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Abstract. We introduce a technique for recovering a sufficiently smooth func-

tion from its ray transforms over rotationally related curves in the unit disc

of 2-dimensional Euclidean space. The method is based on a complexification
of the underlying vector fields defining the initial transport and inversion for-

mulae are then given in a unified form. The method is used to analyze the

attenuated ray transform in the same setting.

1. Introduction. In several engineering applications one deals with the problem
of recovering an unknown function from its integrals over a collection of lines. In
medical imaging this problem arises in positron emission tomography (PET), single
photon emission tomography (SPECT), and (originally) CT-scan tomography [25].
In other applications the line integral is instead taken over a class of one-dimensional
curves in either Euclidean space or more generally, a smooth manifold. Examples
of this more general geometry arise, for instance, in the geophysical problem of
determining internal properties of the Earth from travel-time measurements made
at the surface; [34]. Another example of the general setting is in non-destructive
electrical imaging techniques such as electrical impedance tomography; see e.g. [11,
9]. This type of data is generally referred to as a ray transform or, in the case of
straight lines, the x-ray transform. Quite often the physics will also dictate that the
signal undergoes some absorption along its trajectory and is attenuated, the data
then called the attenuated ray transform.

The mathematical applications, properties, and uses of these integral transforms
and their inverses are discussed in great detail in [11, 18, 19, 34] and include har-
monic analysis, algebraic curves, tensor geometry, and partial differential equations
to name a few. Generally, explicit inversion formulae over curves other than lines
(geodesics of a Riemannian manifold, say) tend to restrict focus to manifolds with
a strong amount of symmetry (as in, e.g. [18, 19, 20, 9, 31, 28]) and do not in-
clude the effects of absorption encountered during propagation. For the case where
attenuation is taken into account, strong local injectivity results were established
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by Finch in 1986 [13]. Full injectivity was only established as recently as 1998, by
Arbuzov, Bukhgeim, and Kazantsev in the work [4] using the theory of A-analytic
functions developed by Alexander Bukhgeim. An excellent account of this and other
progress made on the attenuated ray transform may be found in Finch’s chapter
of the book [35]. More recently Salo and Uhlmann, in the article [32], developed a
reconstruction procedure for the attenuated ray transform on geodesics of compact,
two-dimensional, Riemannian manifolds with boundary, although an explicit inver-
sion formula was not obtained. We will be, in this paper, restricting our attention
to particular ray transforms on curves in a 2-dimensional region of Euclidean space.

The method we present in this paper generalizes a technique that was first used
by R.G. Novikov in [27] for lines in Euclidean space and later generalized in [6] for
geodesic rays in hyperbolic geometry, giving an explicit filtered backprojection in-
version formula for the attenuated ray transform in each case. In fact, both of these
inversion formulae are special cases of the main result of this article, Theorem 5.2,
as we shall show in section 6. The technique rests on a particular complexification of
a class of differential operators in R2 which allows us to recast the problem in terms
of complex analysis in the unit disc. Once the problem is cast in this light, we use
the classical Poisson formula [14] relating the boundary values of analytic functions
on the unit disc to their interior values to obtain a reconstruction formula. We will
also see that the method illustrates a deep role played by Beltrami equations in in-
verting ray transforms. Excellent introductions to complex analysis and conformal
mappings are [33, 16, 14] and the classic [1]. Good introductions to quasiconformal
mappings, Beltrami equations and their generalizations can be found in [2, 29] and
the more recent [5]. References on Blaschke products and multivalent mappings can
be found in [10, 15].

An outline of the paper is as follows. In section 2, the general setup, notation, and
a quick review of the essential mathematical objects used throughout the paper are
presented, together with the main results. In section 3 we begin the complexification
procedure by introducing a new complex parameter λ into the transport equation
introduced in section 2 and then give a classification of the vector fields under
consideration as those of type H. Much of the heavy lifting is done in the more
technical section 4 where we find and analyze the Green’s function of the new
parameterized complex partial differential transport equation. We will establish
that condition H is sufficient to guarantee holomorphicity of the solution of this
equation in terms of the new parameter λ. We evaluate the asymptotics of the
solution as our complex parameter λ tends to the unit circle from both inside and
outside, i.e. as |λ| → 1∓ and see that in fact its imaginary part depends on the
data we are interested in. Once this is established, we use this fact in section 5
to give our desired reconstruction formula in the non-attenuated case. The rest
of section 5 uses the non-attenuated formula to give an integrating factor solution
for the attenuated case. In section 6 examples of the method are then given for
the cases of Euclidean space, the Poincaré disc and, with an easy generalization of
the technique, the projection of the spherical cap into the unit disc. We offer brief
concluding remarks in section 7.

A Review of the Case of Straight Lines. In order to motivate some of the
general ideas presented in later sections, and to help keep the discussion concrete,
we start by quickly showing how to invert the attenuated ray transform on lines in
Euclidean space. The method we present in this section is similar to that discussed
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Ray Transforms on a Conformal Class of Curves 3

in the paper [7] and is a variation of the method used by R.G. Novikov in the article
[27].

Physical Background. The attenuated ray transform on straight lines in Euclidean
space arises naturally in the context of emission tomography in medical imaging
where one measures radiation being emitted by an internal source f(x). Letting
u(x, θ) denote the density of light at the position x ∈ Ω ⊂ R2 with orientation θ,
we will be considering the following stationary radiative transport equation

(1) θ · ∇xu(x, θ) + a(x)u(x, θ) = f(x)

where θ
.
= (cos θ, sin θ), Ω is convex and both absorption a(x) and density f(x)

are sufficiently smooth and compactly supported. We will always assume that the
transmission coefficient a(x) is known since this can be determined by additional
measurements. Although it is not necessary, for simplicity in keeping with the
rest of this article we will also assume that Ω ⊂ D+ where D+ is the unit disc
{(x, y) ∈ R2;x2 + y2 < 1}.

Since light is being emitted internally, the emission event u(x, θ) should satisfy
the boundary condition that no radiation is picked up from the behind the emission
site, i.e.

(2) lim
t↘−∞

u(x(t), θ) = 0

where x(t) are the characteristic curves, x + tθ, of θ · ∇.
Defining Xθ

.
= θ ·∇ and using the decay of the absorption coefficient we see that∫∞

0
Xθa(x + tθ)dt =

∫∞
0

∂
∂ta(x(t))dt and thus θ · ∇(Bθa)(x, θ) = −a(x) for

(Bθa)(x, θ)
.
=

∫ ∞
0

a(x + tθ)dt

the so-called divergent beam transform [24].
We will be using here the symmetrized beam transform Dθ, based on the usual

divergent beam transform and defined as the odd part of the integration over char-
acteristics with respect to angle; namely, Dθ

.
= 1

2 (B−θ −Bθ) or

(3) (Dθa)(x) =
1

2

∫
R
sgn(t)a(x− tθ)dt

It is clear then that the symmetrized beam transform inverts the vector field Xθ,
in the sense that XθDθa = a and therefore Dθa serves as an integrating factor in
equation (1) so that we may write the solution in the following form

u(x, θ) = e−Dθa
∫ ∞

0

(eDθaf)(x− tθ)dt

With θ⊥ = (− sin θ, cos θ) one can write x = tθ + sθ⊥ and we see that

lim
t↗∞

eDθa(sθ⊥+tθ)u(sθ⊥ + tθ) =

∫
R
eDθa(sθ⊥+tθ)f(sθ⊥ + tθ)dt(4)

= (Ia,θf)(s, θ)

where Ia,θf is the attenuated ray transform of f . We can acquire the measurements
appearing on the left-hand side of equation (4) since a was assumed to be known

and limt↗∞ u(sθ⊥ + tθ) is the radiation measured by external detectors.
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The Inversion Method. Our method of approach for finding an inversion formula for
the attenuated ray transform will be based on finding an appropriate holomorphic
integrating factor for the transport equation (1). To do this, we will first find
an analytic solution to the non-attenuated transport equation in an appropriate
extension of the angular variable.

In order to arrive at a suitable inversion formula for the non-attenuated ray
transform, we first consider the parameterization of R2 ∼= C via z(t, s)

.
= t + is.

Then the pushforward in z of the vector field ∂
∂t takes the form z∗

∂
∂t = ∂

∂z + ∂
∂z̄ and

one sees that t(z) = z+z̄
2 and s(z) = z−z̄

2i . For each θ ∈ (0, 2π] define a conformal

map eiθ : C2 → C2 via eiθ : (z, z̄) 7→ (eiθz, e−iθ z̄).
A calculation reveals that

Xθ = eiθ∗ z∗
∂

∂t
which is the vector field defining the lines over which our data is integrated.

We will begin by examining a particular complexification of the non-attenuated
radiative transport equation Xθu(x, θ) = f(x). The main idea will be to turn the
transport equation into an elliptic equation, namely the ∂̄-equation, in particular
coordinates. For this we consider the extension of the map eiθ to θ ∈ C \R. Define,
for 0 < |λ| < 1, the map λ : (z, z̄)→ (λz, z̄λ ) generating the complexified transport

operator Xλ = λ∗z∗
∂
∂t . Since λ∗(z, z̄) 7→ ( zλ , z̄λ) one has that

Xλ = λ
∂

∂z
+

1

λ

∂

∂z̄
, λ ∈ D+ \ {0}

To solve the complexified transport equation Xλu(z, λ) = f(z) for λ ∈ D+ \ {0}
one can explicitly find the Green’s function associated to Xλ by a change of variables
in λ∗s = s(z, λ). It turns out that this will reduce the problem to a ∂̄-problem in
s. To see this, observe that since s(z, λ) = 1

2i (
z
λ − z̄λ), we can, after a change of

variable in λ∗s, write the following

(λ∗s)∗Xλ =
λ

2i
(
1

λ

∂

∂s
+ λ̄

∂

∂s̄
) +

1

2iλ
(−λ ∂

∂s
− 1

λ̄

∂

∂s̄
)

=
|λ|2 − 1

|λ|2

2i

∂

∂s̄
(5)

Since, on that region, the Jacobian of s(z, λ) is − 1
4 (|λ|2 − 1

|λ|2 ), we see that the

fundamental equation XλGλ(z) = δ(z) may be written in (s, s̄) variables as

1

i

∂

∂s̄
(s(z, λ)∗Gλ) = −δ(s(z, λ))

2
Therefore we may write

(6) Gλ(z) =
1

2πis(z, λ)
, λ ∈ D+ \ {0}

since ∂̄z
1
πz = δ(z).

For λ 6= 0, the solution to Xλu(z, λ) = f(z) may therefore be written as the
covolution u(z, λ) =

∫
D+ Gλ(z−z0)f(z0)dµ(z0). Since ∂λ̄Gλ(z) = 0 away from zero,

we see that u(z, λ) defined this way is holomorphic away from the origin. We remark
that this solution may be analytically extended to a function (which we denote by u
also) asymptotically at λ = 0 since for all z ∈ D+, s(z, λ) is meromorphic in λ and
limλ→0 |s(z, λ)| = ∞. The solution u(z, λ) therefore continues to a holomorphic
function of λ vanishing at λ = 0. That is to say, we have an expansion of the
form u(z, λ) = λ∂λu(z, 0) +O(|λ|2). Then from the expansion ∂λu(z, λ) = −( z

λ2 +
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z̄λ2)uz(z, λ) near |λ| = 0 and the fact that by inspection uz(z, λ) = O(λ) near 0, we

see that λ∂u(z,λ)
∂z is necessarily an analytic function vanishing at the origin as well.

Since uz̄(z, λ) decays at the origin 1
λuz̄(z, λ) is complex-analytic on D+ as well.

In the limit |λ| → 1− we see, on using λε = (1− ε)eiθ in equation (6), that

Gλε(z) =
1

π(ze−iθ − z̄eiθ + ε(ze−iθ + z̄eiθ) +O(ε2))

=
1

2iπ(x · θ⊥ − iεx · θ +O(ε2))

Therefore, since u(z, λ) is given by the convolution (Gλ ∗ f)(z), in the limit, the so-
lution u+(z, θ) = lim|λ|↗1 u(z, λ) tends towards a convolution of f(z(t, s)) with the

distribution 1
2πi(s−i0sgn(t)) in both t and s. We remark that the kernel G+(z, θ) =

1
2πi(x·θ⊥−i0sgn(x·θ))

is the same as that appearing in [27]. One can show, using the

Plemelj formula, that this convolution with 1
2πi(s−i0sgn(t)) then tends towards

u+(z, θ) = (Dθf)(x) +
1

2i
(HIθf)(x · θ⊥, θ)

where H is the Hilbert transform taken with respect to the s variable.
As an aside, we mention that if λ is instead taken to be 1 < |λ| < ∞, the

Jacobian of s changes sign and the problem may be considered on both the inside
and the outside of the unit disc. In that case one sees the asymptotic limits from
both inside and outside the unit disc become

G±(z, θ) =
±1

2πi(x · θ⊥ ∓ i0sgn(x · θ))

and one can analyze the problem as a Riemann-Hilbert one. This amounts to finding
a sectionally-analyic function ψ(z, λ) away from the unit circle with jump across

the unit circle given by φ(z, λ) = i(HIθf)(x · θ⊥, θ) augmented by asymptotic
vanishing lim|λ|↗∞ |λ|ψ(z, λ) = 0. Throughout this article we will occasionally
adopt notation of the Riemann-Hilbert formalism, though we will only be concerned
with the interior of the unit disc.

Noticing that λ∗θ
⊥ · ∇ = −i(−λ ∂

∂z + 1
λ
∂
∂z̄ ) is the complexification of the vector

field generating the flow orthogonal to Xθ, we remark that since the analytic func-

tion λ∂u(z,λ)
∂z → 0 as |λ| ↘ 0 we see that we may use this to equate the limiting

longitudinal and transverse flow at a point, namely

lim
|λ|→0

(λ
∂u(z, λ)

∂z
+

1

λ

∂u(z, λ)

∂z̄
) = lim

|λ|→0
(−λ∂u(z, λ)

∂z
+

1

λ

∂u(z, λ)

∂z̄
)

= i lim
|λ|→0

{(λ∗θ⊥ · ∇)u(x, λ)}

Since the left and the right sides of the above represent analytic functions, their
values at zero are determined by their mean values and we may write

1

2π

∫ 2π

0

Xθu+(z, θ)dθ =
1

4π

∫ 2π

0

θ⊥ · ∇HIf(s(ze−iθ), eiθ)dθ

+
i

2π

∫ 2π

0

θ⊥ · ∇(Dθf)(z)dθ(7)
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6 Nicholas Hoell and Guillaume Bal

Then, comparing the real and imaginary parts above, and using that XθDθf = f
one has the formula

(8) f(x) =
1

4π

∫ 2π

0

θ⊥ · ∇{HIf(s(x · θ⊥), eiθ)}dθ

which determines f ∈ C∞c (D+) from measurements of (If)(x · θ⊥, θ). The oper-

ator λ∗θ
⊥ · ∇ plays the role of −Xλ which will make appearances throughout the

remainder of the article.
Next, we will consider the complexified transport equation with attenuation

a(x) ∈ C∞c (D+) given by

(9) Xλw(z, λ) + a(z)w(z, λ) = f(z), λ ∈ D+ \ {0}

We use the integrating factor eh(z,λ) where Xλh(z, λ) = a(z) to reduce equation (9)
to

(10) Xλ{eh(z,λ)w(z, λ)} = eh(z, λ)f(z)

and by the results previously mentioned the integrating factor will be, for all z ∈ D+,
holomorphic in λ ∈ D+. Therefore, the right hand side of the above is analytic in λ
and since the Green’s function associated to Xλ preserves holomorphicity, one has
holomorphic solutions of (9) vanishing at the origin. Since w(z, λ) → 0 as |λ| → 0
we have that solutions to (10) satisfy

lim
|λ|↘0

{Xλw(z, λ) + a(z)w(z, λ)} = i lim
|λ|↘0

({λ∗θ⊥ · ∇}w(z, λ))

=
i

2π

∫ 2π

0

θ⊥ · ∇w+(z, θ)dθ(11)

Since the dependence involves some more complicated operators arising from the
limiting values of

w(z, λ) = e−h(z,λ)

∫
C
Gλ(z − z0)eh(z0,λ)f(z0)dµ(z0)

as λ → T non-tangentially, we merely state that a careful study of w+(z, θ) shows
that it in fact depends on the data Ia,θf and we refer the interested reader to
equation (32) for the details.

With the above considerations in mind, the relation

(12) f(x) =
i

2π

∫ 2π

0

θ⊥ · ∇w+(x, θ)dθ

can be shown to give our desired filtered backprojection inversion formula for the
attenuated ray transform on straight lines in Euclidean space.

2. Preliminaries. We now proceed, keeping the preceding Euclidean example as
intuition, to the general focus of this article. We let γ : R2 3 (t, s) 7→ γ(t, s) ∈
Ω ⊂ R2 be a diffeomorphism where Ω is an open, bounded, simply-connected region
of the plane. Denote the unit disc by D+ .

= {z ∈ C : |z| < 1}, the unit circle
by T

.
= {z ∈ C : |z| = 1}, and D−

.
= C \ {D+ ∪ T}. We consider R2 ∼= C by

the standard isomorphism so that γ is identified with γ1(t, s) + iγ2(t, s). Then,
(w, w̄) are independent complex coordinates on Ω where w

.
= γ(t, s). Because γ is a

diffeomorphism, its differential is injective and therefore induces a vector field on Ω
via its differential under the rule (φ∗X)(f) = X(φ∗f). Consider γ∗

∂
∂t . We observe

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX
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that this gives a vector field which acts on pushforwards in w of functions on Ω and
where the non-degeneracy is ensured by the regularity of the curves γ(t, s).

Throughout this article, we will be considering the stationary transport equation
X|wu(w) = f(w), for w ∈ Ω, f(w) ∈ C∞c (Ω) given by the following

µ(w)
∂u

∂w
+ µ̄(w)

∂u

∂w̄
= f(w), w ∈ Ω(13)

We will want to use the symmetry of the unit disc which is a priori unavailable to us
in this more general domain. There is a unique biholomorphism, z(ζ), mapping Ω
into D+, the unit disc, with z(ζ) = 0, z′(ζ) > 0 as in [26] and (t,s) give coordinates
on D+ through composition since γ∗z maps R2 into D+. Because of this equivalence
between our initial domain Ω and the unit disc all further results will be presented
in the disc. If Ω was all of R2 (and the Riemann map was consequently unavailable)
the method below will still work since R2 has the needed rotational symmetry.

We therefore use (z, z̄) as coordinates on D+ and have a new vector field on D+

given by X|z = z∗X|z(w). and µ → {z∗µ} ∂z∂w ◦ z
−1 and likewise for µ̄. By slight

abuse of notation we denote {z∗µ} ∂z∂w ◦ z
−1 by µ(z) and {z∗µ̄} ∂z̄∂w̄ ◦ z

−1 by µ̄(z) so
that vector field of interest is

X|z = µ(z)
∂

∂z
+ µ̄(z)

∂

∂z̄
, z ∈ D+

We define t(z) = z∗w∗t and s(z) = z∗w∗s, smooth functions on D+ and suppose
that s is real-analytic.

The method of characteristics shows that X|zD1f(z) = f(z) where

(14) u(z) = (D1f)(z)
.
=

1

2

∫
R
f(z(t0, s))sign(t(z)− t0)dt0

The integral curves of X|z are just the image of integral curves, i.e. γ∗z∗ = (z ◦γ)∗.
and we define the ray transform of a source function f(z) over the integral curves
of X|z indexed by s to be

(15) (If)(s) =

∫
R
f(z(t, s))dt

We will later be using the following extensions of these operators given below:
Symmetrized beam transform

(Dθψ)(z)
.
=

1

2

∫
R
ψ(eiθz(t0, s(ze

−iθ)))sign(t(ze−iθ)− t0)dt0 ψ ∈ L1(D+)

Ray transform

(Iψ)(s, eiθ) = (Iθψ)(s)
.
=

∫
R
ψ(eiθz(t0, s))dt0 ψ ∈ L1(D+)

We will always use θ and eiθ interchangeably, the meaning determined by context.
We will have occasion to use the Hilbert transform H of a function defined as

the following Calderón-Zygmund principal value integral operator [36]

(16) (Hψ)(x) =
1

π
p.v.

∫
R

ψ(y)

x− y
dy ψ ∈ Lp(R), p > 1

Lastly, we will be using the standard Poisson kernel of the unit disc given by

P (z, θ) = 1−|z|2
|1−e−iθz|2 . We recall that the Poisson kernel generates harmonic solutions

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX
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v(z) of the BVP

∆v = 0, z ∈ D+

v|T = g

given by v(z)
.
= 1

2π

∫
T
P (z, θ)g(eiθ)dθ; [12, 37] with g ∈ C(T ).

The main purpose of this article will be to show that given suitable conditions
on µ(z, z̄) and s(z, z̄) that one has an inversion formula for the ray transform given
by the following

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze−iθ), eiθ))dθ i = 1, ..., n

where the λi(z) are functions to be introduced later.
With the above formula established, we present an integrating factor method to

estabish a similar reconstruction formula for the attenuated ray transform along
the same curves. The above is a type of inversion formula known as a filtered
backprojection type [25]. The procedure used to derive the above main result can
be best thought of in the following heuristic scheme

1. Model: Writing down the linear stationary transport equation for the dy-
namics

2. Symmetrizing: Introducing a rotation parameter λ = eiθ into the integral
curves of the transport PDE

3. Symmetry-Breaking: Complexifiying the parameter introduced in step 2
by moving λ “off-shell”, i.e. |λ| 6= 1, breaking the rotational symmetry of the
problem and generating an elliptic equation

4. Analysis and Asymptotics: Evaluating the dependence of solutions to the
complexified equation on our parameter λ and examining limiting behavior.
These boundary values will be shown to depend on the measured data we are
interested in inverting

5. Reconstruction: Using holomorphicity of the solutions to write the inversion
formulae as Poisson integrals of their asymptotic boundary values found in
step 4

The reader may find some benefit from keeping the above rough outline in mind
throughout the following. In this section, we have finished step 1. Steps 2 and 3
are handled in the next section. Step 4 is done in the more technical section 4, and
the final step is given in section 5.

3. Complexification of the Transport Equation. We will define the conformal
map λ : (z, z̄) → (λz, 1

λ z̄), for λ ∈ T the unit circle. Notice that if Φ(·, s) is a set

of integral curves of D+, that z−1(λ∗Φ(·, s)) are conformally related curves in our
original domain Ω. For λ ∈ {D+ ∪ D−} \ {0,∞} we consider λ∗X|z

.
= Xλ to

be the so-called “complexification” of X|z. We remark that λ∗X|z takes the form
µ( zλ , λz̄)λ

∂
∂z + µ̄( zλ , λz̄)

1
λ
∂
∂z̄ or

(17) Xλ = ξ(z, λ)
∂

∂z
+ ρ(z, λ)

∂

∂z̄
λ ∈ D± \ {0,∞}

with 1
λξ(z, λ) = µ(z, λ)

.
= λ∗µ(z) and λρ(z, λ) = µ̄(z, λ) = λ∗µ̄(z). We also define

X⊥λ = ±i(−ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ ) as a vector field orthogonal to Xλ when λ = eiθ.

Namely, Xθ ·X⊥θ = ±(ξ(z, eiθ), ρ(z, eiθ)) · (−iξ(z, eiθ), iρ(z, eiθ)) = ±i(|ξ(z, eiθ)|2 −
|ρ(z, eiθ)|2) = 0 in the standard inner product (·, ·) : C2 → C. The factor of i is
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needed to make X⊥θ u real-valued and the choice of ± is determined by whichever

satisfies the condition X⊥1 s > 0. Since X⊥1 = a(z)z∗
∂
∂s for some real-valued a(z),

this determines X⊥1 uniquely. We could just as well reparameterize with −s so we
will, without any loss of generality, avoid keeping track of signs by just assuming
that X⊥λ = i(−ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ ).

We likewise define s(z, λ) and t(z, λ) as λ∗s(z) and λ∗t(z) respectively for λ ∈
D± \ {0,∞}. A word on notation: ∂k

∂z and kz are equivalent, as are ∂k
∂z̄ and kz̄, and

we will use them interchangably.
We remark that equation (17) has no direct physical meaning since the complex

parameter λ, when taken to lie away from T = ∂D+, is in some sense artificial and
may be best thought of as a complex parameter indexing a class of complex partial
differential equations given in (17).

Next we reduce the scope of our consideration to the class of vector fields Xλ

consisting only of those satisfying the following condition H.

Definition 3.1. A complexified vector field Xλ = ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ , induced
in the manner above as λ∗X|z, λ ∈ D± \ {0,∞} from a real field X|z, is said to be
of type H if, for each z ∈ D+, the following conditions hold;

1. ξ(z, λ) is holomorphic for λ ∈ D+ and has at least one zero λi(z) such that
ξ(z, λi(z)) = 0

2. ρ(z, λ) is a nonvanishing meromorphic function of λ for λ ∈ D+

3. ξ(z,λ)
ρ(z,λ) is a holomorphic function of λ for λ ∈ D+ and has at least one zero

λ = λi(z) ∈ D+

In addition to the above we will also need a condition on the complexification
of the transverse coordinate s, since this will turn out to play an important role in
our analysis. For this we define a class of suitable coordinates.

Definition 3.2. Let Xλ be a vector field of type H and let s(z, λ) = λ∗s(z) be the
complexification of the real-analytic transverse parameter s indexing the integral
curves of Xλ. Then s(z, λ) will be called suitable whenever the following conditions
hold;

1. s(z, λ) is a meromorphic function of λ for λ ∈ D± and ∂s(z,λ)
∂z , ∂s(z,λ)

∂z̄ are
meromorphic functions on D+ away from any singularities of s(z, λ)

2. For each z there exists an ε such that s(z, λ) is analytic in λ for ||λ| − 1| ≤ ε
3. Xλs(z,λ)

(s(z,λ)−s(z0,λ))2 vanishes in the sense of distributions for z 6= z0 at the possible

singularities of s, sz, sz̄
4. For z 6= z0, sz(z0,λ)

s(z,λ)−s(z0,λ) is bounded for λ ∈ D+ \ {0}

We are, in the above, treating z and λ as independent variables. We stress that
we are not requiring any of the above functions to be holomorphic in the z variable.
We pause to present some informal arguments for these definitions.

Some Informal Justifications. While the conditions listed in the first definition
above may seem at first unnatural, we remark that holomorphy of ξ(z, λ) appears to
be the strongest. Aside from the conditions on zeros, or lack thereof, meromorphy
itself is weaker and the second and third conditions almost follow from the first.

The definition of suitable s includes conditions that are all related to the behavior
of s(z, λ), which will be shown to satisfy, aside from isolated critical points, a family
of Beltrami equations on D+ for a Beltrami coefficient depending analytically on λ.
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10 Nicholas Hoell and Guillaume Bal

The change of variables induced by λ creates such isolated critical points and these
conditions are more or less natural. Indeed, since Xθs(z, θ) = 0 and this property
survives through complexification almost everywhere, one will have Xλs(z, λ) = 0
when (z, z̄) ∈ Sλ = D+ \ {w : limw0→w |s(w0, λ)| = ∞}, the complement of the
locations of the potential poles of λ∗s.

Informally, we remark that already the first condition is not too stringent since
meromorphy allows for isolated blow-ups. Next, since for each z ∈ D+, the possible
poles occur internally, choosing λ close enough to T = ∂D+ will allow for a local
Taylor expansion in λ. For the third of the above we remark that Xλλ∗s = 0
strongly on Sλ so we only need to worry about the behavior on the complement of

Sλ. For this λ∗s ∼ g(z,λ)
(λ−p(z))k with bounded g for z → Scλ. Then with |λ| < 1 and

for z ∼ w ∈ Scλ we have that the asymptotic behavior of Xλλ∗s
(s(z,λ)−s(z0,λ))2 is governed

by limiting behavior of

(λ− p(z))2k
(ξ(z, λ) ∂∂z

g(z,λ)
(λ−p(z))k + ρ(z, λ) ∂∂z̄

g(z,λ)
(λ−p(z))k

π((g(z, λ)− (λ− p(z))ks(z0, λ)))2

∣∣∣∣∣∣
z∈Scλ

and we therefore expect that any distributional singularities occurring from terms
like ∂

∂z̄
1

(λ−p(z))k are compensated for by the vanishing of (λ − p(z))2k. The last

condition involves a term like sz(z,λ)
(s(z,λ)−s(z0,λ)) for z 6= z0. The local behavior of

s(z, λ) − s(z0, λ) on Sλ is determined by the fact that it solves Xλs(z, λ) = 0 and
vanishes at z = z0. Therefore we have an expansion around z0 determined by

(18)
sz(z0, λ)

(s(z, λ)− s(z0, λ))
∼ 1

(z − z0)− ξ(z0,λ)
ρ(z0,λ) (z̄ − z̄0) +O( |z−z0|

1+δ

sz(z0,λ) ))

for δ > 0. From this, we see that this the last condition of suitable s is also quite
reasonable. The requirements of suitability are in place to prevent pathological
examples.

4. Solving the Complexified Equation. In trying to solve the complexified
transport equation

(19) Xλu(z, λ) = f(z), λ ∈ D+ \ {0}
we will again be changing variables. For this, we will want to collect a few prelim-

inary facts. Because ξ(z,λ)
ρ(z,λ) is holomorphic in λ ∈ D+ its zeroes are isolated. Also,

since ξ(z,λ)
ρ(z,λ) is holomorphic for λ ∈ D+ and since conformal mappings map bound-

aries of Jordan domains into boundaries of Jordan domains, then µ(z,eiθ)
µ̄(z,eiθ)

= µ(y)
µ̄(y) for

some y ∈ T and thus | ξ(z,λ)
ρ(z,λ) |

∣∣∣
|λ|=1

= 1. Since we assumed that there is at least one

zero λi, the maximum principle ensures that | ξ(z,λ)
ρ(z,λ) | < 1 for λ ∈ D+. We then get

the following simple lemma.

Lemma 4.1. ξ(z,λ)
ρ(z,λ) has a finite number of zeros, λi(z) with multiplicities mi(z)

Proof. This is a simple consequence of the argument principle [16]. Namely, one
has ∑

i

mi =
1

2πi

∫
|λ|=1

∂
∂λ

ξ(z,λ)
ρ(z,λ)

ξ(z, λ)
ρ(z, λ)dλ
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and ξ(z,λ)
ρ(z,λ) is holomorphic, hence so is ∂

∂λ
ξ(z,λ)
ρ(z,λ) , on the region D+. They are also

both continuous on T . Therefore, | ∂∂λ
ξ(z,λ)
ρ(z,λ) | < M <∞ for λ ∈ D+. Thus,

∑
i

mi ≤
1

2π
|
∫
|λ|=1

∂
∂λ

ξ(z,λ)
ρ(z,λ)

ξ(z, λ)
ρ(z, λ)dλ| < 1

2π

∫ 2π

0

Mdθ = M

Henceforth λi will always be used to indicate a value in the unit disc for which
ξ(z,λ)
ρ(z,λ) (and ξ) vanishes. The bounded holomorphic functions mapping the unit disc

onto itself and having a finite number of zeroes can be uniquely written as a finite

Blashke product so that ξ(z,λ)
ρ(z,λ) can be given in the form ζ(z)Πn

i=1( λ−λi
1−λλ̄i

)mi with

|ζ(z)| = 1, and with mi and λi possibly depending on z; see [10, 15].

Furthermore, since | ξ(z,λ)
ρ(z,λ) | < 1 for λ ∈ D+ we also have that the complexified

transport equation Xλu(z, λ) = f(z) can be rewritten as

(20) uz̄(z, λ) =
ξ(z, λ)

ρ(z, λ)
uz(z, λ) +

f(z)

ρ(z, λ)
λ ∈ D+ \ {0}

which is a holomorphically forced Beltrami equation, [3, 8, 5]. If uz(z, 0) is bounded
this will hold at λ = 0 as well.

Letting Sλ = D+ \ {w : limw0→w |s(w0, λ)| =∞} denote the complement of the
locations of the potential poles of λ∗s we see that for λ ∈ D+ \ {0}, Xλs(z, λ) = 0
on that region so that s is still a constant of the dynamics. This is obvious from the
fact that integral curves are mapped by diffeomorphisms to integral curves, however
to be precise, when |λ| 6= 0,

Xλs(z, λ) = λ∗X|zλ∗s(z) = λ∗z∗w∗
∂

∂t
λ∗z∗w∗s = (λ ◦ z ◦ w)∗

∂

∂t
(λ ◦ z ◦ w)∗s

= (λ ◦ z ◦ w)∗
∂s

∂t
= 0

since s and t are independent coordinates. Thus for λ 6= 0,

ξ(z, λ)
∂s(z, λ)

∂z
+ ρ(z, λ)

∂s(z, λ)

∂z̄
= 0, (z, z̄) ∈ Sλ

The consideration of Sλ is an unfortunate artifact of having brought in potential
singularities at |z| = 1 to the interior upon complexification. We will need the
following result to set up a fundamental equation in s.

Lemma 4.2. On 0 < |λ| < 1 the Jacobian Js(z, λ)
.
= |sz(z, λ)|2 − |sz̄(z, λ)|2 is

positive

Proof. Since (t, s) 7→ (z, z̄) is a diffeomorphism and λ : (z, z̄) 7→ ( zλ , z̄λ) is conformal
on 0 < |λ| < 1

(21)

∣∣∣∣∣
∂s(z,λ)
∂( zλ )

∂t(z,λ)
∂( zλ )

∂s(z,λ)
∂(z̄λ)

∂t(z,λ)
∂(z̄λ)

∣∣∣∣∣ 6= 0

so that

|∂s(z, λ)

∂z

∂t(z, λ)

∂z̄
− ∂s(z, λ)

∂z̄

∂t(z, λ)

∂z
| ≤ 2|sz(z, λ)|
|λ||ρ(z, λ)|

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX



12 Nicholas Hoell and Guillaume Bal

implies |sz(z, λ)|2 6= 0. Then,

∂s(z) = |sz(z, λ)|2 − | ξ(z, λ)

ρ(z, λ)
sz(z, λ)|2 ≥ |sz(z, λ)|2(1− | ξ(z, λ)

ρ(z, λ)
|2) > 0

since | ξ(z,λ)
ρ(z,λ) | < 1 for λ ∈ D+.

Fixing λ, we work on (z, z̄) ∈ Sλ. Since Xλs(z, λ) = 0, s∗Xλ = s∗Xλs̄(z, λ) ∂∂s̄ .
We are interested in solving XλGλ(z; z0) = δ(z − z0) and we can achieve this by
solving s∗Xλs̄(z, λ) ∂∂s̄ (s∗Gλ) = |Js(z, λ)|δ(s(z, λ) − s0). For this we will need to
compute the term s∗Xλs̄(z, λ). Observe that

ξ(z, λ) = −ρ(z, λ)
∂s(z,λ)
∂z̄

∂s(z,λ)
∂z

whence

ξ(z, λ)
∂s̄(z, λ)

∂z
+ ρ(z, λ)

∂s̄(z, λ)

∂z̄
= −ρ(z, λ)

∂s(z,λ)
∂z̄

∂s(z,λ)
∂z

∂s̄(z, λ)

∂z
+ ρ(z, λ)

∂s̄(z, λ)

∂z̄

=
ρ(z, λ)
∂s(z,λ)
∂z

(|sz(z, λ)|2 − |sz̄(z, λ)|2)

=
1

Q(z, λ)
Js(z, λ)

with Q(z, λ)
.
=

∂s(z,λ)
∂z

ρ(z,λ) . By recalling that | ξρ | > 1 for |λ| > 1 and going through the

preceding lemma mutatis mutandis we see that Js(z, λ) is likewise negative on D−

and hence the Jacobian of s(z, λ) switches sign when λ ∈ D± so that, generally,
our fundamental equation may be written compactly as follows

s∗
1

Q(z, λ)

∂

∂s̄
s∗Gλ = sign(1− |λ|)δ(s(z, λ)− s(z0, λ))

Using ∂
∂z

1
πz̄ = δ(z) as shown in [16] see see this equals Gλ(z; z0) = sgn(1−|λ|)Q(z0,λ)

π(s(z)−s(z0)) .

Then, for (z, z̄) ∈ Sλ we have

Gλ(z; z0) =
sgn(1− |λ|) 1

ρ(z0,λ)
∂s(z,λ)
∂z |z0

π(s(z, λ)− s(z0, λ))
, λ ∈ D± \ {0,∞}

Remark 1. We will only make use of results in our formula which follow from
condition H and thus results like the above are only used when λ ∈ D+. We will
however present many results for λ ∈ D− with the understanding that given an
appropriate generalization of condition H (involving constraints on ξ and ρ for
λ ∈ C \ D̄+) and the related suitablility of s, the results are true. The advantage
to this approach is it makes apparent the symmetries and parallels of several of the
formulae for λ ∈ D±. Thus, in the “−” versions of several results, condition H
would need to be augmented appropriately.

Next, we show thatGλ(z; z0) defined in equation (22) extends to satisfyXλGλ(z; z0) =
δ(z−z0) on z ∈ D+. For this we note that XλGλ(z; z0) behaves weakly, in a vicinity
of Sλ, as

lim
z→w∈D+\Sλ

sgn(1− |λ|) 1
ρ(z0,λ)

∂s(z,λ)
∂z |z0Xλs(z, λ)

(s(z, λ)− s(z0, λ))2
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which, by assumption vanishes when integrated against a smooth function. The
fundamental equation, therefore, is satisfied for all z ∈ D+, i.e.

(22) Gλ(z; z0) =
sgn(1− |λ|) 1

ρ(z0,λ)
∂s(z,λ)
∂z |z0

π(s(z, λ)− s(z0, λ))
, λ ∈ D± \ {0,∞}, z ∈ D+

Due to the meromorphy of the terms appearing in Gλ(z; z0), together with the

boundedness of sz(z0,λ)
s(z,λ)−s(z0,λ) after integration against a smooth enough function

u(z, λ) =
∫
CGλ(z; z0)f(z0)dµ(z0) remains bounded for λ ∈ D+ \ {0} since the pre-

ceding arguments hold also when λ approaches singularities of s(z, λ) and sz(z, λ).
The expansion s(z, λ) ∼ c0 + c1z

λ + c2z̄λ + O((z 1
λ + z̄λ)2) near zero shows that s

and sz have the same order of possible vanishing or blow-up at λ → 0. Therefore,
Gλ(z; z0) is analytically extendible to λ = 0 and we obtain an analytic extension
of the solution u(z, λ), which we also denote u. We have thereby established the
following proposition.

Proposition 1. For each z ∈ D+, the solution u(z, λ) satisfies ∂λ̄u(z, λ) = 0 for
λ ∈ D±

By using ∂
∂zGλ(z; z0) = Gλ(z; z0) sz(z,λ)

s(z,λ)−s(z0,λ) and performing similar estimates

as above one obtains that, for every z ∈ D+, uz(z, λ) is complex-analytic in λ ∈ D±.
The corresponding result for uz̄(z, λ) follows from the holomorphy of the right hand

side of uz̄(z, λ) = − ξ(z,λ)
ρ(z,λ)uz(z, λ) + f(z)

ρ(z,λ) .

Boundary Behavior. We will be using the boundary values u(z, λ)|λ∈T to arrive
at a reconstruction formula. For this we notice that

∂(t, s)

∂(z, z̄)

∂z̄
∂t
∂s
∂z

=
∂z̄

∂t

∂s

∂z̄

∂t

∂z

1
∂s
∂z

− ∂z̄

∂t

∂t

∂z̄

= −(
∂z

∂t

∂t

∂z
+
∂z̄

∂t

∂t

∂z̄
)

= −z∗
∂t

∂t

and therefore we may rewrite Gλ(z; z0) appearing in equation (22) as follows

(23) Gλ(z, z0) = −λ∗

∂(t,s)
∂(z,z̄)

∣∣∣
z0

π(s(z)− s(z0))

We may now prove the following consequence of this fact.

Proposition 2. The non-tangential limits u±(z, eiθ)
.
= limD±3λ→eiθ u(z, λ) are

given by the following

u±(z, eiθ) = ∓ 1

2i
(HIθf)(s(e−iθz), θ) + (Dθf)(z)

where, in the above, the Hilbert transform H is taken with respect to the first vari-
able.

Proof. Let ψ ∈ C∞c (D+). First we examine 1
s(z,λ)−s(z0,λ) when λ = 1− ε (ε << 1).

With ′ denoting differentiation in λ we use the fact that s(z, 1 − ε) = s(z, 1) −

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX



14 Nicholas Hoell and Guillaume Bal

εs′(z, 1) + o(ε2) together with Xλs(z, λ) = 0 for λ near enough to ∂D+ to get

O(1) : (ξ(z, 1)
∂

∂z
+ ρ(z, 1)

∂

∂z̄
)s(z, 1) = 0

O()ε : (ξ(z, 1)
∂

∂z
+ ρ(z, 1)

∂

∂z̄
)s′(z, 1) = −(ξ′(z, 1)

∂

∂z
+ ρ′(z, 1)

∂

∂z̄
)s(z, 1)

and

−(ξ′(z, 1)
∂

∂z
+ ρ′(z, 1)

∂

∂z̄
)s(z, 1) = −(ξ′(z, 1)− ρ′(z, 1)

ξ(z, 1)

ρ(z, 1)
)sz(z, 1)

= −ξ(z, 1)sz(z, 1){ξ
′(z, 1)

ξ(z, 1)
− ρ′(z, 1)

ρ(z, 1)
}

= −ξ(z, 1)sz(z, 1)
( ∂
∂λ

ξ
ρ )
∣∣∣
λ=1

ξ(z,1)
ρ(z,1)

(24)

so that X1is
′(z, 1) = −iξ(z, 1)sz(z, 1)

( ∂
∂λ

ξ
ρ )|

λ=1
ξ(z,1)
ρ(z,1)

. By a similar argument one can

show that X1is
′(z, 1) = iρ(z, 1)sz̄(z, 1)

( ∂
∂λ

ξ
ρ )|

λ=1
ξ(z,1)
ρ(z,1)

whereby we see that

(25) X1is
′(z, 1) =

1

2

( ∂
∂λ

ξ
ρ )
∣∣∣
λ=1

ξ(z,1)
ρ(z,1)

X⊥1 s(z, 1)

Since ξ
ρ is given as a finite Blashke product ζ(z)Πn

i=1(λ−λi(z)
1−λλ̄i

)mi(z), we see that
∂
∂λ

ξ(z,λ)
ρ(z,λ)

ξ(z,λ)
ρ(z,λ)

=
∑
j>0mj

1−|λj |2

(λ−λj)(1−λ̄jλ)
so that

( ∂
∂λ

ξ
ρ )|

λ=1
ξ(z,1)
ρ(z,1)

> 0, which, when combined

with X⊥1 s(z, 1) > 0 gives from (25) that X1is
′(z, 1) > 0. This implies that

sgn(is′(z, 1)− is′(z0, 1)) = sgn(t(z, 1)− t(z0, 1))

Testing against a compactly supported ψ(z0) ensures that we may apply a simi-
lar Taylor expansion for s(z0, λ) in integration in the z0 variable. Therefore we

use the distributional Plemelj relation 1
ix+ε

|ε|↘0−−−−→ 1
ix + sgn(ε)πδ(x) to see that,

distributionally, one has that 1
s(z,λ)−s(z0,λ) tends, as λ→ 1, to

1

s(z, 1)− s(z0, 1)
− isgn(is′(z, 1)− is′(z0, 1))δ(s(z, 1)− s(z0, 1))

Since limλ→1 λ∗
∂(t,s)
∂(z,z̄) = ∂(t,s)

∂(z,z̄) we see that the preceding considerations allow us to

conclude that the following holds

u+(z, θ)
.
= lim
ε↘0

∫
D+

G1−ε(z; z0)ψ(z0)dµ(z0)

=
1

2πi

∫
D+

ψ(z0) ∂(t,s)
∂(z,z̄)

∣∣∣
z0

s(z, 1)− s(z0, 1)
dz0 ∧ dz̄0

− 1

2

∫
D+

ψ(z0)sgn(is′(z, 1)− is′(z0, 1))δ(s(z, 1)− s(z0, 1))
∂(t, s)

∂(z, z̄)

∣∣∣∣
z0

dz0 ∧ dz̄0

Then, with κ = ±1 determined by the orientation of the Jacobian of (t, s) →
(z, z̄) we have that the above equals
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κ{ 1

2πi

∫
R

∫
R

ψ(z(t0, s0))dt0ds0

s(z, 1)− s0
− 1

2

∫
R
ψ(z(t0, s0))sgn(t(z, 1)− t(z0, 1)dt0}

Since, by continuity on the limit, <u+(z, θ) is determined to be f and not −f , we
have that κ = −1 and get the following

u+(z, 1) = − 1

2i
H(Iθψ)(s(z), 1) + (D1ψ)(z)

One can see this also since i|µ|2 ∂(t,s)
∂(z,z̄) = X⊥1 s(z) > 0 and therefore ∂(t,s)

∂(z,z̄) is −ib(z)
for b(z) positive real-valued.

For the general case, ψ(z0e
iθ)Geiθ (z; z0) = ψ(z0e

iθ)G1(e−iθz; e−iθz0) together
with invariance of the measure under the complexification map; i.e. (eiθ)∗dµ(z0) =
dµ(z0) shows that we get the following boundary values for general θ ∈ [0, 2π)

(26) u+(z, eiθ) = − 1

2i
H(Iθψ)(s(ze−iθ), eiθ) + (Dθψ)(z).

An identical argument for u−(z, eiθ) shows that

u±(z, eiθ) = ∓ 1

2i
H(Iθψ)(s(ze−iθ), eiθ) + (Dθψ)(z)

Incidentally, from the above arguments we see that

H(Iθf)(s(z, e−iθ), θ) ∈ kerXθ

Later, in using an integrating factor approach to solve the attenuated ray transform,
we will see that this property will be to our benefit. In fact, constancy of the Hilbert
transform of the ray transform of the attenuation coefficient is a pervasive feature
of analytical inversion formula for the attenuated ray transform; see for instance
[35].

5. Inversion Formulae.

5.1. No Attenuation. We can now prove our main result.

Theorem 5.1. Let Xλ = ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ be a vector field of type H, s(z, λ)
be suitable, ξ(z, λi(z)) = 0 for i = 1, ..., n and f(z) ∈ C∞c (D+). Then

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze−iθ), eiθ)dθ

gives an exact reconstruction formula for the density f ba sed on the data Iθf of
ray transforms of f over the integral curves of Xθ.

Proof. The real and imaginary parts of complex-analytic functions are harmonic,
so with P (z, θ) the Poisson kernel of the unit disc one has, on using the boundary
values given (26) given in Proposition 2, that

Xλiu(z, λi) =
i

4π

∫ 2π

0

P (λi, θ)XθH(Iθf)(s(ze−iθ), eiθ)dθ

+
1

2π

∫ 2π

0

P (λi, θ)Xθ(Dθf)(z)dθ(27)

so that
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Xλiu(z, λi) = f(z) +
i

4π

∫ 2π

0

P (λi, θ)XθH(Iθf)(s(ze−iθ), eiθ)dθ

whereas

X⊥λiu(z, λi) =
i

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze−iθ), eiθ)dθ

+
1

2π

∫ 2π

0

P (λi, θ)X
⊥
θ (Dθf)(z)dθ(28)

Then since Xλ = ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ , X⊥λ = i(−ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ ) and
ξ(z, λi) = 0, we have that

iXλiu(z, λi) = X⊥λiu(z, λi)

so that, on equating real and imaginary parts of (27) and (28), we obtain

1

2π

∫ 2π

0

P (λi, θ)X
⊥
θ (Dθf)(z)dθ = − 1

4π

∫ 2π

0

P (λi, θ)XθH(Iθf)(s(ze−iθ), eiθ)dθ

and

(29) f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze−iθ), eiθ)dθ

Taking into account the presence of the signum function in the Green’s function
(23) it’s clear that formula (29) could just as well be written in terms of the jump
function (from the viewpoint of D±)

φ(z, eiθ)
.
= u+(z, eiθ)− u−(z, eiθ) = iH(Iθf)(s(ze−iθ), eiθ)

as

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (−iφ(z, eiθ))dθ

an observation which will be notationally useful in the next section. Recalling our
previous remark about using only results from D+ we could just as well use

φ(z, eiθ)
.
= 2i=(u+(z, eiθ))

and remember that invoking D− is only a useful mnemonic.

5.2. Attenuated Ray Transform and Inversion Formulae. We add a positive
and real-valued attenuation term a(z) ∈ C∞c (D+) to the complexified stationary
transport equation to get

(Xλ + a(z))u(z, λ) = f(z) λ ∈ D± \ {0,∞}
Using our Green’s function Gλ(z; z0) determined in (22) we define

h(z, λ)
.
=

∫
D+

Gλ(z; z0)a(z0)dµ(z0)

In exactly the same manner as in the previous sections we may extend the above
to a formula which holds on (z, λ) ∈ D+ ×D+.

We will be using an integrating factor approach as follows

eh(z,λ)Xλu(z, λ) + eh(z,λ)a(z)u(z, λ) = eh(z,λ)f(z)
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so that

Xλe
h(z,λ)u(z, λ) = eh(z,λ)f(z)

whence

(30) u(z, λ) =

∫
D+

Gλ(z; z0)eh(z0,λ)−h(z,λ)f(z0)dµ(z0)

The Green’s function, as discussed previously, is analytic for z 6= z0, so that holo-
morphy of eh(z0,λ) is retained after integration in z0. Therefore equation (30) defines
a complex-analytic function in λ, for each z extendible to hold on all λ ∈ D+.

Now, by Proposition 2 one has

h±(z, eiθ) = ∓ 1

2i
(HIθa)(s(ze−iθ), θ)) + (Dθa)(z)

Therefore, in another application of Proposition 2 we have the solution of the
attenuated transport equation admits the following nontangential boundary values
as |λ| → 1∓

u±(z, eiθ) =
∓e−h±(z,eiθ)

2i
[HIθ{eh±(·,eiθ)f}(s(ze−iθ), θ)∓ 2i(Dθe

h±(·,eiθ)f)(z)]

=
∓e−h±(z,eiθ)

2i
[HIθ{e

∓1
2i (HIθ)a(s(e−iθ·),θ)f(·)e(Dθa)(·)}(s(ze−iθ), θ)

∓ 2i(Dθe
∓1
2i (HIθ)a(s(e−iθ·),θ)f(·)e(Dθa)(·))(z)]

Define the attenuated ray transform as

(Ia,θf)(s)
.
= Iθ(f(·)e(Dθa)(·))(s)

and recall that Iθ involves integration in t, not s (as does Dθ) and therefore since
HIθa(s(z, e−iθ), θ) ∈ kerXθ, HIθa(s(z, e−iθ), θ) is constant on the curves of inte-
gration in t and therefore may be pulled through the Ia,θ integrals as

u±(z, eiθ) =
∓e−h±(z,eiθ)

2i
H(e

∓1
2i (H(Iθa)(s(e−iθ·),θ)Ia,θf)(s(ze−iθ), θ)

+e−(Dθa)(z)(Dθf(·)e(Dθa)(·))(z)

Therefore, the difference in the above limits yields the following

φ(z, eiθ)
.
= (u+ − u−)(z, eiθ)

= −e
−h−(z,eiθ)

2i
H(e

1
2iH(Iθa)(s(e−iθ·),θ)Ia,θf)(s(ze−iθ), θ)

− e−h+(z,eiθ)

2i
H(e−

1
2iH(Iθa)(s(e−iθ·),θ)Ia,θf)(s(ze−iθ), θ)

= −e
−(Dθa)(z)

2i
{e 1

2iH(Iθa)(s(ze−iθ),θ)H(e
1
2iH(Iθa)(s(e−iθ·),θ)Ia,θf)

+ e−
1
2iH(Iθa)(s(ze−iθ),θ)H(e−

1
2iH(Iθa)(s(e−iθ·),θ)Ia,θf)}(s(ze−iθ), θ)

To simplify this expression, we define the following filtered Hilbert transform

(31) Ha : g 7→ {CH(Cg)}(s(ze−iθ), θ) + {SH(Sg)}(s(ze−iθ), θ)
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for g(s, θ) ∈ C∞(R× T ), with

C
.
= cos(

H(Iθa)(s(ze−iθ), θ)

2
), S

.
= sin(

H(Iθa)(s(ze−iθ), θ)

2
)

Then

φ(z, eiθ) = −e
−(Dθa)(z)

2i
[(C − iS)H{(C − iS)Ia,θf}

+ (C + iS)H{(C + iS)Ia,θf}](s(ze−iθ), θ)

= ie−(Dθa)(z)<{(C − iS)H[(C − iS)Ia,θf ](s(ze−iθ), θ)}

= ie−(Dθa)(z)(CH(CIa,θf)(s(ze−iθ), θ) + SH(SIa,θf)(s(ze−iθ), θ))
.
= ie−(Dθa)(z)(HaIa,θf)(s(ze−iθ), θ)(32)

We then can proceed in a manner similar to before since we have that eh(z,λ)u(z, λ)
(along with its derivatives) is holomorphic and solves Xλe

h(z,λ)u(z, λ) = eh(z,λ)f(z).
We have the following theorem on the attenuated ray transform.

Theorem 5.2. Let Xλ = ξ(z, λ) ∂∂z +ρ(z, λ) ∂∂z̄ be a vector field of type H, s(z, λ) be
suitable, ξ(z, λi(z)) = 0 for i = 1, ..., n, and a(z), f(z) ∈ C∞c (D+). Let u(z, λ) solve
Xλu(z, λ) + a(z)u(z, λ) = f(z) on (z, λ) ∈ D+ ×D+ and define Ha by expression
(31) and p(z)

.
= <{u(z, λi(z))}. Then

f(z)− a(z)p(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (e−(Dθa)(z)HaIa,θf)(s(ze−iθ), θ))dθ

gives an exact reconstruction formula for the density f based on the data Ia,θf of
attenuated ray transforms of f over the integral curves of Xθ modulo the values
taken on by the solution u(z, λi(z)).

Proof. The proof proceeds as in the proof of Theorem 5.1. Since Xλu(z, λ) +
a(z)u(z, λ) = f(z), and limλ→λi Xλu(z, λ) = limλ→λi −iX⊥λ u(z, λ) we verify that

lim
λ→λi

{−iX⊥λ u(z, λ) + a(z)u(z, λ)} = f(z)

whereby

f(z) = a(z)<{a(z)u(z, λi(z))}+
1

4π

∫ 2π

0

P (z, λi(z))X
⊥
θ (−iφ(z, θ))dθ

The result follows from (32).

A comparison of equations (18) and (22) for the Green’s function of Xλ shows
that we expect the behavior of the solution u(z, λ) to behave locally as

eh(z0,λ)−h(z,λ)f(z0)

ρ(z0, λ)(z − z0)− ξ(z0, λ)(z̄ − z̄0) +O( |z−z0|
1+δ

sz(z0,λ) )
, δ > 0, z 6= z0

Therefore, if ρ(z0, λ) has a singularity at λ = λi(z) our solution will vanish there.
Equivalently, if limλ→λi |s(z, λ)| =∞ then u(z, λi(z)) = 0. In this case we have the
following simple corollary of the preceding.

Corollary 1. Let Xλ = ξ(z, λ) ∂∂z + ρ(z, λ) ∂∂z̄ be a vector field of type H, s(z, λ)
be suitable, ξ(z, λi(z)) = 0 for i = 1, ..., n, and a(z), f(z) ∈ C∞c (D+). Let u(z, λ)
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solve Xλu(z, λ) + a(z)u(z, λ) = f(z) on (z, λ) ∈ D+×D+, define Ha by expression
(31) and suppose that u(z, λi(z)) = 0. Then

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (e−(Dθa)(z)HaIa,θf)(s(ze−iθ), θ))dθ

gives an exact reconstruction formula for the density f based on the data Ia,θf of
attenuated ray transforms of f over the integral curves of Xθ

6. Examples. We present some worked examples of our method to familiar ge-
ometries. We stick to applications of Theorem 5.1 with similar formulae appearing
for the attenuated data and applying Theorem 5.2.

Euclidean Lines. Earlier, we saw an inversion formula for the ray transform on
Euclidean lines. We consider f ∈ C∞c (D+) and parameterize the plane by z(t, s) =
t+ is. Then the complexified vector field is given by

Xλ = λ
∂

∂z
+

1

λ

∂

∂z̄

ξ(z, λ) = λ is holomorphic and has a zero of order 1 at λ = 0, ρ(z, λ) = 1
λ is

meromorphic and has a simple pole at λ = 0 and the ratio ξ
ρ = λ2 is analytic with

a double root at the origin. Therefore Xλ is type H. Since s(z, λ) = 1
2i (

z
λ − z̄λ)

is meromorphic in λ as are ∂s(z,λ)
∂z = 1

2iλ and ∂s(z,λ)
∂z̄ = − λ

2i we see that s(z, λ) is
suitable. Thus, we may apply Theorem 5.1.

We recall remarks made at the beginning of section 3 regarding a sign convention
on the transverse coordinate and that, as it now stands X⊥λ s(z, λ) < 0, therefore we

must actually choose X⊥λ = −λ∗θ⊥ ·∇ instead of λ∗θ ·∇ in formula (29). Plugging
this expression in then gives the following familiar reconstruction formula

f(z) = − 1

4π

∫ 2π

0

P (0, θ)X⊥θ H(If)(s(ze−iθ), θ)dθ

With P (0, θ) = 1, the above reduces to formula (8) which we saw earlier.
Next, since u(z, 0) = 0 we may apply the Corollary 1 to get the following inversion

formula for the attenuated ray transform on straight lines in Euclidean space

f(z) =
1

4π

∫ 2π

0

θ⊥ · ∇{e−(Dθa)(z)Ha(Ia,θf)(s(ze−iθ), θ)}dθ

which is in agreement with known results.

The Poincaré Disc. The unitized geodesics of the negatively curved hyperbolic
disc are generated [6] by the following vector field

X|z = (1− |z|2)(
1− z
1− z̄

∂

∂z
+

1− z̄
1− z

∂

∂z̄
), z ∈ D+

This complexifies to the following

Xλ = (1− |z|2)(
λ− z
1− λz̄

∂

∂z
+

1− λz̄
λ− z

∂

∂z̄
)

We see that ξ(z, λ) = (1 − |z|2) λ−z1−z̄λ is analytic in λ and has a zero at λ(z) = z,

ρ(z, λ) = (1−|z|2) 1−λz̄
λ−z

∂
∂z̄ is meromorphic and has no zeros in the disc, and the ratio

ξ
ρ = ( λ−z1−z̄λ )2 is complex-analytic in λ and has a double root at λ = z. Therefore

Xλ is type H.
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Moreover, the transverse coordinate s can be shown to be determined by s(z, λ) =
1
2i (

1
1−λz̄ −

λ
λ−z ). Thus s(z, λ), ∂s(z,λ)

∂z = − λ
2i(λ−z)2 and ∂s(z,λ)

∂z̄ = λ
2i(1−λz̄)2 are each

meromorphic in λ 6= z. Clearly s(z, λ) is analytic in a neighborhood of the unit
circle. Furthermore, since at λ = z, sz̄(z, λ) picks up a δ(λ− z) term we have that

Xλ |λ=z s(z, λ) = −λδ(λ−z)2i and therefore Xλs(z,λ)
(s(z,λ)−s(z0,λ))2 ∼ − λδ(λ−z)

2i(s(z,λ)−s(z0,λ))2 ∼
λδ(λ−z)(λ−z)2

2igλ(z,z0) = 0. An easy calculation shows that sz(z0,λ)
s(z,λ)−s(z0,λ) stays bounded for

z 6= z0 and λ ∈ D+. Therefore, s(z, λ) is suitable and one has, on applying Theorem
5.1 that

f(z) =
1

4π

∫ 2π

0

P (z, θ){(1− |z|2)(
eiθ − z
1− eiθ z̄

∂

∂z
+

1− eiθ z̄
eiθ − z

∂

∂z̄
)}HIθf(s(ze−iθ), θ)dθ

which agrees with what was obtained in [6] (see equation (80) of that article) using
techniques of Riemann-Hilbert theory.

Furthermore, because limλ→z |s(z, λ)| = ∞, we notice that u(z, λ(z)) = 0 and
we may apply Corollary 1 to get that

(33) f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (e−(Dθa)(z)HaIa,θf)(s(ze−iθ), θ))dθ

which agrees with formula (92) in [6] and gives a full reconstruction formula for the
attenuated ray transform along the geodesics of the Poincaré disc.

The Spherical Cap. We consider an extension of the method so far presented
to the case where the first condition of type H vector field is not satisfied. We
consider the restriction of great circles, geodesics of S2, onto the upper hemisphere
H+ = {x ∈ R3; (x1)2 + (x2)2 + (x3)2 = 1, x3 > 0}. Consider the projection
of these curves onto the unit disc which we may parameterize via the mapping
γ(t, s) : R2 → D+ defined by γ(t, s) = (x(t, s), y(t, s)) where

x(t, s) =
t√

1 + t2 + s2
, y(t, s) =

−s√
1 + t2 + s2

With z = t + is, a calculation reveals that X1 = γ∗
∂
∂t =

√
1− |x|2{(1 − x2) ∂

∂x −
xy ∂

∂y}. The complexification Xλ = λ∗X1 of the vector field is therefore equal to

the following

Xλ =

√
1− |z|2

2
{λ(2− z2

λ2
− |z|2)

∂

∂z
+

1

λ
(2− λ2z̄2 − |z|2)

∂

∂z̄

We remark that the above obviously fails to be type H since ξ(z, λ) =

√
1−|z|2

2 λ(2−
z2

λ2 − |z|2) is singular at λ = 0. A careful check of the arguments given in the last
section reveals that the only place where holomorphy of ξ was really necessary
in deriving Theorem 5.1 was in ensuring holomorphy of the term ξ(z, λ)uz(z, λ).
Therefore, if we can establish this, we may proceed as before.

Since ξ(z,λ)
ρ(z,λ) =

λ2− z2

2−|z|2

1−λ2 z̄
2−|z|2

, we see that ξ(z,λ)
ρ(z,λ) is complex-analytic in the disc

λ ∈ D+ for each z with zeros it shares with ξ(z, λ) located at λ1(z) = z√
2−|z|2

,

λ2(z) = − z√
2−|z|2

. Clearly ρ(z, λ) is meromorphic. Therefore, aside from the fact

that |ξ(z, 0)| =∞, one has that the vector field is of type H.

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX



Ray Transforms on a Conformal Class of Curves 21

Moreover, clearly s(z, λ) =
z̄λ− zλ

2i
√

1−|z|2
is, for each z ∈ D+, meromorphic in λ,

with a Taylor expansion holding near |λ| = 1. A calculation shows that

(34)
∂s(z, λ)

∂z
= −2− z̄2λ2 − |z|2

4iλ(1− |z|2)
3
2

,
∂s(z, λ)

∂z̄
= λ

2− z2

λ2 − |z|2

4i(1− |z|2)
3
2

for all (z, λ) ∈ D+ ×D+. This being the case, one clearly has that Xλs(z, λ) = 0
holds everywhere and the first three conditions of suitability for s are established.

We only need to check the boundedness of sz(z,λ)
s(z,λ)−s(z0,λ) for z 6= z0. For this we

verify that

sz(z, λ)

s(z, λ)− s(z0, λ)
= − 2− z̄2λ2 − |z|2

2((z̄λ2 − z)(1− |z|2)− (z0λ2 − z0) (1−|z|2)
3
2√

1−|z0|2

bounded in λ ∈ D+ \ {0} and whereby moreover for |λ| → 0+ we have that
sz(z,λ)

s(z,λ)−s(z0,λ) →
2−|z|2

2(z(1−|z|2)− z0(1−|z|2)
3
2√

1−|z0|2
)

which is integrable for z 6= z0. Then, it

follows that s(z, λ) is suitable. More tellingly, we investigate Gλ(z; z0) and find
that, on using formula (22) one has

(35) Gλ(z; z0) = − 1

2πi(1− |z0|2)2{ z̄λ− zλ√
1−|z|2

− z̄0λ− z0λ√
1−|z0|2

}

Therefore u(z, λ)→ 0 as |λ| ↘ 0 and we verify that

∂

∂z
Gλ(z, z0) =

2− z̄2λ2 − |z|2

8λπ(1− |z|2)
3
2 (1− |z0|2)2{ z̄λ− zλ√

1−|z|2
− z̄0λ− z0λ√

1−|z0|2
}2

From which we conclude that ξ(z, λ)∂u(z,λ)
∂z stays bounded as λ → 0 and therefore

is complex-analytic on all of D+.
Since the behavior of ξ(z, λ)uz(z, λ) was our chief obstacle, we may then proceed

as usual and apply our Theorem 5.1 to get

(36) f(z) =

√
1− |z|2

8π

∫ 2π

0

P (
z√

2− |z|2
, θ)X⊥θ HIθf(s(ze−iθ), θ)dθ

where X⊥θ = i{−eiθ(2− e−2iθz2− |z|2) ∂∂z + e−iθ(2− e2iθ z̄2− |z|2) ∂∂z̄}. In the above
expression, we have used the root λ1(z).

We remark that∫ 2π

0

P (λ2(z), θ)X⊥θ HIθf(s(ze−iθ), θ)dθ

=

∫ 2π

0

P (−λ1(z), θ)X⊥θ HIθf(s(ze−iθ), θ)dθ

=

∫ 3π

π

P (λ1(z), ω)X⊥ω−πHIθf(−s(ze−iω), ω − π)dω

=

∫ 2π

0

P (λ1(z), ω)X⊥ω HIθf(s(ze−iω), ω)dω
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where, in the above, we have used the symmetryX⊥θ Iθf(s(ze−iθ), θ) equalsX⊥θ−πIθf(−s(ze−iθ), θ−
π). We therefore see a redundancy in the choice of λi(z) appearing in expression
(36).

We do not have a vanishing of u(z, λi(z)) and therefore, the inversion of the
attenuated ray transform on these curves is determined modulo this value and is
given by an application of Theorem 5.2 as

f(z)− a(z)<{u(z,
z√

2− |z|2
)} =√

1− |z|2
8π

∫ 2π

0

P (
z√

2− |z|2
, θ)X⊥θ e

−(Dθa)(z)HaIa,θf(s(ze−iθ), θ)dθ(37)

with Ha defined in equation (31). To the authors’ knowledge formulas (36) and
(37) are new.

7. Conclusions. We have illustrated that the method of complexification of vec-
tor fields presented in this article allows for a compact unification of the inversion
formulae given for ray transforms on both Euclidean space [27] and the Poincaré
hyperbolic disc [6]. Extending the class of vector fields amenable to the afore-
mentioned scheme beyond those of type H remains an open problem. Since the
analyticity properties of the coefficients of the vector fields, ensured by the con-
dition H and suitability of the transverse coordinate, justify the holomorphy of
the Green’s function it is unclear how one could alter the method in the absence
of such conditions, although the recent article [32] may yield some insight. There
also remains the question of finding sufficient (or even necessary) conditions on the
initial vector field being holomorphic after the complexification scheme used above.
Real-analyticity is perhaps the simplest necessary condition, but presumably there
are much more stringent ones.
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