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Abstract

We introduce a technique for recovering a sufficiently smooth function from its ray transform over a
rotationally related class of curves in the unit disc of 2-dimensional Euclidean space. The method is
based on a complexification of the underlying vector fields defining the initial transport and recasting
the problem in terms of complex-analytic function theory. Explicit inversion formulae are then given in
a unified form. The method is then used to give inversion formulae for the attenuated ray transform in
the same setting.

Keywords: Transport equation, quasiconformal, harmonic calculus, attenuated ray transform, Beltrami
equation, filtered backprojection

1 Introduction

In several engineering applications one deals with the problem of recovering an unknown function from its
integrals over a collection of lines. In medical imaging this problem arises in positron emission tomography
(PET), single photon emission tomography (SPECT), and (originally) CT-scan tomography [NW07]. In
other applications the line integral is instead taken over a class of one-dimensional curves in either Euclidean
space or more generally, a smooth manifold. Examples of this more general geometry arise, for instance,
in the geophysical problem of determining internal properties of the Earth from travel-time measurements
made at the surface; [Sha94]. Another example of the general setting is in non-destructive electrical imaging
techniques such as electrical impedance tomography; see e.g. [Ehr03, Car96]. This type of data is generally
referred to as a ray transform or, in the case of straight lines, the x-ray transform. Quite often the physics
will also dictate that the signal undergoes some absorption along its trajectory and is attenuated, the data
then called the attenuated ray transform.

The mathematical applications, properties, and uses of these integral transforms and their inverses are
discussed in great detail in [Ehr03, Hel89, Hel00, Sha94] and include harmonic analysis, algebraic curves,
tensor geometry, and partial differential equations to name a few. Generally, explicit inversion formulae
over curves other than lines (geodesics of a Riemannian manifold, say) tend to restrict focus to manifolds
with a strong amount of symmetry (as in, e.g. [Hel89, Hel00, Hel07, Car96, Rub03, PU04]) and do not
include the effects of absorption encountered during propagation. For the case where attenuation is taken
into account, strong local injectivity results were established by Finch in 1986 [Fin86]. Full injectivity was
only established as recently as 1998, by Arbuzov, Bukhgeim, and Kazantsev in the work [ABK98] using the
theory of A-analytic functions developed by Alexander Bukhgeim. An excellent account of this and other
progress made on the attenuated ray transform may be found in Finch’s chapter of the book [Uhl03]. More
recently Salo and Uhlmann, in the article [SU10], developed a reconstruction procedure for the attenuated
ray transform on geodesics of compact, two-dimensional, Riemannian manifolds with boundary, although an
explicit inversion formula was not obtained. We will be, in this paper, restricting our attention to particular
ray transforms on curves in a 2-dimensional region of Euclidean space.
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The method we present in this paper generalizes a technique that was first used by R.G. Novikov in
[Nov02] for lines in Euclidean space and later generalized in [Bal05] for geodesic rays in hyperbolic geometry,
giving an explicit filtered backprojection inversion formula for the attenuated ray transform in each case.
In fact, both of these inversion formulae are special cases of the main result of this article, Theorem 5.2,
as we shall show in section 6. The technique rests on a particular complexification of a class of differential
operators in R2 which allows us to recast the problem in terms of complex analysis in the unit disc. Once
the problem is cast in this light, we use the classical Poisson formula [AF03] relating the boundary values of
analytic functions on the unit disc to their interior values to obtain a reconstruction formula. We will also see
that the method illustrates a deep role played by Beltrami equations in inverting ray transforms. Excellent
introductions to complex analysis and conformal mappings are [Sar07, GK06, AF03] and the classic [Ahl79].
Good introductions to quasiconformal mappings, Beltrami equations and their generalizations can be found
in [Ahl06, Ren89] and the more recent [ATI08]. References on Blaschke products and multivalent mappings
can be found in [Col85, Gar09].

An outline of the paper is as follows. In section 2, the general setup, notation, and a quick review
of the essential mathematical objects used throughout the paper are presented, together with the main
results. In section 3 we begin the complexification procedure by introducing a new complex parameter λ
into the transport equation introduced in section 2 and then give a classification of the vector fields under
consideration as those of type H. Much of the heavy lifting is done in the more technical section 4 where
we find and analyze the Green’s function of the new parameterized complex partial differential transport
equation. We will establish that condition H is sufficient to guarantee holomorphicity of the solution of
this equation in terms of the new parameter λ. We evaluate the asymptotics of the solution as our complex
parameter λ tends to the unit circle from both inside and outside, i.e. as |λ| → 1∓ and see that in fact
its imaginary part depends on the data we are interested in. Once this is established, we use this fact
in section 5 to give our desired reconstruction formula in the non-attenuated case. The rest of section 5
uses the non-attenuated formula to give an integrating factor solution for the attenuated case. In section
6 examples of the method are then given for the cases of Euclidean space, the Poincaré disc and, with an
easy generalization of the technique, the projection of the spherical cap into the unit disc. We offer brief
concluding remarks in section 7.

A Review of the Case of Straight Lines

In order to motivate some of the general ideas presented in later sections, and to help keep the discussion
concrete, we start by quickly showing how to invert the attenuated ray transform on lines in Euclidean space.
The method we present in this section is similar to that discussed in the paper [Bal04] and is a variation of
the method used by R.G. Novikov in the article [Nov02] utilizing different notation.

Physical Background

The attenuated ray transform on straight lines in Euclidean space arises naturally in the context of emission
tomography in medical imaging where one measures radiation being emitted by an internal source f(x).
Letting u(x, θ) denote the density of light at the position x ∈ Ω ⊂ R2 with orientation θ, we will be
considering the following stationary radiative transport equation

θ · ∇xu(x, θ) + a(x)u(x, θ) = f(x) (1)

where θ
.
= (cos θ, sin θ), Ω is convex and both absorption a(x) and density f(x) are sufficiently smooth and

compactly supported. We will always assume that the transmission coefficient a(x) is known since this can
be determined by additional measurements. Although it is not necessary, for simplicity in keeping with the
rest of this article we will also assume that Ω ⊂ D+ where D+ is the unit disc {(x, y) ∈ R2;x2 + y2 < 1}.

Since light is being emitted internally, the emission event u(x, θ) should satisfy the boundary condition
that no radiation is picked up from the behind the emission site, i.e.

lim
t↘−∞

u(x(t), θ) = 0 (2)
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where x(t) are the characteristic curves, x + tθ, of θ · ∇.
Defining Xθ

.
= θ · ∇ and using the decay of the absorption coefficient we see that

∫∞
0
Xθa(x + tθ)dt =∫∞

0
∂
∂ta(x(t))dt and thus θ · ∇(Bθa)(x, θ) = −a(x) for

(Bθa)(x, θ)
.
=

∫ ∞
0

a(x + tθ)dt

the so-called divergent beam transform [Nat01].
We will be using here the symmetrized beam transform Dθ, based on the usual divergent beam transform

and defined as the odd part of the integration over characteristics with respect to angle; namely, Dθ
.
=

1
2 (B−θ −Bθ) or

(Dθa)(x) =
1

2

∫
R
sgn(t)a(x− tθ)dt (3)

It is clear then that the symmetrized beam transform inverts the vector field Xθ, in the sense that XθDθa = a
and therefore Dθa serves as an integrating factor in equation (1) so that we may write the solution in the
following form

u(x, θ) = e−Dθa
∫ ∞

0

(eDθaf)(x− tθ)dt

With θ⊥ = (− sin θ, cos θ) one can write x = tθ + sθ⊥ and we see that

lim
t↗∞

eDθa(sθ⊥+tθ)u(sθ⊥ + tθ) =

∫
R
eDθa(sθ⊥+tθ)f(sθ⊥ + tθ)dt (4)

= (Ia,θf)(s, θ)

where Ia,θf is the attenuated ray transform of f . We can acquire the measurements appearing on the left-

hand side of equation (4) since a was assumed to be known and limt↗∞ u(sθ⊥+tθ) is the radiation measured
by external detectors.

The Inversion Method

Our method of approach for finding an inversion formula for the attenuated ray transform will be based on
finding an appropriate holomorphic integrating factor for the transport equation (1). To do this, we will
first find an analytic solution to the non-attenuated transport equation in an appropriate extension of the
angular variable.

In order to arrive at a suitable inversion formula for the non-attenuated ray transform, we first consider
the parameterization of R2 ∼= C via z(t, s)

.
= t+is. Then the pushforward in z of the vector field ∂

∂t takes the

form z∗
∂
∂t = ∂

∂z + ∂
∂z̄ and one sees that t(z) = z+z̄

2 and s(z) = z−z̄
2i . For each θ ∈ (0, 2π] define a conformal

map eiθ : C2 → C2 via eiθ : (z, z̄) 7→ (eiθz, e−iθ z̄).
A calculation reveals that

Xθ = eiθ∗ z∗
∂

∂t
(5)

which is the vector field defining the lines over which our data is integrated.
We will begin by examining a particular complexification of the non-attenuated radiative transport equa-

tion Xθu(x, θ) = f(x). The main idea will be to turn the transport equation into an elliptic equation,
namely the ∂̄-equation, in particular coordinates. For this we consider the extension of the map eiθ to
θ ∈ C/R. Define, for 0 < |λ| < 1, the map λ : (z, z̄) → (λz, z̄λ ) generating the complexified transport

operator Xλ = λ∗z∗
∂
∂t . Since λ∗(z, z̄) 7→ ( zλ , z̄λ) one has that

Xλ = λ
∂

∂z
+

1

λ

∂

∂z̄
, λ ∈ D+/{0}

To solve the complexified transport equation Xλu(z, λ) = f(z) for λ ∈ D+/{0} one can explicitly find
the Green’s function associated to Xλ by a change of variables in λ∗s = s(z, λ). It turns out that this will
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reduce the problem to a ∂̄-problem in s. To see this, observe that since s(z, λ) = 1
2i (

z
λ − z̄λ), we can, after

a change of variable in λ∗s, write the following

(λ∗s)∗Xλ =
λ

2i
(
1

λ

∂

∂s
+ λ̄

∂

∂s̄
) +

1

2iλ
(−λ ∂

∂s
− 1

λ̄

∂

∂s̄
)

=
|λ|2 − 1

|λ|2

2i

∂

∂s̄
(6)

Since, on that region, the Jacobian of s(z, λ) is − 1
4 (|λ|2 − 1

|λ|2 ), we see that the fundamental equation

XλGλ(z) = δ(z) may be written in (s, s̄) variables as

1

i

∂

∂s̄
(s(z, λ)∗Gλ) = −δ(s(z, λ))

2

Therefore we may write

Gλ(z) =
1

2πis(z, λ)
, λ ∈ D+/{0} (7)

since ∂̄z
1
πz = δ(z).

For λ 6= 0, the solution to Xλu(z, λ) = f(z) may therefore be written as the covolution u(z, λ) =∫
D+ Gλ(z − z0)f(z0)dµ(z0). Since ∂λ̄Gλ(z) = 0 away from zero, we see that u(z, λ) defined this way is

holomorphic away from the origin. We remark that this solution may be analytically extended to a function
(which we denote by u also) asymptotically at λ = 0 since for all z ∈ D+, s(z, λ) is meromorphic in λ and
limλ→0 |s(z, λ)| = ∞. The solution u(z, λ) therefore continues to a holomorphic function of λ vanishing at
λ = 0. That is to say, we have an expansion of the form u(z, λ) = λ∂λu(z, 0) + O(|λ|2). Then from the
expansion ∂λu(z, λ) = −( z

λ2 + z̄λ2)uz(z, λ) near |λ| = 0 and the fact that by inspection uz(z, λ) = O(λ)

near 0, we see that λ∂u(z,λ)
∂z is necessarily an analytic function vanishing at the origin as well. Since uz̄(z, λ)

decays at the origin 1
λuz̄(z, λ) is complex-analytic on D+ as well.

In the limit |λ| → 1− we see, on using λε = (1− ε)eiθ in equation (7), that

Gλε(z) =
1

π(ze−iθ − z̄eiθ + ε(ze−iθ + z̄eiθ) +O(ε2))

=
1

2iπ(x · θ⊥ − iεx · θ +O(ε2))

Therefore, since u(z, λ) is given by the convolution (Gλ ∗ f)(z), in the limit, the solution u+(z, θ) =
lim|λ|↗1 u(z, λ) tends towards a convolution of f(z(t, s)) with the distribution 1

2πi(s−i0sgn(t)) in both t and

s. We remark that the kernel G+(z, θ) = 1
2πi(x·θ⊥−i0sgn(x·θ))

is the same as that appearing in [Nov02]. One

can show, using the Plemelj formula, that this convolution with 1
2πi(s−i0sgn(t)) then tends towards

u+(z, θ) = (Dθf)(x) +
1

2i
(HIθf)(x · θ⊥, θ) (8)

where H is the Hilbert transform taken with respect to the s variable.
As an aside, we mention that if λ is instead taken to be 1 < |λ| <∞, the Jacobian of s changes sign and

the problem may be considered on both the inside and the outside of the unit disc. In that case one sees the
asymptotic limits from both inside and outside the unit disc become

G±(z, θ) =
±1

2πi(x · θ⊥ ∓ i0sgn(x · θ))

and one can analyze the problem as a Riemann-Hilbert one. This amounts to finding a sectionally-analyic
function ψ(z, λ) away from the unit circle with jump across the unit circle given by φ(z, λ) = i(HIθf)(x·θ⊥, θ)
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augmented by asymptotic vanishing lim|λ|↗∞ |λ|ψ(z, λ) = 0. Throughout this article we will occasionally
adopt notation of the Riemann-Hilbert formalism, though we will only be concerned with the interior of the
unit disc.

Noticing that λ∗θ
⊥ · ∇ = −i(−λ ∂

∂z + 1
λ
∂
∂z̄ ) is the complexification of the vector field generating the flow

orthogonal to Xθ, we remark that since the analytic function λ∂u(z,λ)
∂z → 0 as |λ| ↘ 0 we see that we may

use this to equate the limiting longitudinal and transverse flow at a point, namely

lim
|λ|→0

(λ
∂u(z, λ)

∂z
+

1

λ

∂u(z, λ)

∂z̄
) = lim

|λ|→0
(−λ∂u(z, λ)

∂z
+

1

λ

∂u(z, λ)

∂z̄
)

= i lim
|λ|→0

{(λ∗θ⊥ · ∇)u(x, λ)}

Since the left and the right sides of the above represent analytic functions, their values at zero are determined
by their mean values and we may write

1

2π

∫ 2π

0

Xθu+(z, θ)dθ =
1

4π

∫ 2π

0

θ⊥ · ∇HIf(s(ze−iθ), eiθ)dθ

+
i

2π

∫ 2π

0

θ⊥ · ∇(Dθf)(z)dθ (9)

Then, comparing the real and imaginary parts above, and using that XθDθf = f one has the formula

f(x) =
1

4π

∫ 2π

0

θ⊥ · ∇{HIf(s(x · θ⊥), eiθ)}dθ (10)

which determines f ∈ C∞c (D+) from measurements of (If)(x · θ⊥, θ). The operator λ∗θ
⊥ · ∇ plays the role

of −Xλ which will make appearances throughout the remainder of the article.
Next, we will consider the complexified transport equation with attenuation a(x) ∈ C∞c (D+) given by

Xλw(z, λ) + a(z)w(z, λ) = f(z), λ ∈ D+/{0} (11)

We use the integrating factor eh(z,λ) where Xλh(z, λ) = a(z) to reduce equation (11) to

Xλ{eh(z,λ)w(z, λ)} = eh(z, λ)f(z) (12)

and by the results previously mentioned the integrating factor will be, for all z ∈ D+, holomorphic in λ ∈ D+.
Therefore, the right hand side of the above is analytic in λ and since the Green’s function associated to Xλ

preserves holomorphicity, one has holomorphic solutions of (11) vanishing at the origin. Since w(z, λ) → 0
as |λ| → 0 we have that solutions to (12) satisfy

lim
|λ|↘0

{Xλw(z, λ) + a(z)w(z, λ)} = i lim
|λ|↘0

({λ∗θ⊥ · ∇}w(z, λ))

=
i

2π

∫ 2π

0

θ⊥ · ∇w+(z, θ)dθ (13)

Since the dependence involves some more complicated operators arising from the limiting values of

w(z, λ) = e−h(z,λ)

∫
C
Gλ(z − z0)eh(z0,λ)f(z0)dµ(z0)

as λ→ T non-tangentially, we merely state that a careful study of w+(z, θ) shows that it in fact depends on
the data Ia,θf and we refer the interested reader to equation (41) for the details.

With the above considerations in mind, the relation

f(x) =
i

2π

∫ 2π

0

θ⊥ · ∇w+(x, θ)dθ (14)

can be shown to give our desired filtered backprojection inversion formula for the attenuated ray transform
on straight lines in Euclidean space.
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2 Preliminaries for the General Framework

We now proceed, keeping the preceding Euclidean example as intuition, to the general focus of this article. We
let γ : R2 3 (t, s) 7→ γ(t, s) ∈ Ω ⊂ R2 be a diffeomorphism where Ω is an open, bounded, simply-connected
region of the plane. Denote the unit disc by D+ .

= {z ∈ C : |z| < 1}, the unit circle by T
.
= {z ∈ C : |z| = 1},

and D−
.
= C/{D+ ∪ T}. We consider R2 ∼= C by the standard isomorphism so that γ is identified with

γ1(t, s) + iγ2(t, s). Then, (w, w̄) are independent complex coordinates on Ω where w
.
= γ(t, s). Because γ

is a diffeomorphism, its differential is injective and therefore induces a vector field on Ω via its differential
under the rule (φ∗X)(f) = X(φ∗f). Consider γ∗

∂
∂t . We observe that this gives a vector field which acts

on pushforwards in w of functions on Ω and where the non-degeneracy is ensured by the regularity of the
curves γ(t, s).

Throughout this article, we will be considering the stationary transport equation X|wu(w) = f(w), for
w ∈ Ω, f(w) ∈ C∞c (Ω) given by the following

µ(w)
∂u

∂w
+ µ̄(w)

∂u

∂w̄
= f(w), w ∈ Ω (15)

We will want to use the symmetry of the unit disc which is a priori unavailable to us in this more general
domain. There is a unique biholomorphism, z(ζ), mapping Ω into D+, the unit disc, with z(ζ) = 0, z′(ζ) > 0
as in [Neh52] and (t,s) give coordinates on D+ through composition since γ∗z maps R2 into D+. Because
of this equivalence between our initial domain Ω and the unit disc all further results will be presented in the
disc. If Ω was all of R2 (and the Riemann map was consequently unavailable) the method below will still
work since R2 has the needed rotational symmetry.

We therefore use (z, z̄) as coordinates on D+ and have a new vector field on D+ given by X|z = z∗X|z(w).

and µ → {z∗µ} ∂z∂w ◦ z
−1 and likewise for µ̄. By slight abuse of notation we denote {z∗µ} ∂z∂w ◦ z

−1 by µ(z)

and {z∗µ̄} ∂z̄∂w̄ ◦ z
−1 by µ̄(z) so that vector field of interest is

X|z = µ(z)
∂

∂z
+ µ̄(z)

∂

∂z̄
, z ∈ D+

We define t(z) = z∗w∗t and s(z) = z∗w∗s, smooth functions on D+ and suppose that s is real-analytic.
The method of characteristics shows that X|zD1f(z) = f(z) where

u(z) = (D1f)(z)
.
=

1

2

∫
R
f(z(t0, s))sign(t(z)− t0)dt0 (16)

The integral curves of X|z are just the image of integral curves, i.e. γ∗z∗ = (z ◦ γ)∗. and we define the ray
transform of a source function f(z) over the integral curves of X|z indexed by s to be

(If)(s) =

∫
R
f(z(t, s))dt (17)

We will later be using the following extensions of these operators given below:
Symmetrized beam transform

(Dθψ)(z)
.
=

1

2

∫
R
ψ(eiθz(t0, s(ze

−iθ)))sign(t(ze−iθ)− t0)dt0 ψ ∈ L1(D+)

Ray transform

(Iψ)(s, eiθ) = (Iθψ)(s)
.
=

∫
R
ψ(eiθz(t0, s))dt0 ψ ∈ L1(D+)

We will always use θ and eiθ interchangeably, the meaning determined by context.
We will have occasion to use the Hilbert transform H of a function defined as the following Calderón-

Zygmund principal value integral operator [Ste71]

(Hψ)(x) =
1

π
p.v.

∫
R

ψ(y)

x− y
dy ψ ∈ Lp(R), p > 1 (18)
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Lastly, we will be using the standard Poisson kernel of the unit disc given by P (z, θ) = 1−|z|2
|1−e−iθz|2 . We

recall that the Poisson kernel generates harmonic solutions v(z) of the BVP

∆v = 0, z ∈ D+

v|T = g

given by v(z)
.
= 1

2π

∫
T
P (z, θ)g(eiθ)dθ; [Eva98, Tay96].

The main purpose of this article will be to show that given suitable conditions on µ(z, z̄) and s(z, z̄) that
one has an inversion formula for the ray transform given by the following

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze−iθ), eiθ))dθ i = 1, ..., n

where the λi(z) are functions to be introduced later.
With the above formula established, we present an integrating factor method to estabish a similar recon-

struction formula for the attenuated ray transform along the same curves. The above is a type of inversion
formula known as a filtered backprojection type [NW07]. The procedure used to derive the above main result
can be best thought of in the following heuristic scheme

1. Model: Writing down the linear stationary transport equation for the dynamics

2. Symmetrizing: Introducing a rotation parameter λ = eiθ into the integral curves of the transport
PDE

3. Symmetry-Breaking: Complexifiying the parameter introduced in step 2 by moving λ “off-shell”,
i.e. |λ| 6= 1, breaking the rotational symmetry of the problem and generating an elliptic equation

4. Analysis and Asymptotics: Evaluating the dependence of solutions to the complexified equation
on our parameter λ and examining limiting behavior. These boundary values will be shown to depend
on the measured data we are interested in inverting

5. Reconstruction: Using holomorphicity of the solutions to write the inversion formulae as Poisson
integrals of their asymptotic boundary values found in step 4

The reader may find some benefit from keeping the above rough outline in mind throughout the following.
In this section, we have finished step 1. Steps 2 and 3 are handled in the next section. Step 4 is done in the
more technical section 4, and the final step is given in section 5.

3 Complexification of the Transport Equation

We will define the conformal map λ : (z, z̄) → (λz, 1
λ z̄), for λ ∈ T the unit circle. Notice that if Φ(·, s) is a

set of integral curves of D+, that z−1(λ∗Φ(·, s)) are conformally related curves in our original domain Ω. For
λ ∈ {D+ ∪D−}/{0,∞} we consider λ∗X|z

.
= Xλ to be the so-called “complexification” of X|z. We remark

that λ∗X|z takes the form µ( zλ , λz̄)λ
∂
∂z + µ̄( zλ , λz̄)

1
λ
∂
∂z̄ or

Xλ = ξ(z, λ)
∂

∂z
+ ρ(z, λ)

∂

∂z̄
λ ∈ D±/{0,∞} (19)

with 1
λξ(z, λ) = µ(z, λ)

.
= λ∗µ(z) and λρ(z, λ) = µ̄(z, λ) = λ∗µ̄(z). We also define X⊥λ = ±i(−ξ(z, λ) ∂∂z +

ρ(z, λ) ∂∂z̄ ) as a vector field orthogonal to Xλ when λ = eiθ. Namely, Xθ · X⊥θ = ±(ξ(z, eiθ), ρ(z, eiθ)) ·
(−iξ(z, eiθ), iρ(z, eiθ)) = ±i(|ξ(z, eiθ)|2 − |ρ(z, eiθ)|2) = 0 in the standard inner product (·, ·) : C2 → C. The
factor of i is needed to make X⊥θ u real-valued and the choice of ± is determined by whichever satisfies the
condition X⊥1 s > 0. Since X⊥1 = a(z)z∗

∂
∂s for some real-valued a(z), this determines X⊥1 uniquely. We could

just as well reparameterize with −s so we will, without any loss of generality, avoid keeping track of signs
by just assuming that X⊥λ = i(−ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ ).
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We likewise define s(z, λ) and t(z, λ) as λ∗s(z) and λ∗t(z) respectively for λ ∈ D±/{0,∞}. A word on
notation: ∂k

∂z and kz are equivalent, as are ∂k
∂z̄ and kz̄, and we will use them interchangably.

We remark that equation (19) has no direct physical meaning since the complex parameter λ, when taken
to lie away from T = ∂D+, is in some sense artificial and may be best thought of as a complex parameter
indexing a class of complex partial differential equations given in (19).

Next we reduce the scope of our consideration to the class of vector fields Xλ consisting only of those
satisfying the following condition H.

Definition A complexified vector field Xλ = ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ , induced in the manner above as λ∗X|z,
λ ∈ D±/{0,∞} from a real field X|z, is said to be of type H if, for each z ∈ D+, the following conditions
hold;

1. ξ(z, λ) is holomorphic for λ ∈ D+ and has at least one zero λi(z) such that ξ(z, λi(z)) = 0

2. ρ(z, λ) is a nonvanishing meromorphic function of λ for λ ∈ D+

3. ξ(z,λ)
ρ(z,λ) is a holomorphic function of λ for λ ∈ D+ and has at least one zero λ = λi(z) ∈ D+

In addition to the above we will also need a condition on the complexification of the transverse coordinate
s, since this will turn out to play an important role in our analysis. For this we define a class of suitable
coordinates.

Definition Let Xλ be a vector field of type H and let s(z, λ) = λ∗s(z) be the complexification of the
real-analytic transverse parameter s indexing the integral curves of Xλ. Then s(z, λ) will be called suitable
whenever the following conditions hold;

1. s(z, λ) is a meromorphic function of λ for λ ∈ D± and ∂s(z,λ)
∂z , ∂s(z,λ)

∂z̄ are meromorphic functions on
D+ away from any singularities of s(z, λ)

2. For each z there exists an ε such that s(z, λ) is analytic in λ for ||λ| − 1| ≤ ε

3. Xλs(z,λ)
(s(z,λ)−s(z0,λ))2 vanishes in the sense of distributions for z 6= z0 at the possible singularities of s, sz, sz̄

4. For z 6= z0, sz(z0,λ)
s(z,λ)−s(z0,λ) is bounded for λ ∈ D+/{0}

We are, in the above, treating z and λ as independent variables. We stress that we are not requiring any
of the above functions to be holomorphic in the z variable. We pause to present some informal arguments
for these definitions.

Some Informal Justifications

While the conditions listed in the first definition above may seem at first unnatural, we remark that holomor-
phy of ξ(z, λ) appears to be the strongest. Aside from the conditions on zeros, or lack thereof, meromorphy
itself is weaker and the second and third conditions almost follow from the first.

The definition of suitable s includes conditions that are all related to the behavior of s(z, λ), which will
be shown to satisfy, aside from isolated critical points, a family of Beltrami equations on D+ for a Beltrami
coefficient depending analytically on λ. The change of variables induced by λ creates such isolated critical
points and these conditions are more or less natural. Indeed, since Xθs(z, θ) = 0 and this property survives
through complexification almost everywhere, one will have Xλs(z, λ) = 0 when (z, z̄) ∈ Sλ = D+/{w :
limw0→w |s(w0, λ)| =∞}, the complement of the locations of the potential poles of λ∗s.

Informally, we remark that already the first condition is not too stringent since meromorphy allows for
isolated blow-ups. Next, since for each z ∈ D+, the possible poles occur internally, choosing λ close enough
to T = ∂D+ will allow for a local Taylor expansion in λ. For the third of the above we remark that
Xλλ∗s = 0 strongly on Sλ so we only need to worry about the behavior on the complement of Sλ. For this
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λ∗s ∼ g(z,λ)
(λ−p(z))k with bounded g for z → Scλ. Then with |λ| < 1 and for z ∼ w ∈ Scλ we have that the

asymptotic behavior of Xλλ∗s
(s(z,λ)−s(z0,λ))2 is governed by limiting behavior of

(λ− p(z))2k
(ξ(z, λ) ∂∂z

g(z,λ)
(λ−p(z))k + ρ(z, λ) ∂∂z̄

g(z,λ)
(λ−p(z))k

π((g(z, λ)− (λ− p(z))ks(z0, λ)))2

∣∣∣∣∣∣
z∈Scλ

and we therefore expect that any distributional singularities occurring from terms like ∂
∂z̄

1
(λ−p(z))k are com-

pensated for by the vanishing of (λ − p(z))2k. The last condition involves a term like sz(z,λ)
(s(z,λ)−s(z0,λ)) for

z 6= z0. The local behavior of s(z, λ)− s(z0, λ) on Sλ is determined by the fact that it solves Xλs(z, λ) = 0
and vanishes at z = z0. Therefore we have an expansion around z0 determined by

sz(z0, λ)

(s(z, λ)− s(z0, λ))
∼ 1

(z − z0)− ξ(z0,λ)
ρ(z0,λ) (z̄ − z̄0) +O( |z−z0|

1+δ

sz(z0,λ) ))
(20)

for δ > 0. From this, we see that this the last condition of suitable s is also quite reasonable. The requirements
of suitability are in place to prevent pathological examples.

4 Solving the Complexified Equation

In trying to solve the complexified transport equation

Xλu(z, λ) = f(z), λ ∈ D+/{0} (21)

we will again be changing variables. For this, we will want to collect a few preliminary facts. Because
ξ(z,λ)
ρ(z,λ) is holomorphic in λ ∈ D+ its zeroes are isolated. Also, since ξ(z,λ)

ρ(z,λ) is holomorphic for λ ∈ D+

and since conformal mappings map boundaries of Jordan domains into boundaries of Jordan domains, then
µ(z,eiθ)
µ̄(z,eiθ)

= µ(y)
µ̄(y) for some y ∈ T and thus | ξ(z,λ)

ρ(z,λ) |
∣∣∣
|λ|=1

= 1. Since we assumed that there is at least one zero

λi, the maximum principle ensures that | ξ(z,λ)
ρ(z,λ) | < 1 for λ ∈ D+. We then get the following simple lemma.

Lemma 4.1 ξ(z,λ)
ρ(z,λ) has a finite number of zeros, λi(z) with multiplicities mi(z)

Proof This is a simple consequence of the argument principle ([GK06]). Namely, one has

∑
i

mi =
1

2πi

∫
|λ|=1

∂
∂λ

ξ(z,λ)
ρ(z,λ)

ξ(z, λ)
ρ(z, λ)dλ

and ξ(z,λ)
ρ(z,λ) is holomorphic, hence so is ∂

∂λ
ξ(z,λ)
ρ(z,λ) , on the region D+. They are also both continuous on T .

Therefore, | ∂∂λ
ξ(z,λ)
ρ(z,λ) | < M <∞ for λ ∈ D+. Thus,

∑
i

mi ≤
1

2π
|
∫
|λ|=1

∂
∂λ

ξ(z,λ)
ρ(z,λ)

ξ(z, λ)
ρ(z, λ)dλ| < 1

2π

∫ 2π

0

Mdθ = M (22)

Henceforth λi will always be used to indicate a value in the unit disc for which ξ(z,λ)
ρ(z,λ) (and ξ) vanishes.

The bounded holomorphic functions mapping the unit disc onto itself and having a finite number of zeroes

can be uniquely written as a finite Blashke product so that ξ(z,λ)
ρ(z,λ) can be given in the form ζ(z)Πn

i=1( λ−λi
1−λλ̄i

)mi

with |ζ(z)| = 1, and with mi and λi possibly depending on z; see [Col85, Gar09].

9



Furthermore, since | ξ(z,λ)
ρ(z,λ) | < 1 for λ ∈ D+ we also have that the complexified transport equation

Xλu(z, λ) = f(z) can be rewritten as

uz̄(z, λ) =
ξ(z, λ)

ρ(z, λ)
uz(z, λ) +

f(z)

ρ(z, λ)
λ ∈ D+/{0} (23)

which is a holomorphically forced Beltrami equation, [BA60, Beg94, ATI08]. If uz(z, 0) is bounded this will
hold at λ = 0 as well.

Letting Sλ = D+/{w : limw0→w |s(w0, λ)| =∞} denote the complement of the locations of the potential
poles of λ∗s we see that for λ ∈ D+/{0}, Xλs(z, λ) = 0 on that region so that s is still a constant of the
dynamics. This is obvious from the fact that integral curves are mapped by diffeomorphisms to integral
curves, however to be precise, when |λ| 6= 0,

Xλs(z, λ) = λ∗X|zλ∗s(z) = λ∗z∗w∗
∂

∂t
λ∗z∗w∗s = (λ ◦ z ◦ w)∗

∂

∂t
(λ ◦ z ◦ w)∗s

= (λ ◦ z ◦ w)∗
∂s

∂t
= 0

since s and t are independent coordinates. Thus for λ 6= 0,

ξ(z, λ)
∂s(z, λ)

∂z
+ ρ(z, λ)

∂s(z, λ)

∂z̄
= 0, (z, z̄) ∈ Sλ (24)

The consideration of Sλ is an unfortunate artifact of having brought in potential singularities at |z| = 1 to
the interior upon complexification. We will need the following result to set up a fundamental equation in s.

Lemma 4.2 On 0 < |λ| < 1 the Jacobian Js(z, λ)
.
= |sz(z, λ)|2 − |sz̄(z, λ)|2 is positive

Proof Since (t, s) 7→ (z, z̄) is a diffeomorphism and λ : (z, z̄) 7→ ( zλ , z̄λ) is conformal on 0 < |λ| < 1∣∣∣∣∣
∂s(z,λ)
∂( zλ )

∂t(z,λ)
∂( zλ )

∂s(z,λ)
∂(z̄λ)

∂t(z,λ)
∂(z̄λ)

∣∣∣∣∣ 6= 0 (25)

so that

|∂s(z, λ)

∂z

∂t(z, λ)

∂z̄
− ∂s(z, λ)

∂z̄

∂t(z, λ)

∂z
| ≤ 2|sz(z, λ)|
|λ||ρ(z, λ)|

implies |sz(z, λ)|2 6= 0. Then,

∂s(z) = |sz(z, λ)|2 − | ξ(z, λ)

ρ(z, λ)
sz(z, λ)|2 ≥ |sz(z, λ)|2(1− | ξ(z, λ)

ρ(z, λ)
|2) > 0

since | ξ(z,λ)
ρ(z,λ) | < 1 for λ ∈ D+.

Fixing λ, we work on (z, z̄) ∈ Sλ. Since Xλs(z, λ) = 0, s∗Xλ = s∗Xλs̄(z, λ) ∂∂s̄ . We are interested in solv-

ingXλGλ(z; z0) = δ(z−z0) and we can achieve this by solving s∗Xλs̄(z, λ) ∂∂s̄ (s∗Gλ) = |Js(z, λ)|δ(s(z, λ)−s0).
For this we will need to compute the term s∗Xλs̄(z, λ). Observe that

ξ(z, λ) = −ρ(z, λ)
∂s(z,λ)
∂z̄

∂s(z,λ)
∂z

whence

ξ(z, λ)
∂s̄(z, λ)

∂z
+ ρ(z, λ)

∂s̄(z, λ)

∂z̄
= −ρ(z, λ)

∂s(z,λ)
∂z̄

∂s(z,λ)
∂z

∂s̄(z, λ)

∂z
+ ρ(z, λ)

∂s̄(z, λ)

∂z̄

=
ρ(z, λ)
∂s(z,λ)
∂z

(|sz(z, λ)|2 − |sz̄(z, λ)|2)

=
1

Q(z, λ)
Js(z, λ)
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with Q(z, λ)
.
=

∂s(z,λ)
∂z

ρ(z,λ) . By recalling that | ξρ | > 1 for |λ| > 1 and going through the preceding lemma mutatis

mutandis we see that Js(z, λ) is likewise negative on D− and hence the Jacobian of s(z, λ) switches sign
when λ ∈ D± so that, generally, our fundamental equation may be written compactly as follows

s∗
1

Q(z, λ)

∂

∂s̄
s∗Gλ = sign(1− |λ|)δ(s(z, λ)− s(z0, λ))

Using ∂
∂z

1
πz̄ = δ(z) as shown in [GK06] see see this equals Gλ(z; z0) = sgn(1−|λ|)Q(z0,λ)

π(s(z)−s(z0)) . Then, for (z, z̄) ∈ Sλ
we have

Gλ(z; z0) =
sgn(1− |λ|) 1

ρ(z0,λ)
∂s(z,λ)
∂z |z0

π(s(z, λ)− s(z0, λ))
, λ ∈ D±/{0,∞}

Remark We will only make use of results in our formula which follow from condition H and thus results
like the above are only used when λ ∈ D+. We will however present many results for λ ∈ D− with the
understanding that given an appropriate generalization of condition H (involving constraints on ξ and ρ
for λ ∈ C/D̄+) and the related suitablility of s, the results are true. The advantage to this approach is
it makes apparent the symmetries and parallels of several of the formulae for λ ∈ D±. Thus, in the “−”
versions of several results, condition H would need to be augmented appropriately.

Next, we show that Gλ(z; z0) defined in equation (26) extends to satisfy XλGλ(z; z0) = δ(z − z0) on
z ∈ D+. For this we note that XλGλ(z; z0) behaves weakly, in a vicinity of Sλ, as

lim
z→w∈D+/Sλ

sgn(1− |λ|) 1
ρ(z0,λ)

∂s(z,λ)
∂z |z0Xλs(z, λ)

(s(z, λ)− s(z0, λ))2

which, by assumption vanishes when integrated against a smooth function. The fundamental equation,
therefore, is satisfied for all z ∈ D+, i.e.

Gλ(z; z0) =
sgn(1− |λ|) 1

ρ(z0,λ)
∂s(z,λ)
∂z |z0

π(s(z, λ)− s(z0, λ))
, λ ∈ D±/{0,∞}, z ∈ D+ (26)

Due to the meromorphy of the terms appearing inGλ(z; z0), together with the boundedness of sz(z0,λ)
s(z,λ)−s(z0,λ)

after integration against a smooth enough function u(z, λ) =
∫
CGλ(z; z0)f(z0)dµ(z0) remains bounded for

λ ∈ D+/{0} since the preceding arguments hold also when λ approaches singularities of s(z, λ) and sz(z, λ).
The expansion s(z, λ) ∼ c0 + c1z

λ + c2z̄λ+O((z 1
λ + z̄λ)2) near zero shows that s and sz have the same order

of possible vanishing or blow-up at λ → 0. Therefore, Gλ(z; z0) is analytically extendible to λ = 0 and we
obtain an analytic extension of the solution u(z, λ), which we also denote u. We have thereby established
the following proposition.

Proposition 4.3 For each z ∈ D+, the solution u(z, λ) satisfies ∂λ̄u(z, λ) = 0 for λ ∈ D±

By using ∂
∂zGλ(z; z0) = Gλ(z; z0) sz(z,λ)

s(z,λ)−s(z0,λ) and performing similar estimates as above one obtains

that, for every z ∈ D+, uz(z, λ) is complex-analytic in λ ∈ D±. The corresponding result for uz̄(z, λ) follows

from the holomorphy of the right hand side of uz̄(z, λ) = − ξ(z,λ)
ρ(z,λ)uz(z, λ) + f(z)

ρ(z,λ) .

Boundary Behavior

We will be using the boundary values u(z, λ)|λ∈T to arrive at a reconstruction formula. For this we notice
that

11



∂(t, s)

∂(z, z̄)

∂z̄
∂t
∂s
∂z

=
∂z̄

∂t

∂s

∂z̄

∂t

∂z

1
∂s
∂z

− ∂z̄

∂t

∂t

∂z̄

= −(
∂z

∂t

∂t

∂z
+
∂z̄

∂t

∂t

∂z̄
)

= −z∗
∂t

∂t

and therefore we may rewrite Gλ(z; z0) appearing in equation (26) as follows

Gλ(z, z0) = −λ∗

∂(t,s)
∂(z,z̄)

∣∣∣
z0

π(s(z)− s(z0))
(27)

We may now prove the following consequence of this fact.

Proposition 4.4 The non-tangential limits u±(z, eiθ)
.
= limD±3λ→eiθ u(z, λ) are given by the following

u±(z, eiθ) = ∓ 1

2i
(HIθf)(s(e−iθz), θ) + (Dθf)(z)

where, in the above, the Hilbert transform H is taken with respect to the first variable.

Proof Let ψ ∈ C∞c (D+). First we examine 1
s(z,λ)−s(z0,λ) when λ = 1 − ε (ε << 1). With ′ denoting

differentiation in λ we use the fact that s(z, 1 − ε) = s(z, 1) − εs′(z, 1) + o(ε2) together with Xλs(z, λ) = 0
for λ near enough to ∂D+ to get

O(1) : (ξ(z, 1)
∂

∂z
+ ρ(z, 1)

∂

∂z̄
)s(z, 1) = 0

O(ε) : (ξ(z, 1)
∂

∂z
+ ρ(z, 1)

∂

∂z̄
)s′(z, 1) = −(ξ′(z, 1)

∂

∂z
+ ρ′(z, 1)

∂

∂z̄
)s(z, 1)

and

−(ξ′(z, 1)
∂

∂z
+ ρ′(z, 1)

∂

∂z̄
)s(z, 1) = −(ξ′(z, 1)− ρ′(z, 1)

ξ(z, 1)

ρ(z, 1)
)sz(z, 1)

= −ξ(z, 1)sz(z, 1){ξ
′(z, 1)

ξ(z, 1)
− ρ′(z, 1)

ρ(z, 1)
}

= −ξ(z, 1)sz(z, 1)
( ∂
∂λ

ξ
ρ )
∣∣∣
λ=1

ξ(z,1)
ρ(z,1)

(28)

so that X1is
′(z, 1) = −iξ(z, 1)sz(z, 1)

( ∂
∂λ

ξ
ρ )|

λ=1
ξ(z,1)
ρ(z,1)

. By a similar argument one can show that X1is
′(z, 1) =

iρ(z, 1)sz̄(z, 1)
( ∂
∂λ

ξ
ρ )|

λ=1
ξ(z,1)
ρ(z,1)

whereby we see that

X1is
′(z, 1) =

1

2

( ∂
∂λ

ξ
ρ )
∣∣∣
λ=1

ξ(z,1)
ρ(z,1)

X⊥1 s(z, 1) (29)

Since ξ
ρ is given as a finite Blashke product ζ(z)Πn

i=1(λ−λi(z)
1−λλ̄i

)mi(z), we see that
∂
∂λ

ξ(z,λ)
ρ(z,λ)

ξ(z,λ)
ρ(z,λ)

=
∑
j>0mj

1−|λj |2

(λ−λj)(1−λ̄jλ)

so that
( ∂
∂λ

ξ
ρ )|

λ=1
ξ(z,1)
ρ(z,1)

> 0, which, when combined with X⊥1 s(z, 1) > 0 gives from (29) that X1is
′(z, 1) > 0. This

implies that
sgn(is′(z, 1)− is′(z0, 1)) = sgn(t(z, 1)− t(z0, 1))

12



Testing against a compactly supported ψ(z0) ensures that we may apply a similar Taylor expansion for

s(z0, λ) in integration in the z0 variable. Therefore we use the distributional Plemelj relation 1
ix+ε

|ε|↘0−−−→
1
ix + sgn(ε)πδ(x) to see that, distributionally, one has that 1

s(z,λ)−s(z0,λ) tends, as λ→ 1, to

1

s(z, 1)− s(z0, 1)
− isgn(is′(z, 1)− is′(z0, 1))δ(s(z, 1)− s(z0, 1))

Since limλ→1 λ∗
∂(t,s)
∂(z,z̄) = ∂(t,s)

∂(z,z̄) we see that the preceding considerations allow us to conclude that the following

holds

u+(z, θ)
.
= lim
ε↘0

∫
D+

G1−ε(z; z0)ψ(z0)dµ(z0)

=
1

2πi

∫
D+

ψ(z0) ∂(t,s)
∂(z,z̄)

∣∣∣
z0

s(z, 1)− s(z0, 1)
dz0 ∧ dz̄0

− 1

2

∫
D+

ψ(z0)sgn(is′(z, 1)− is′(z0, 1))δ(s(z, 1)− s(z0, 1))
∂(t, s)

∂(z, z̄)

∣∣∣∣
z0

dz0 ∧ dz̄0

Then, with κ = ±1 determined by the orientation of the Jacobian of (t, s)→ (z, z̄) we have that the above
equals

κ{ 1

2πi

∫
R

∫
R

ψ(z(t0, s0))dt0ds0

s(z, 1)− s0
− 1

2

∫
R
ψ(z(t0, s0))sgn(t(z, 1)− t(z0, 1)dt0}

Since, by continuity on the limit, <u+(z, θ) is determined to be f and not −f , we have that κ = −1 and get
the following

u+(z, 1) = − 1

2i
H(Iθψ)(s(z), 1) + (D1ψ)(z)

One can see this also since i|µ|2 ∂(t,s)
∂(z,z̄) = X⊥1 s(z) > 0 and therefore ∂(t,s)

∂(z,z̄) is −ib(z) for b(z) positive real-

valued.
For the general case, ψ(z0e

iθ)Geiθ (z; z0) = ψ(z0e
iθ)G1(e−iθz; e−iθz0) together with invariance of the

measure under the complexification map; i.e. (eiθ)∗dµ(z0) = dµ(z0) shows that we get the following boundary
values for general θ ∈ [0, 2π)

u+(z, eiθ) = − 1

2i
H(Iθψ)(s(ze−iθ), eiθ) + (Dθψ)(z). (30)

An identical argument for u−(z, eiθ) shows that

u±(z, eiθ) = ∓ 1

2i
H(Iθψ)(s(ze−iθ), eiθ) + (Dθψ)(z)

Incidentally, from the above arguments we see that

H(Iθf)(s(z, e−iθ), θ) ∈ kerXθ

Later, we will see, in using an integrating factor approach to solve the attenuated ray transform that this
property will be to our benefit. In fact, constancy of the Hilbert transform of the ray transform of the
attenuation coefficient is a pervasive feature of analytical inversion formula for the attenuated ray transform;
see for instance [Uhl03].
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5 Inversion Formulae

5.1 No Attenuation

We can now prove our main result.

Theorem 5.1 Let Xλ = ξ(z, λ) ∂∂z +ρ(z, λ) ∂∂z̄ be a vector field of type H, s(z, λ) be suitable, ξ(z, λi(z)) = 0
for i = 1, ..., n and f(z) ∈ C∞c (D+). Then

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze−iθ), eiθ)dθ

gives an exact reconstruction formula for the density f based on the data Iθf of ray transforms of f over the
integral curves of Xθ.

Proof The real and imaginary parts of complex-analytic functions are harmonic, so with P (z, θ) the Poisson
kernel of the unit disc one has, on using the boundary values given (30) given in Proposition 4.4, that

Xλiu(z, λi) =
i

4π

∫ 2π

0

P (λi, θ)XθH(Iθf)(s(ze−iθ), eiθ)dθ

+
1

2π

∫ 2π

0

P (λi, θ)Xθ(Dθf)(z)dθ (31)

so that

Xλiu(z, λi) = f(z) +
i

4π

∫ 2π

0

P (λi, θ)XθH(Iθf)(s(ze−iθ), eiθ)dθ

whereas

X⊥λiu(z, λi) =
i

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze−iθ), eiθ)dθ

+
1

2π

∫ 2π

0

P (λi, θ)X
⊥
θ (Dθf)(z)dθ (32)

Then since Xλ = ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ , X⊥λ = i(−ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ ) and ξ(z, λi) = 0, we have that

iXλiu(z, λi) = X⊥λiu(z, λi)

so that, on equating real and imaginary parts of (31) and (32), we obtain

1

2π

∫ 2π

0

P (λi, θ)X
⊥
θ (Dθf)(z)dθ = − 1

4π

∫ 2π

0

P (λi, θ)XθH(Iθf)(s(ze−iθ), eiθ)dθ

and

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze−iθ), eiθ)dθ (33)

Taking into account the presence of the signum function in the Green’s function (27) it’s clear that
formula (33) could just as well be written in terms of the jump function (from the viewpoint of D±)

φ(z, eiθ)
.
= u+(z, eiθ)− u−(z, eiθ) = iH(Iθf)(s(ze−iθ), eiθ)
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as

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (−iφ(z, eiθ))dθ (34)

an observation which will be notationally useful in the next section. Recalling our previous remark about
using only results from D+ we could just as well use

φ(z, eiθ)
.
= 2i=(u+(z, eiθ))

and remember that invoking D− is only a useful mnemonic.

5.2 Attenuated Ray Transform and Inversion Formulae

We add a positive and real-valued attenuation term a(z) ∈ C∞c (D+) to the complexified stationary transport
equation to get

(Xλ + a(z))u(z, λ) = f(z) λ ∈ D±/{0,∞} (35)

Using our Green’s function Gλ(z; z0) determined in (26) we define

h(z, λ)
.
=

∫
D+

Gλ(z; z0)a(z0)dµ(z0) (36)

In exactly the same manner as in the previous sections we may extend the above to a formula which holds
on (z, λ) ∈ D+ ×D+.

We will be using an integrating factor approach as follows

eh(z,λ)Xλu(z, λ) + eh(z,λ)a(z)u(z, λ) = eh(z,λ)f(z)

so that
Xλe

h(z,λ)u(z, λ) = eh(z,λ)f(z)

whence

u(z, λ) =

∫
D+

Gλ(z; z0)eh(z0,λ)−h(z,λ)f(z0)dµ(z0) (37)

The Green’s function, as discussed previously, is analytic for z 6= z0, so that holomorphy of eh(z0,λ) is retained
after integration in z0. Therefore equation (37) defines a complex-analytic function in λ, for each z extendible
to hold on all λ ∈ D+.

Now, by Proposition 4.4 one has

h±(z, eiθ) = ∓ 1

2i
(HIθa)(s(ze−iθ), θ)) + (Dθa)(z)

Therefore, in another application of Proposition 4.4 we have the solution of the attenuated transport
equation admits the following nontangential boundary values as |λ| → 1∓

u±(z, eiθ) =
∓e−h±(z,eiθ)

2i
[HIθ{eh±(·,eiθ)f}(s(ze−iθ), θ)∓ 2i(Dθe

h±(·,eiθ)f)(z)]

=
∓e−h±(z,eiθ)

2i
[HIθ{e

∓1
2i (HIθ)a(s(e−iθ·),θ)f(·)e(Dθa)(·)}(s(ze−iθ), θ)

∓ 2i(Dθe
∓1
2i (HIθ)a(s(e−iθ·),θ)f(·)e(Dθa)(·))(z)]

Define the attenuated ray transform as

(Ia,θf)(s)
.
= Iθ(f(·)e(Dθa)(·))(s) (38)
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and recall that Iθ involves integration in t, not s (as does Dθ) and therefore since HIθa(s(z, e−iθ), θ) ∈ kerXθ,
HIθa(s(z, e−iθ), θ) is constant on the curves of integration in t and therefore may be pulled through the Ia,θ
integrals as

u±(z, eiθ) =
∓e−h±(z,eiθ)

2i
H(e

∓1
2i (H(Iθa)(s(e−iθ·),θ)Ia,θf)(s(ze−iθ), θ)

+e−(Dθa)(z)(Dθf(·)e(Dθa)(·))(z)

Therefore, the difference in the above limits yields the following

φ(z, eiθ)
.
= (u+ − u−)(z, eiθ)

= −e
−h−(z,eiθ)

2i
H(e

1
2iH(Iθa)(s(e−iθ·),θ)Ia,θf)(s(ze−iθ), θ)

− e−h+(z,eiθ)

2i
H(e−

1
2iH(Iθa)(s(e−iθ·),θ)Ia,θf)(s(ze−iθ), θ)

= −e
−(Dθa)(z)

2i
{e 1

2iH(Iθa)(s(ze−iθ),θ)H(e
1
2iH(Iθa)(s(e−iθ·),θ)Ia,θf)

+ e−
1
2iH(Iθa)(s(ze−iθ),θ)H(e−

1
2iH(Iθa)(s(e−iθ·),θ)Ia,θf)}(s(ze−iθ), θ)

To simplify this expression, we define the following filtered Hilbert transform

Ha : g 7→ {CH(Cg)}(s(ze−iθ), θ) + {SH(Sg)}(s(ze−iθ), θ), g(s, θ) ∈ C∞(R× T ) (39)

With

C
.
= cos(

H(Iθa)(s(ze−iθ), θ)

2
), S

.
= sin(

H(Iθa)(s(ze−iθ), θ)

2
) (40)

Then

φ(z, eiθ) = −e
−(Dθa)(z)

2i
[(C − iS)H{(C − iS)Ia,θf}

+ (C + iS)H{(C + iS)Ia,θf}](s(ze−iθ), θ)
= ie−(Dθa)(z)<{(C − iS)H[(C − iS)Ia,θf ](s(ze−iθ), θ)}
= ie−(Dθa)(z)(CH(CIa,θf)(s(ze−iθ), θ) + SH(SIa,θf)(s(ze−iθ), θ))
.
= ie−(Dθa)(z)(HaIa,θf)(s(ze−iθ), θ) (41)

We then can proceed in a manner similar to before since we have that eh(z,λ)u(z, λ) (along with its derivatives)
is holomorphic and solves Xλe

h(z,λ)u(z, λ) = eh(z,λ)f(z).
We have the following theorem on the attenuated ray transform.

Theorem 5.2 Let Xλ = ξ(z, λ) ∂∂z +ρ(z, λ) ∂∂z̄ be a vector field of type H, s(z, λ) be suitable, ξ(z, λi(z)) = 0
for i = 1, ..., n, and a(z), f(z) ∈ C∞c (D+). Let u(z, λ) solve Xλu(z, λ) + a(z)u(z, λ) = f(z) on (z, λ) ∈
D+ ×D+ and define Ha by expression (39) and p(z)

.
= <{u(z, λi(z))}. Then

f(z)− a(z)p(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (e−(Dθa)(z)HaIa,θf)(s(ze−iθ), θ))dθ

gives an exact reconstruction formula for the density f based on the data Ia,θf of attenuated ray transforms
of f over the integral curves of Xθ modulo the values taken on by the solution u(z, λi(z)).
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Proof The proof proceeds as in the proof of Theorem 5.1. Since Xλu(z, λ) + a(z)u(z, λ) = f(z), and
limλ→λi Xλu(z, λ) = limλ→λi −iX⊥λ u(z, λ) we verify that

lim
λ→λi

{−iX⊥λ u(z, λ) + a(z)u(z, λ)} = f(z)

whereby

f(z) = a(z)<{a(z)u(z, λi(z))}+
1

4π

∫ 2π

0

P (z, λi(z))X
⊥
θ (−iφ(z, θ))dθ

The result follows from (41).

A comparison of equations (20) and (26) for the Green’s function of Xλ shows that we expect the behavior
of the solution u(z, λ) to behave locally as

eh(z0,λ)−h(z,λ)f(z0)

ρ(z0, λ)(z − z0)− ξ(z0, λ)(z̄ − z̄0) +O( |z−z0|
1+δ

sz(z0,λ) )
, δ > 0, z 6= z0

Therefore, if ρ(z0, λ) has a singularity at λ = λi(z) our solution will vanish there. Equivalently, if limλ→λi |s(z, λ)| =
∞ then u(z, λi(z)) = 0. In this case we have the following simple corollary of the preceding.

Corollary 5.3 Let Xλ = ξ(z, λ) ∂∂z +ρ(z, λ) ∂∂z̄ be a vector field of type H, s(z, λ) be suitable, ξ(z, λi(z)) = 0
for i = 1, ..., n, and a(z), f(z) ∈ C∞c (D+). Let u(z, λ) solve Xλu(z, λ) + a(z)u(z, λ) = f(z) on (z, λ) ∈
D+ ×D+, define Ha by expression (39) and suppose that u(z, λi(z)) = 0. Then

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (e−(Dθa)(z)HaIa,θf)(s(ze−iθ), θ))dθ

gives an exact reconstruction formula for the density f based on the data Ia,θf of attenuated ray transforms
of f over the integral curves of Xθ

6 Examples

We present some worked examples of our method to familiar geometries. We stick to applications of Theorem
5.1 with similar formulae appearing for the attenuated data and applying Theorem 5.2.

Euclidean Lines

Earlier, we saw an inversion formula for the ray transform on Euclidean lines. We consider f ∈ C∞c (D+)
and parameterize the plane by z(t, s) = t+ is. Then the complexified vector field is given by

Xλ = λ
∂

∂z
+

1

λ

∂

∂z̄

ξ(z, λ) = λ is holomorphic and has a zero of order 1 at λ = 0, ρ(z, λ) = 1
λ is meromorphic and has a simple

pole at λ = 0 and the ratio ξ
ρ = λ2 is analytic with a double root at the origin. Therefore Xλ is type H.

Since s(z, λ) = 1
2i (

z
λ − z̄λ) is meromorphic in λ as are ∂s(z,λ)

∂z = 1
2iλ and ∂s(z,λ)

∂z̄ = − λ
2i we see that s(z, λ) is

suitable. Thus, we may apply Theorem 5.1.
We recall remarks made at the beginning of section 3 regarding a sign convention on the transverse

coordinate and that, as it now stands X⊥λ s(z, λ) < 0, therefore we must actually choose X⊥λ = −λ∗θ⊥ · ∇
instead of λ∗θ ·∇ in formula (33). Plugging this expression in then gives the following familiar reconstruction
formula

f(z) = − 1

4π

∫ 2π

0

P (0, θ)X⊥θ H(If)(s(ze−iθ), θ)dθ (42)
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With P (0, θ) = 1, the above reduces to formula (10) which we saw earlier.
Next, since u(z, 0) = 0 we may apply the Corollary 5.3 to get the following inversion formula for the

attenuated ray transform on straight lines in Euclidean space

f(z) =
1

4π

∫ 2π

0

θ⊥ · ∇{e−(Dθa)(z)Ha(Ia,θf)(s(ze−iθ), θ)}dθ (43)

which agrees with known results.

The Poincaré Disc

The unitized geodesics of the negatively curved hyperbolic disc are generated [Bal05] by the following vector
field

X|z = (1− |z|2)(
1− z
1− z̄

∂

∂z
+

1− z̄
1− z

∂

∂z̄
), z ∈ D+ (44)

This complexifies to the following

Xλ = (1− |z|2)(
λ− z
1− λz̄

∂

∂z
+

1− λz̄
λ− z

∂

∂z̄
) (45)

We see that ξ(z, λ) = (1− |z|2) λ−z1−z̄λ is analytic in λ and has a zero at λ(z) = z, ρ(z, λ) = (1− |z|2) 1−λz̄
λ−z

∂
∂z̄

is meromorphic and has no zeros in the disc, and the ratio ξ
ρ = ( λ−z1−z̄λ )2 is complex-analytic in λ and has a

double root at λ = z. Therefore Xλ is type H.
Moreover, the transverse coordinate s can be shown to be determined by s(z, λ) = 1

2i (
1

1−λz̄ −
λ
λ−z ). Thus

s(z, λ), ∂s(z,λ)
∂z = − λ

2i(λ−z)2 and ∂s(z,λ)
∂z̄ = λ

2i(1−λz̄)2 are each meromorphic in λ 6= z. Clearly s(z, λ) is analytic

in a neighborhood of the unit circle. Furthermore, since at λ = z, sz̄(z, λ) picks up a δ(λ− z) term we have

that Xλ |λ=z s(z, λ) = −λδ(λ−z)2i and therefore Xλs(z,λ)
(s(z,λ)−s(z0,λ))2 ∼ − λδ(λ−z)

2i(s(z,λ)−s(z0,λ))2 ∼ λδ(λ−z)(λ−z)2

2igλ(z,z0) = 0. An

easy calculation shows that sz(z0,λ)
s(z,λ)−s(z0,λ) stays bounded for z 6= z0 and λ ∈ D+. Therefore, s(z, λ) is suitable

and one has, on applying Theorem 5.1 that

f(z) =
1

4π

∫ 2π

0

P (z, θ){(1− |z|2)(
eiθ − z
1− eiθ z̄

∂

∂z
+

1− eiθ z̄
eiθ − z

∂

∂z̄
)}HIθf(s(ze−iθ), θ)dθ

which agrees with what was obtained in [Bal05] (see equation (80) of that article) using techniques of
Riemann-Hilbert theory.

Furthermore, because limλ→z |s(z, λ)| = ∞, we notice that u(z, λ(z)) = 0 and we may apply Corollary
5.3 to get that

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (e−(Dθa)(z)HaIa,θf)(s(ze−iθ), θ))dθ (46)

which agrees with formula (92) in [Bal05] and gives a full reconstruction formula for the attenuated ray
transform along the geodesics of the Poincaré disc.

The Spherical Cap

We consider an extension of the method so far presented to the case where the first condition of type H vector
field is not satisfied. We consider the restriction of great circles, geodesics of S2, onto the upper hemisphere
H+ = {x ∈ R3; (x1)2 + (x2)2 + (x3)2 = 1, x3 > 0}. Consider the projection of these curves onto the unit
disc which we may parameterize via the mapping γ(t, s) : R2 → D+ defined by γ(t, s) = (x(t, s), y(t, s))
where

x(t, s) =
t√

1 + t2 + s2
, y(t, s) =

−s√
1 + t2 + s2
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With z = t+is, a calculation reveals that X1 = γ∗
∂
∂t =

√
1− |x|2{(1−x2) ∂

∂x−xy
∂
∂y}. The complexification

Xλ = λ∗X1 of the vector field is therefore equal to the following

Xλ =

√
1− |z|2

2
{λ(2− z2

λ2
− |z|2)

∂

∂z
+

1

λ
(2− λ2z̄2 − |z|2)

∂

∂z̄
(47)

We remark that the above obviously fails to be type H since ξ(z, λ) =

√
1−|z|2

2 λ(2 − z2

λ2 − |z|2) is singular
at λ = 0.

A careful check of the arguments given in the last section reveals that the only place where holomorphy
of ξ was really necessary in deriving Theorem 5.1 was in ensuring holomorphy of the term ξ(z, λ)uz(z, λ).
Therefore, if we can establish this, we may proceed as before.

To that end, since ξ(z,λ)
ρ(z,λ) =

λ2− z2

2−|z|2

1−λ2 z̄
2−|z|2

, we see that ξ(z,λ)
ρ(z,λ) is complex-analytic in the disc λ ∈ D+ for

each z with zeros it shares with ξ(z, λ) located at λ1(z) = z√
2−|z|2

, λ2(z) = − z√
2−|z|2

. Clearly ρ(z, λ) is

meromorphic. Therefore, aside from the fact that |ξ(z, 0)| =∞, one has that the vector field is of type H.

Moreover, clearly s(z, λ) =
z̄λ− zλ

2i
√

1−|z|2
is, for each z ∈ D+, meromorphic in λ, with a Taylor expansion

holding near |λ| = 1. A calculation shows that

∂s(z, λ)

∂z
= −2− z̄2λ2 − |z|2

4iλ(1− |z|2)
3
2

,
∂s(z, λ)

∂z̄
= λ

2− z2

λ2 − |z|2

4i(1− |z|2)
3
2

(48)

for all (z, λ) ∈ D+ × D+. This being the case, one clearly has that Xλs(z, λ) = 0 holds everywhere and
the first three conditions of suitability for s are established. We only need to check the boundedness of

sz(z,λ)
s(z,λ)−s(z0,λ) for z 6= z0. For this we verify that

sz(z, λ)

s(z, λ)− s(z0, λ)
= − 2− z̄2λ2 − |z|2

2((z̄λ2 − z)(1− |z|2)− (z0λ2 − z0) (1−|z|2)
3
2√

1−|z0|2

bounded in λ ∈ D+/{0} and whereby moreover for |λ| → 0+ we have sz(z,λ)
s(z,λ)−s(z0,λ) →

2−|z|2

2(z(1−|z|2)− z0(1−|z|2)
3
2√

1−|z0|2
)

which is integrable for z 6= z0. Then, it follows that s(z, λ) is suitable. More tellingly, we investigate Gλ(z; z0)
and find that, on using formula (26) one has

Gλ(z; z0) = − 1

2πi(1− |z0|2)2{ z̄λ− zλ√
1−|z|2

− z̄0λ− z0λ√
1−|z0|2

}
(49)

Therefore u(z, λ)→ 0 as |λ| ↘ 0 and we verify that

∂

∂z
Gλ(z, z0) =

2− z̄2λ2 − |z|2

8λπ(1− |z|2)
3
2 (1− |z0|2)2{ z̄λ− zλ√

1−|z|2
− z̄0λ− z0λ√

1−|z0|2
}2

From which we conclude that ξ(z, λ)∂u(z,λ)
∂z stays bounded as λ→ 0 and therefore is complex-analytic on all

of D+.
Since the behavior of ξ(z, λ)uz(z, λ) was our chief obstacle, we may then proceed as usual and apply our

Theorem 5.1 to get

f(z) =

√
1− |z|2

8π

∫ 2π

0

P (
z√

2− |z|2
, θ)X⊥θ HIθf(s(ze−iθ), θ)dθ (50)
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where X⊥θ = i{−eiθ(2− e−2iθz2−|z|2) ∂∂z + e−iθ(2− e2iθ z̄2−|z|2) ∂∂z̄}. In the above expression, we have used
the root λ1(z).

We remark that ∫ 2π

0

P (λ2(z), θ)X⊥θ HIθf(s(ze−iθ), θ)dθ

=

∫ 2π

0

P (−λ1(z), θ)X⊥θ HIθf(s(ze−iθ), θ)dθ

=

∫ 3π

π

P (λ1(z), ω)X⊥ω−πHIθf(−s(ze−iω), ω − π)dω

=

∫ 2π

0

P (λ1(z), ω)X⊥ω HIθf(s(ze−iω), ω)dω (51)

where, in the above, we have used the symmetry X⊥θ Iθf(s(ze−iθ), θ) equals X⊥θ−πIθf(−s(ze−iθ), θ− π). We
therefore see a redundancy in the choice of λi(z) appearing in expression (50).

We do not have a vanishing of u(z, λi(z)) and therefore, the inversion of the attenuated ray transform on
these curves is determined modulo this value and is given by an application of Theorem 5.2 as

f(z)− a(z)<{u(z,
z√

2− |z|2
)} =√

1− |z|2
8π

∫ 2π

0

P (
z√

2− |z|2
, θ)X⊥θ e

−(Dθa)(z)HaIa,θf(s(ze−iθ), θ)dθ (52)

with Ha defined in equation (39). To the authors’ knowledge formulas (50) and (52) are new.

7 Conclusions

We have illustrated that the method of complexification of vector fields presented in this article allows for
a compact unification of the inversion formulae given for ray transforms on both Euclidean space [Nov02]
and the Poincaré hyperbolic disc [Bal05]. Extending the class of vector fields amenable to the aforemen-
tioned scheme beyond those of type H remains an open problem. Since the analyticity properties of the
coefficients of the vector fields, ensured by the condition H and suitability of the transverse coordinate,
justify the holomorphy of the Green’s function it is unclear how one could alter the method in the absence
of such conditions, although the recent article [SU10] may yield some insight. There also remains the ques-
tion of finding sufficient (or even necessary) conditions on the initial vector field being holomorphic after
the complexification scheme used above. Real-analyticity is perhaps the simplest necessary condition, but
presumably there are much more stringent ones.
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