u|g

) = 0.

The above result immediately implies the following.

Corollary 2.5. Suppose that u, c, σ0 are as is in proposition (2.4). Then the level sets of u,
u−1(λ) B {u = λ} ∩ Ω are surfaces of zero mean curvature in the metric

gij = (|σ0||J |2σ−1
0

)
1

n−1 (σ−1
0 )ij.

Proof. As in the preceding proof of Theorem 2.3 the level sets u−1(λ) are C1-hypersurfaces

for µ−a.e. λ. The vector n B g−1∇u
|g−1∇u|g is a unit normal in the metric gij to such a level set

u−1(λ). The mean curvature of a hypersurface with unit normal n is given by H = divg(n)

with divg the metric divergence. Hence H = 1√
|g|

∂
∂xi

(
√
|g|ni), with ni the components of n.

We conclude from Proposition (2.4) that when u satisfies the conductivity equation, we have
H = 0.
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3 Preliminaries for the General Case

In this section we prepare to expand upon the results in the preceding section by considering
the conductivity equation over domains which may contain insulating or perfectly conduct-
ing inclusions, i.e. regions of zero or infinite conductivity, respectively. We shall give the
appropriate reformulation of the forward problem (5) in this setting. We also discuss inte-
gration by parts and coarea formulae for spaces of bounded weighted variation which will
play a key role in our main general uniqueness result.

3.1 Weighted Total Variation

We start by presenting some needed preliminary results about functions of bounded weighted
total variation. We will always use the notation χA(x) to denote the characteristic function
of a set A. Often, we will abbreviate vectors and matrices in component form. In addition,
as earlier, we will employ the Einstein summation convention of implied summation over
repeated upper and lower indices wherever appropriate.

Let Ω ⊂ Rn be a bounded open set with connected C1,α boundary, with α > 0, and let a
be a non-negative piecewise continuous function on Ω. While the function a is now allowed
to vanish, we require that its zero set S B {x ∈ Ω : a(x) = 0} always satisfy the following
structural hypothesis

S B O ∪ Γ, (15)

where Γ is a set of measure zero with at most countably many connected components,
Hn−1(∂Ω ∩ S) = 0, and where O is a disjoint union of finitely many C1-diffeomorphic
images of the unit ball, possibly empty. These technical requirements will be helpful in the
uniqueness argument.

Remark Notice that if u is a continuous function on an open set containing Γ and if Γ is
a set of measure zero with at most countably many connected components, then u(Γ) has
empty interior and this is all we require about the set Γ in the uniqueness proof.

In order to treat the possible presence of inclusions we introduce the following space of
functions of bounded variation in the complement of S:

BV (Ω, S) B {u ∈ L1(Ω)

∫
K

|Du| <∞, ∀K ⊂ Ω \ S, K compact} (16)

This generalizes the space BV (Ω), the space of all L1(Ω) functions with bounded variation
of the distributional gradient, i.e. those functions satisfying∫

Ω

|Du| <∞.

Let σ0 ∈ Cα(Ω,Mat+(R, n)) be a symmetric positive definite matrix with components
(σ0)ij satisfying

m|ξ|2 ≤
n∑

i,j=1

(σ0)ij(x)ξiξj ≤M |ξ|2 ∀x ∈ Ω, ∀ξ ∈ Rn,

11



for constants 0 < m,M <∞. We then denote by ϕ(x, ξ) the following function

ϕ(x, ξ) = a(x)(
n∑

i,j=1

(σ0)ijξ
iξj)

1
2 . (17)

For u ∈ BV (Ω, S) we define the weighted total variation of u, with respect to ϕ, in Ω as∫
Ω

|Du|ϕ = sup
B∈Ba,σ0

∫
Ω

u∇ ·B dµ, (18)

where

Ba,σ0 = {B ∈ L∞c (Ω,Rn) : ∇ ·B ∈ Ln(Ω) and |B|σ−1
0
≤ a(x) a.e. in Ω}.

and L∞c (Ω,Rn) is the space of vector fields of compact support in Ω whose components are
in L∞(Ω). We remark that the structural hypothesis (15) ensures Hn(∂S) = 0 so that the
integrals in (18) do not depend on the values of u inside S.

In particular, we let Pϕ(A) denote the ϕ-perimeter of the set A ⊂ Ω given by

Pϕ(A) B

∫
Ω

|DχA|ϕ. (19)

We remark that if A has sufficiently smooth boundary Σ then

Pϕ(A) =

∫
Σ

ϕ(x, n)dS, Σ = ∂A ⊂ Ω (20)

where n is a unit normal to Σ and dS is the induced Euclidean surface measure. For
simplicity, we shall be using the notation Pφ(A) rather than the more explicit Pφ(A,Ω)
throughout the paper.

It is a straightforward consequence of the definition (18) that
∫

Ω
|Du|ϕ is L

n
n−1

loc (Ω)−lower
semi-continuous. It was shown in [2] by Amar and Bellettini that for any u ∈ BV (Ω), one
has the following integral representation formula for the weighted total variation appearing
in equation (18), ∫

Ω

|Du|ϕ =

∫
Ω

h(x, vu)|Du| (21)

where, in the above,

h(x, vu) B (|Du| − ess sup
B∈Ba,σ0

(B · vu))(x) |Du| − a.e. x ∈ Ω, (22)

and vu denotes the vectorial Radon-Nikodym derivative vu(x) = dDu
d |Du| . One can verify that

(21) also holds for any u ∈ BV (Ω\S). Note that the right-hand side of equation (21) makes

12



sense, as vu is |Du|-measurable, and hence h(x, vu(x)) is as well. In particular, it can be
shown (viz. [2] Prop. 7.1) that if a and σ0 are continuous in Ω, then one has

h(x, vu) = a(x)

(
n∑

i,j=1

σij0 v
u
i v

u
j

)1/2

, |Du| − a.e. in Ω (23)

for every Borel set Ω and u ∈ BV (Ω).
Following [1] and [5], we let

X B {B ∈ L∞(Ω,Rn) : div B ∈ Ln(Ω)}.

As proven in [5], Theorem 1.2, if νΩ denotes the outer unit normal vector to ∂Ω, then for
every B ∈ X there exists a unique function [B · νΩ] ∈ L∞Hn−1(∂Ω) such that∫

∂Ω

[B · νΩ]udHn−1 =

∫
Ω

u∇ ·Bdµ+

∫
Ω

B · ∇udµ, ∀u ∈ C1(Ω̄). (24)

Moreover, for u ∈ BV (Ω) each such B ∈ L∞(Ω,Rn) with ∇ · B ∈ Ln(Ω) gives rise to a
Radon measure on Ω, denoted (B ·Du), satisfying the following∫

∂Ω

[B · νΩ]udHn−1 =

∫
Ω

u∇ ·Bdµ+

∫
Ω

(B ·Du), ∀u ∈ BV (Ω), (25)

We refer the interested reader to [1, 5] for a proof.
We shall need the following lemma, a proof of which follows from (25), and the fact that

BV (Ω, S) ∩ L∞(Ω) ⊂ BV (Ω)

which can be easily verified.

Lemma 3.1. Let S be as defined in (15). Then∫
∂Ω

[B · νΩ]udHn−1 =

∫
Ω

u∇ ·Bdµ+

∫
Ω

(B ·Du) (26)

for all u ∈ BV (Ω, S) ∩ L∞(Ω) and B ∈ X.

We conclude with a useful coarea formula for functions of bounded weighted total varia-
tion. Details can be found in [2].

Theorem 3.2 (Generalized Coarea Formula). Let u ∈ BV (Ω) and suppose Hn−1(Ω ∩ {u =
s}) <∞ holds for all s ∈ R. Then∫

Ω

|Du|ϕ =

∫
R
Pϕ({u > s})ds,

where Pϕ denotes the ϕ-perimeter defined in (19).

We note that this may, on using the representation formula (21), be recast as∫
Ω

|Du|ϕ =

∫
R

∫
Ω∩∂∗{u(x)>s}

h(x, νs)dHn−1(x)ds (27)

where νs is a unit outer-oriented normal vector to Ω ∩ ∂∗{u(x) > s}.
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3.2 Modeling Regions with Zero or Infinite Conductivity

Here we discuss how to formulate a suitable version of the conductivity equation (5) in
the presence of inclusions of infinite and/or zero conductivity. Throughout the paper these
inclusions will be assumed to satisfy the following conditions.

Assumption 3.3 (Hypotheses on Inclusions). Let O∞ be an open subset of Ω satisfying
O∞ ⊂ Ω, meant to model perfectly conducting inclusions, and O0 be an open subset of Ω
with O0 ⊂ Ω, meant to model insulating inclusions. We assume

i. O∞ ∩O0 = ∅,

ii. Ω \O∞ ∪O0 is connected, and

iii. the boundaries ∂O∞, ∂O0 are piecewise C1,α for α > 0,

iv. O0 is a mutually disjoint union of finitely many C1−diffeomorphic images of the unit
ball, possibly empty; if n = 2, O0 has at most one such component.

Let σjk and σ̃jk be symmetric positive definite matrix functions in Ω \ O0. For k > 0
consider the conductivity problem

∂xj ([(kσ̃ij − σij)χO∞ + σij] ∂xiuk) = 0, in Ω \O0
∂uk
∂ν

= 0 on ∂O0,
uk|∂Ω = f.

(28)

The perfectly conducting inclusions occur in the limiting case k → ∞. The limiting
solution is the unique solution to the problem:

∂xj (σij∂xiu) = 0, in Ω \O0 ∪O∞
∇u = 0, in O∞
u|+ = u|−, on ∂(O0 ∪O∞)∫
∂On∞

σ ∂u
∂νn
|+dS = 0, n = 1, 2, ...

∂u
∂ν
|+ = 0, on ∂O0

u|∂Ω = f,

(29)

(see the Appendix for more details), where O∞ = ∪∞n=1O
n
∞ is a partition of O∞ into connected

components. Here , as in the rest of the paper, ν is the outward unit normal vector and the
subscripts ± indicate the limits taken from the outside and inside the inclusions, respectively.

Remark For Lipschitz continuous conductivities in any dimension n ≥ 2, or for essentially
bounded conductivities in two dimensions, the solutions of the conductivity equation satisfy
the unique continuation property (see, [9] and references therein). Consequently the insu-
lating, and the possibly perfectly conducting, inclusions are the only open sets on which
the interior data |J |σ−1

0
may vanish identically. However, in three dimensions or higher it is

possible to have a Hölder continuous σ and boundary data f that yield u ≡ constant in a

14



proper open subset Os ( Ω, see [39, 29]. We call such regions Os singular inclusions. On
the other hand, we will not use Ohm’s law in the classical sense inside perfect conductors:
the current J inside perfectly conducting inclusions is not necessarily zero whereas ∇u ≡ 0
within such regions (see [4, 24]).

4 Anisotropic Current Density Impedance Imaging in

the Presence of Inclusions.

From now on we assume that σ ∈ Cα(Ω \ (O∞ ∪O0),Mat+(R, n)) for α > 0 and satisfies

σ(x) = c(x)σ0(x), (30)

where c(x) ∈ Cα
+(Ω \ (O∞ ∪ O0)) is a real, scalar-valued function, bounded away from zero

and finite on Ω\ (O∞∪O0) to be determined and where σ0 ∈ Cα(Ω,Mat+(R, n)) is a known
symmetric, positive definite, matrix-valued function on Ω.

We will show how the shape and locations of the perfectly conducting and insulating
inclusions and the conductivity σ outside of the inclusions can be determined from knowledge
of the boundary voltage f , σ0 and of

a =

√
σ−1

0 J · J = |J |σ−1
0
,

in Ω, where J is the current density vector field generated by the voltage f at ∂Ω. To
formulate our results, we first need to extend the notion of admissibility given in Definition
1.2 to allow for inclusions.

Definition 4.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with connected C1,α boundary,
α > 0. A triplet of functions (f, σ0, a) ∈ C1,α(∂Ω) × Cα(Ω,Mat+(R, n)) × L2(Ω) is called
admissible if there exist inclusions O0 and O∞ satisfying Assumption 3.3, a function c(x) ∈
Cα

+(Ω\(O∞∪O0)) and a divergence free vector field J such that the following three statements
hold.

i. a = |J |σ−1
0

in Ω.

ii. The vector field J satisfies

J =

{
−σ∇u in Ω \ (O∞ ∪O0).
0 in O0

(31)

where σ = cσ0 and where u is the corresponding solution of (29).

iii. The set S of zeros of a satisfies

S ∩ (Ω\O∞) = O0 ∪Os ∪ Γ, (32)

where Os is an open set (possibly empty), Γ is a Lebesgue-negligible set with at most
countably many connected components.
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We are now ready to state our main uniqueness results.

Theorem 4.2. Let Ω ⊂ Rn, n ≥ 2, be a domain with connected C1,α boundary and let
(f, σ0, a) ∈ C1,α(∂Ω) × Cα(Ω,Mat+(R, n)) × L2(Ω) be an admissible triplet in the sense of
Definition 4.1. Define ϕ(x, ξ) = a(x)|ξ|σ0 on Ω and let S = {a = 0}. Then

i. The potential u, solving (29), is a minimizer of the problem

u = argmin{
∫

Ω

|Dw|ϕ : w ∈ BV (Ω, S) and w|∂Ω = f}. (33)

ii. If ū is another minimizer of the above problem, then ū = u in Ω \ S.

Proof. The proof of the first part is a slightly more technical argument as that given in the
proof of Lemma 2.1. Suppose that w ∈ BV (Ω, S). First note that for every x ∈ Ω\(O∞ ∪O0)
there exists ε > 0 such that B(x, 2ε) ⊂ Ω and∫

B(x,ε)

h(x, vw)|Dw| ≥ −
∫
B(x,ε)

J · vw|Dw|,

where J is the current density vector field described in definition (4.1). Therefore

h(x, vw) ≥ −J · vw, |Dw| − a.e. in Ω \ (O∞ ∪O0).

Thus, on using Lemma 3.1 and the fact that the current density is divergence-free away from
the inclusions we have∫

Ω\(O0∪O∞)

|Dw|ϕ =

∫
Ω\(O0∪O∞)

h(x, vw)|Dw|

≥ −
∫

Ω\(O0∪O∞)

J · vw|Dw|

= −
∫

Ω\(O0∪O∞)

J ·Dw

= −
∫
∂Ω\(O0∪O∞)

J · νfdHn−1

=

∫
Ω\(O0∪O∞)

|Du|ϕ.

Thus u is a minimizer as claimed.
If ū is another minimizer, then the above yields

h(x, vū) = −J · vū, |Dū| − a.e. in Ω \ (O0 ∪O∞). (34)

On the other hand, since a is continuous in Ω \ (O0 ∪O∞) equation (23) gives

h(x, vū) = a(x)

(
n∑

i,j=1

σij0 v
ū
i v

ū
j

)1/2

|Dū| − a.e. in Ω \ (O0 ∪O∞).
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But then, on Ω \ (O0 ∪O∞), we have

h(x, vū) = a(x)

(
n∑

i,j=1

σij0 v
ū
i v

ū
j

)1/2

= c(x)|∇u|σ0|vū|σ0

≥ c(x)|(∇u, vū)σ0|
≥ σ∇u · vū

= −J · vū.

Thus it follows from the above and (34) that

J

|J |
=
∇ū
|∇ū|

= vū, |Dū| − a.e. in Ω \ (O0 ∪O∞).

An argument similar to that of Theorem 3.5 in [31] then allows us to conclude that u = ū
a.e. in Ω.

Once u is recovered by solving (33) it is straightforward to determine the inclusions and
the conformal factor in their complement as indicated below.

Corollary 4.3. Let (f, σ0, a) be an admissible triplet and let σ be the corresponding unknown
conductivity. Let u be the unique minimizer in Theorem 4.2. Denote the union of the zero-
sets of a and |∇u| as S ∪ {∇u = 0} =: Z ∪ Γ, where Z = O∞ ∪ O0 ∪ Os is open and Γ has
measure zero. Then, outside Z,

σ =
a

|∇u|σ0

σ0 ∈ Cα(Ω \ Z,Mat+(R, n)).

Remark Given a solution u to (33), one can determine if an open connected component O
of Z is a perfectly conducting inclusion, an insulating inclusion, or a singular inclusion as
follows:

• If ∇u ≡ 0 in O and a(x) 6= 0 for some x ∈ O, then O is a perfectly conducting
inclusion.

• If a ≡ 0 in O and u 6≡ constant on ∂O, then O is an insulating inclusion.

• If a ≡ 0 in O, u = constant on ∂O, and a /∈ Cα(∂O), then O is not a singular inclusion.

• If a ≡ 0 in O, u = constant on ∂O, and a ∈ Cα(∂O), then the knowledge of the
magnitude of (f, σ0, a) is not enough to determine the type of the inclusion O.
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5 Geometrical Properties of Equipotential Sets

In this section we prove the area-minimizing property of the equipotential sets u−1(λ) B
Ω ∩ {u = λ} for solutions u(x) of the variational problem (33). This generalizes results in
[36] and [32]. The main idea of the proof goes back to [10]. See also [17].

To begin, throughout this section for a real-valued function w, and for λ ∈ R and ε > 0
we define

wλ,ε B min{1,max{w − λ
ε

, 0}}.

Lemma 5.1. Let (f, σ0, a) be an admissible triplet in the sense of Definition 4.1, and assume
that u and J are the corresponding voltage potential and current density vector field. For
any g ∈ L1(∂Ω) and w ∈ BV (Ω, S), define

Iϕ(w, g) :=

∫
Ω

|Dw|ϕ +

∫
∂Ω

|J |σ−1
0
|n|σ0|w− − g|dS, (35)

where w− denotes the inner trace of w on ∂Ω and n is the normal vector on ∂Ω. Then for
every λ ∈ R and ε > 0,

Iϕ(uλ,ε, fλ,ε) ≤ Iϕ(w, fλ,ε), for all w ∈ BV (Ω, S).

Proof. Since (f, σ0, a) is admissible, a = |J |σ−1
0

for J ∈ (L∞(Ω))n with ∇ · J ≡ 0. Hence

for every w ∈ BV (Ω, S) it follows from (21) and Lemma 3.1 that

Iϕ(w, fλ,ε) =

∫
Ω

|Dw|ϕ +

∫
∂Ω

|J |σ−1
0
|ν|σ0|w− − fλ,ε| dHn−1

=

∫
Ω

h(x, vw)|Dw|+
∫
∂Ω

|J |σ−1
0
|ν|σ0 |w− − fλ,ε| dHn−1

≥
∫

Ω

J · vw|Dw|+
∫
∂Ω

|J |σ−1
0
|ν|σ0|w− − fλ,ε| dHn−1

=

∫
Ω

J ·Dw +

∫
∂Ω

|J |σ−1
0
|ν|σ0|w− − fλ,ε| dHn−1

=

∫
∂Ω

J · νw−dS +

∫
∂Ω

|J |σ−1
0
|ν|σ0|w− − fλ,ε| dHn−1

≥
∫
∂Ω

J · νw−dS +

∫
∂Ω

J · ν(fλ,ε − w−) dHn−1

=

∫
∂Ω

fλ,εJ · ν dHn−1.

On the other hand for w = uλ,ε, since ∇uλ,ε ·J ≡ |∇uλ,ε||J |, equality holds in all of the above
and it follows that

Iϕ(uλ,ε, fλ,ε) =

∫
∂Ω

fλ,εJ · ν dHn−1.

�
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Lemma 5.2. Assume that uk is a minimizer of Iϕ(w, fk) for k ≥ 1, and

uk → u in L1(Ω \ S), fk → f and u−k → u− in L1(∂Ω;Hn−1).

Then
Iϕ(u, f) ≤ Iϕ(w, f), for all w ∈ BV (Ω, S).

Proof. It follows from the definition (18) and a standard argument that∫
Ω

|Du|ϕ ≤ lim inf
k→∞

∫
Ω

|Duk|ϕ.

Since fk → f and u−k → u− in L1(∂Ω;Hn−1),

Iϕ(u, f) ≤ lim inf
k→∞

Iϕ(uk, fk). (36)

Now for every w ∈ BV (Ω, S), we have

Iϕ(uk, fk) ≤ Iϕ(w, fk)

≤ Iϕ(w, f) +

∫
∂Ω

|J |σ−1
0
|n|σ0|f − fk| dHn−1

≤ Iϕ(w, f) + C

∫
∂Ω

|f − fk| dHn−1,

for some C > 0. Letting k →∞ and using (36) we obtain Iϕ(u, f) ≤ Iϕ(w, f). �

Definition 5.3. (i) We say that a function u ∈ BV (Ω, S) is ϕ-total variation minimizing
in a set Ω ⊂ Rn if∫

Ω

|Du|ϕ ≤
∫

Ω

|Dw|ϕ for all w ∈ BV (Ω, S) with u− = w− on ∂Ω.

(ii) Similarly, we say that E ⊂ Ω of finite perimeter is ϕ-area minimizing in Ω if

Pϕ(E) ≤ Pϕ(F ) for all F ⊂ Ω such that χ−E = χ−F on ∂Ω.

We are ready to establish the main result of this section, which says that equipotential
hypersurfaces of solutions to (29) are ϕ-area minimizing in Ω.

Theorem 5.4. Let (f, σ0, a) be an admissible triplet in the sense of Definition 4.1 and
assume that u is the corresponding voltage potential. Then

Eλ = {x ∈ Ω : u(x) ≥ λ}

is ϕ-area minimizing in Ω for every λ.
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Proof. The proof is similar to that Theorem 1 in [10] and Theorem 2.4 in [17]. We write
the details for the convenience of the reader.

For λ ∈ R, let u1 = max(u− λ, 0), u2 = u− u1. Let v ∈ BV (Ω, S) with supp(v) ⊂ Ω. It
follows from the coarea formula that∫

Ω

|Du1|ϕ +

∫
Ω

|Du2|ϕ =

∫
Ω

|Du|ϕ

≤
∫

Ω

ϕ(x,D(u+ v))

≤
∫

Ω

|D(u1 + v)|ϕ +

∫
Ω

|Du2|ϕ.

Hence u1 is ϕ-total variation minimizing. By repeating the above argument one verifies that
uλ,ε is also ϕ-total variation minimizing. It is easy to see that for a.e. λ ∈ R,

Hn({x ∈ Ω : u(x) = λ}) = Hn−1({x ∈ ∂Ω : f(x) = λ}) = 0, (37)

and one can verify that if (37) holds, then

uε,λ → χEλ in L1
loc(Ω \ S), χ−ε,λ → χ−Eλ in L1(∂Ω;Hn−1). (38)

Hence it follows from Lemma 5.1 and Lemma 5.2 that χEλ is ϕ-total variation minimizing
in Ω, i.e. Eλ is ϕ-area minimizing in Ω.

If λ does not satisfy (37), then let λk be an increasing sequence such that λk → λ and
λk satisfies (37) for every k. Then

χEλk → χEλ in L1
loc(Ω \ S), χ−Eλk

→ χ−Eλ in L1(∂Ω;Hn−1),

as k →∞, again it follows from Lemma 5.2 that Eλ is ϕ-area minimizing in Ω. �

We now consider the data-dependent functional

A(Σ) =

∫
Σ

|J |σ−1
0

(σ0n · n)
1
2dS (39)

for codimension one smooth hypersurfaces Σ ⊂ Ω \S having unit normal n and with dS the
induced Euclidean surface measure on Σ. When Σ is a smooth boundary of a subset A ⊂ Ω,
then

A(Σ) = Pϕ(A),

with Pϕ defined in (20).
In the next proposition we show that on hypersurfaces Σ ⊂ Ω \S, this measure-theoretic

perimeter agrees with the area induced by the (data-dependent) Riemannian metric intro-
duced in formula (14).
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Proposition 5.5. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain. Let σ0 ∈ C1,α(Ω,Mat+(R, n))
and |J |σ−1

0
∈ Cα(Ω) with S = {|J |σ−1

0
= 0}. The Riemannian metric on Ω \ S given

by gij = (|σ0||J |2σ−1
0

)
1

n−1 (σ−1
0 )ij when restricted to an oriented codimension 1 hypersurface

Σ ⊂ Ω \ S induces the invariant Riemannian surface measure

dSg = |J |σ−1
0

(σ0n · n)
1
2dS

with n the outer unit normal to Σ and dS the induced Euclidean surface measure on Σ.

Proof. Denoting by dV the usual, Euclidean volume element, which in local coordinates
(x1, ..., xn) on Ω takes the form dV = dx1∧· · ·∧dxn. We recall that the invariant Riemannian
volume on (Ω \ S, g) is written locally as dVg =

√
|g|dV . As before we write g = mσ−1

0 for

m = (|σ0||J |2σ−1
0

)
1

n−1 . Then |g| = |σ0|
n
n−1
−1|J |

2n
n−1

σ−1
0

= m|J |
2n
n−1
− 2
n−1

σ−1
0

. Thus√
|g| = |J |σ−1

0

√
m

We have next that |n|σ0 = (σ0n · n)
1
2 can be written as

|n|σ0 = (σ0n · n)
1
2

=
√
g(mg−1n, g−1n)

=
√
m|g−1n|g

The surface measure dS can be written (see e.g. [23]) as (nydV ) |Σ. Therefore

|J |σ−1
0
|n|σ0dS =

√
|g|√
m

√
m|g−1n|g(nydV )

= (|g−1n|gn)ydVg
= g(|g−1n|gn,N)dSg (40)

where N is the outer unit normal to Σ in the g metric and the final equality (40) follows

from Lemma 13.25 in [23]. But, when n is the unit normal to Σ, N = g−1n
|g−1n|g is the unit

normal to Σ in the g metric. Then

|J |σ−1
0
|n|σ0dS = g(|g−1n|gn,N)dSg

= g(|g−1n|gn,
g−1n

|g−1n|g
)dSg

= g(n, g−1n)dSg

= dSg (41)

since g(n, g−1n) = n · n = 1. This is what was to be shown.

In view of Theorem 5.4 and the preceding Proposition 5.5 we now have strengthened
Corollary 2.5 by showing that equipotential hypersurfaces minimize the Riemannian area
induced by the data-dependent metric (14).
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6 Appendix: Perfectly conducting and insulating in-

clusions

In this appendix we derive, by a limiting procedure, the boundary value problem satisfied by
potentials corresponding to conductivities which can vanish or be infinite in certain regions.
These derivations slightly generalize the arguments appearing in [7].

Let O∞ = ∪∞j=1O
j
∞ be an open subset of Ω with O∞ ⊂ Ω model the union of the

connected components Oj
∞ (j = 1, 2, ...) of perfectly conducting inclusions, and let O0 be an

open subset of Ω with O0 ⊂ Ω model the union of all connected insulating inclusions. Let
χO∞ and χO0 be their corresponding characteristic functions. We assume that O∞ ∩O0 = ∅,
Ω \O∞ ∪O0 is connected, and that the boundaries ∂O∞, ∂O0 are piecewise C1,α for α > 0.
Let σ1 ∈ Cα(O∞,Mat+(R, n)), and σ ∈ Cα(Ω \ O0 ∪O∞,Mat+(R, n)) be matrix-valued
functions such that on the respective domains of σ and σ1

m|ξ|2 ≤ σijξiξj ≤M |ξ|2, m|ξ|2 ≤ σij1 ξiξj ≤M |ξ|2, (42)

for constants 0 < m,M <∞.
Extend σ to a function on Ω \ O0 and, for each 0 < k < 1, consider the conductivity

problem

∇ · (χO∞(
1

k
σ1 − σ) + σ)∇u = 0 on Ω \O0,

∂u

∂ν
= 0 on ∂O0, and u|∂Ω = f. (43)

The condition on ∂O0 ensures that O0 is insulating. The problem (43) has a unique solution
uk ∈ H1(Ω \O0), which also solves

∇ · σ∇uk = 0, in Ω \O∞ ∪O0,
∇ · σ1∇uk = 0, inO∞,
uk|+ = uk|−, on ∂O∞,
( 1
k
σ1∇uk) · ν

∣∣
− = (σ∇uk) · ν|+ , on ∂O∞,

∂uk
∂ν

∣∣
+

= 0, on ∂O0,

uk|∂Ω = f.

(44)

Moreover, the solution uk of (44) is the unique minimizer of the energy functional

Ik[v] =
1

2k

∫
O∞

|∇v|2σ1
dx+

1

2

∫
Ω\O∞∪O0

|∇v|2σdx (45)

over maps in H1(Ω \O0) with trace f at ∂Ω. We shall show below that the limiting solution
(with k → 0) solves 

∇ · σ∇u0 = 0, in Ω \O∞ ∪O0,
∇u0 = 0, in O∞,
u0|+ = u0|−, on ∂O∞,∫
∂Oj∞

(σ∇u0) · ν|+ds = 0, for j = 1, 2, ...,
∂u0

∂ν
|+ = 0, on ∂O0,

u0|∂Ω = f,

(46)
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By elliptic regularity u0 ∈ C1,α(Ω\O∞ ∪O0) and for any C1,α boundary portion T of ∂(O∞∪
O0), u0 ∈ C1,α((Ω\(O∞ ∪O0)) ∪ T ).

Proposition 6.1. The problem (46) has a unique solution in H1(Ω \ O0). This solution is
the unique minimizer of the functional

I0[u] =
1

2

∫
Ω\O∞∪O0

|∇u|2σdx, (47)

over the set A0 B {u ∈ H1(Ω \O0) : u|∂Ω = f, ∇u = 0 inO∞}.

Proof: Note that A0 is weakly closed in H1(Ω \O0). The functional I0 is lower semicon-
tinuous and strictly convex and, as a consequence, has a unique minimizer u∗0 in A0.

First we show that u∗0 is a solution of the BVP (46). Since u∗0 minimizes (47), we have

0 =

∫
Ω\O0∪O∞

σ∇u∗0 · ∇φdx, (48)

for all φ ∈ H1(Ω \O0), with φ|∂Ω = 0, and ∇φ = 0 in O∞. In particular, if φ ∈ H1
0 (Ω \O0),

we get
∫

Ω\O∞∪O0
(∇ · σ∇u∗0)φdx = 0 and thus u∗0 solves the conductivity equation in (46). If

we choose φ ∈ H1(Ω \ O0), with φ|∂Ω = 0, and φ ≡ 0 in O∞, from Green’s formula applied

to (48), we get
∫
∂O0

(σ∇u∗0) · ν|+φ = 0, ∀φ|∂O0 ∈ H1/2(∂O0), or equivalently,
∂u∗0
∂ν
|∂O0 = 0. If

we choose φj ∈ H1
0 (Ω \O0) with φj ≡ 1 in the connected component Oj

∞ of O∞ and φj ≡ 0
in O∞ \Oj

∞, from Green’s formula applied to (48) we obtain
∫
∂Oj∞

(σ∇u∗0) · ν|+ = 0. �
Next we show that the equation (46) has a unique solution u0 and, consequently, u∗0 =

u0|Ω\O0
. Assume that u1 and u2 are two solutions and let u = u2 − u1, then u|∂Ω = 0 and

0 = −
∫

Ω\O∞∪O0

(∇ · σ∇u)udx

= −
∫
∂Ω

(σ∇u) · νuds+

∫
∂O0

(σ∇u) · ν|+uds+

∫
∂O∞

(σ∇u) · ν|+uds+

∫
Ω\O∞∪O0

|∇u|2σdx

=

∫
Ω\O∞∪O0

|∇u|2σdx.

Thus |∇u| ≡ 0 in Ω \O0. Since Ω \O0 is connected and u = 0 at the boundary, we conclude
uniqueness of the solution of the equations (46).

Theorem 6.2. Let uk and u0 be the unique solutions of (44) respectively (46) in H1(Ω\O0).

Then uk ⇀ u0 and, consequently, Ik[uk]
k↓0+

−−−→ I0[u0].

Proof: We show first that {uk} is bounded in H1(Ω \O0) uniformly in k ∈ (0, 1). Since
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1/k > 1, in view of (42) there exists λ,Λ so that

λ

2
‖∇uk‖2

L2(Ω\O0)
≤ 1

2

∫
Ω\O∞∪O0

|∇uk|2σdx+
1

2k

∫
O∞

|∇uk|2σ1
dx

= Ik[uk]

≤ Ik[u0]

≤ Λ

2
‖∇u0‖2

L2(Ω\O0)
, (49)

Thus

‖∇uk‖2
L2(Ω\O0)

≤ Λ

λ
‖∇u0‖2

L2(Ω\O0)
. (50)

From (50) and the fact that uk|∂Ω = f , we see that {uk} is uniformly bounded in H1(Ω\O0)
and hence weakly compact. Therefore, there is a subsequence uk ⇀ u∗ in H1(Ω\O0), for
some u∗ with trace f at ∂Ω.

We will show next that u∗ satisfies the equations (46), and therefore u∗ = u0 on Ω \ O0.
By the uniqueness of solutions of (46) we also conclude that the whole sequence converges
to u0.

Since uk ⇀ u∗ we have that 0 =
∫

Ω\O0∪O∞ σ∇uk · ∇φdx→
∫

Ω\O∞∪O0
σ∇u∗ · ∇φdx, for all

φ ∈ C∞0 (Ω \O∞ ∪O0). Therefore ∇·σ∇u∗ = 0 in Ω \O∞ ∪O0. Further, since uk minimizes
Ik[uk] we must have ∇u∗ = 0 in O∞. To check the boundary conditions, note that, for all
φ ∈ C∞0 (Ω) with φ ≡ 0 in O∞, we have

∫
∂O0

(σ∇uk) · ν|+φds = 0. Using the fact that φ were

arbitrary, by taking the weak limit in k → 0, we get ∂u∗

∂ν

∣∣
+

= 0 on ∂O0. A similar argument

applied to φ ∈ C∞0 (Ω) with φ ≡ 0 in O0, φ ≡ 1 in Oj
∞, and φ ≡ 0 in O∞\Oj

∞, also shows that∫
∂Oj∞

(σ∇u∗) · ν|+φds = 0. Hence u∗ is the unique solution of the equation (46) on Ω\O0.

Thus uk converges weakly to the solution u0 of (46) in Ω\O0.

7 Conclusions

We have considered the reconstruction of an anisotropic conductivity conformal to a known
σ0 when one has knowledge of the internal measurement

√
σ−1

0 J · J , for a single current
density J . Such data can be obtained by a novel combination of Current Density and
Diffusion Tensor measurements. We have identified a variational problem defined in terms
of the measured data and shown how to calculate the conformal factor from its unique
solution. Further, we have presented a solution of the problem which allows for regions of
infinite or zero conductivity. We also proved that the equipotential sets minimize the area
functional corresponding to a Riemannian metric defined from the measured data.
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