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This chapter provides an overview of what this course is about and the
applications in which you’ll make use of techniques encountered in this
course: solving systems of linear equations. As well, there’s a primer on
mathematical topics and terms we expect you to know or to familiarize
yourself with as soon as possible. There are some tips from successful
students at the end which you may find helpful as well as advice I can offer
from from years of experience in observing what works for students.
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What is this course about?

This course is about one, and only one thing: solving systems of linear
algebraic equations. Of course, there’s a lot to unpack here since we’ll need
to formally define the words system and linear but equally important, we’ll
need to think clearly about the word solving. By that I mean it’s better to
deeply understand what’s going on in trying to “solve" systems of linear
equations than blindly applying algorithms, because the deep understanding
allows a greater facility with modelling and, ironically, with applying known
algorithms. Because of this fact, this course is going to involve trying to
understand the general character of systems of linear equations through
abstracting out the more fundamental features and proving general statements
about them rather than working through specific cases. This class is going
to force you to think differently than you may be used to thinking about
mathematical objects since the emphasis is heaving tilted towards abstraction
for the purpose of clarity.

I should say, the goal of the course is for you to understand the following
picture which incorporates all of the mathematical structures we’ll encounter
over the course of the semester.

Figure 1: Understanding the objects in this
picture and how they relate to one another is
the ultimate aim for us this semester.

The picture above has a lot of moving parts and it will take quite awhile
to reach the point where we can even precisely state what’s happening there.
But in case you’re curious, the figure is a visual representation of a theorem,
the fundamental theorem of linear algebra which helps us quantitatively
understand how linear systems, and their possible solutions, allow for a very
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particular geometrical way of dividing up the world where “vectors" live. Of
course, if none of this makes sense right now - good! It’s meant only as flag
for us to point out where we’re headed as we get into some of the details in
solving linear systems of algebraic equations.

Where is this material used?

Linear systems and the ideas of linearity are ubiquitous in science. As you’ll
discover in your futures in the your respective disciplines, linear algebra
is the de facto lingua franca of the sciences. Why is that? I can offer two
obvious reasons.

1. Cases where Nature appears to actually be linear. I’m not sure how
common this is but it certainly appears more as an exception than as the
rule. The most obvious (to me) example of this is in quantum mechanics,
the branch of physics devoted to the very smallest bits of Nature. Big parts
of the well-known strangeness of the picture of reality painted by quantum
mechanics is entirely due to the fact that Nature appears to be obeying
linear rules.1 1 The weirdness has more to do with the

interpretations offered for the equations, the
equations themselves being perfectly normal,
linear differential equations. The other big
source of weirdness is the coupling of the
linear equations with the so-called “Born
rule" for those who are interested.

2. Cases where Nature appears to not be linear. I think this is the standard
situation. When things deviate too far from linearity people tend to call
these cases “non-linear" which is a technical term meaning, basically,
“hard".2 It may be surprising to you, but these are precisely the cases in

2 Strictly speaking, it often means “so hard
it’s not really solvable".

which the tools of linear algebra are often the most useful. This is because
often a general technique of linearization is used wherein a hard, non-
linear problem which cannot be solved directly gets approximated by an
easier, linear problem which can be solved. Provided the approximations
are done cleverly and carefully enough, the approximations can often give
enough of an answer as to satisfy our reasons for asking. A special case of
this which should be familiar to you from high school calculus is the local
approximation of a function by it’s tangent line: tangent lines are “linear
approximations" to messy, complicated non-linear functions. Far more
complicated examples abound in applications.

Examples

I want to give a few examples of places where linear algebra and the tools
from this course make an appearance in real-life. The list isn’t exhaustive, it’s
just places where I’ve used linear algebra, or I’ve seen linear algebra used,
or I know that linear algebra happens to be used. In these examples, linear
algebra plays a big role.

1. Physics. I already mentioned quantum mechanics above. Beyond that,
much of classical physics is described (or approximated) by linear laws,
at various stages. Special relativity, for example, is basically a clever
application of tools from this class. Particle physics, the type of physics
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making the news for the discovery of the Higgs particle for example, rests
on equations that can’t be understood without mastering the material in
this course.

2. Mathematics. Surprisingly, linear algebra is has applications within
mathematics itself. In fact, one enormous branch of mathematics “rep-
resentation theory", is based on massively clever uses of linear algebra.
The basic idea is that while the objects in linear algebra are abstract, they
have the benefit of being very well-understood. So if one encounters a
mathematical object which is really abstract3 then we can study these 3 And you’d be shocked at quite how

abstract this can be!really abstract things by somehow moving them into the world of linear
algebra (at the cost of losing certain bits of informations along the way).
By studying how abstract objects present themselves in linear form, you
can actually learn something about the original abstract objects. This idea
is used in many foundational areas of modern mathematics.

3. Computer Science. How fast can the fastest possible algorithm reliably
multiply two arrays of numbers of increasingly large size? That question,
as of this writing, remains an unsolved question in complexity theory, the
discipline of computer science dealing with optimal, idealized ways of
solving abstract problems. How could such an easy operation, multiplying
two matrices, be so difficult to understand? Because every time people
think they’ve found the quickest way of doing it, some brilliant computer
scientist notices some very clever method for shaving a little bit of work
off the total cost. Very small speedups in performance on matrix arithmetic
have serious advantages since many algorithms require doing these things
on large sets of numbers repeatedly. Small gains in performance time
matter, actually. A lot.

4. Google. Search engines are a type of “black box linear algebra device".
The way they work rests on doing very fast matrix manipulations, some of
which are based on things we’ll do in this course.

5. Video Game Design. The representation of images and objects in video
games is often array-based and many of the tools we learn in this course
have applications in the design of video games. People in this industry are
masters of this course.

6. Image Recognition. There is now software that can identify people (or
cars, handwriting, whatever) in new photos based on prior images. This
turns out to be a linear algebra problem actually.

7. Artificial Intelligence and Machine Learning. Much of what’s done
now in modern applications of artificial intelligence (self-driving cars,
self-directed vacuums) and automated learning (there are computers that
have “learned" how to play perfect games of Breakout for instance) rests
on linear algebra. Things common to both fields, like neural networks, are
based on material we’ll do in this class.
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8. Forecasting. I give you a list of closing prices for a tradable asset for
the past 2 weeks and I want you to estimate tomorrow’s. How do you do
this? There are many ways4 to attempt this. All the ones I know of involve 4 And, I hope this is obvious, no reliably

perfect ways.linear algebra.

9. Data Science. Any manipulations done on large data sets must meet good
performance requirements. Keeping things linear is a good way to proceed.
As well, big data is usually kept in formats where linear algebra is the
obvious weapon of choice.

10. Statistics. The last four examples are, in some sense, applications of
statistics. Then again, the entire scientific enterprise is kind of “just"
statistics in the sense that statistics is the careful and quantitative analysis
and inference of data, and science is simply the collection, organization
and interpretation of experimental data. You can not get anywhere in
statistics without a mastery of linear algebra. Period. It is a discipline
drenched in the language of linear algebra and probably the biggest
masters of matrices are found in Departments of Statistics.5 5 But don’t tell my colleagues in the

mathematics department I said so

Vocabulary

An enormous amount of difficulty students in this course run up against is
the correct and grammatical usage of precise terminology. The words have
very rigid usages in this course, unlike in natural languages like English. This
simple, almost naive, observation will become fundamental as the concepts
encountered become more abstract. Moreover, misuse of very precisely
defined objects indicates a flaw in proper understanding of the underlying
concepts. For this reason it is absolutely paramount that you are able to
convey, in written form, a clear, concise, rigorous, and correct argument using
mathematical definitions.

First off, there’s a bit of vocabulary invented by mathematicians to help
them deal with parsing aspects of the mathematical theories they develop. If
you like music, there are various phrases (coda, cadenza, transition, resolu-
tion, etc) which help the musicians/composers demarcate the control flow
among passages inside a single coherent composition. Here are some of the
ones used analogously in mathematics.

1. Theorem. This is used to indicate the big result, the ultimate goal of
intense mathematical labour. All of the deepest results in mathematics
are given this honorific.6 The general language in theorems is a statement 6 Gauss even has one which now bears the

name “Theorema Egregium" which means,
roughly, “Remarkable Theorem", or “Really
big theorem" depending on your tastes.

of assumptions (or “hypotheses") e.g. “Let A be an m × n matrix..." or
“Suppose that x and y are vectors in Rn and..." followed by conclusions
which are guaranteed true provided the hypotheses hold. The language
used in statements of theorems is famously precise and technical.

2. Lemma. A lemma is like a micro-theorem. It’s used to title results that
are somewhat interesting in and of themselves, but whose primary purpose
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is to assist in proving theorems.

3. Proposition. This is something closer to theorem than to lemma but, well,
we can’t all be theorems now can we?

4. Corollary. This is an important result which follows, using not too much
work, from a Theorem or a Proposition.

5. Axiom. These are things we just have to take in without being able to
prove. We like to keep the list of these as minimal as possible (both in
number and in cognitive complexity). Basically these are Propositions we
cannot prove but simply assume. 7 7 An example of this would be the axiom

that for any two sets the collection of all
things in either of the two sets is itself a new
set we can play with. Another, well-known
from Greek geometry, would be that all right
angles are equal. People spend entire careers
trying to see which axioms imply others
in any given system of axioms, in order to
possibly reduce the “assumptive burden" of
the system. Proving which things can or can
not be proven in any given list of axioms is
an entire subfield of mathematics.

6. Proof. This is something which follows a lemma, proposition, theorem, or
corollary. It’s a formal argument designed to be incontrovertible evidence
against further scrutiny. If all that were known to someone were existing
axioms, and the lemmas, propositions, theorems and corollaries already
established using these axioms, then that person would be able to verify,
based solely on your proof, that a given statement was true. The famed
physicist Richard Feynman once said (about science, not mathematics, but
it holds here as well)

“The first principle is that you must not fool yourself – and you are the
easiest person to fool."

I encourage you to take that advice seriously. Proofs are arguments made
to safeguard against the kind of deception warned against in the quote.

Proofs

Each proof is unique since you’re proving a different statement, but there
are some common strategies you’ll encounter. For general guidelines, here
are a few thoughtlets.

(a) If the statement you’re asked to prove is something like “Prove such
and such exists." it suffices to simply exhibit an object meeting the
requirements described in the statement. In other words, providing an
example constitutes a proof. Conversely, a counterexample is often used
to disprove an erroneous claim.

(b) In some cases (though not in this course) the above cannot be done,
and existence is non-constructive, namely existence is established
without being able to produce a single example of the object proven
to exist. Don’t worry about this case in this class since we won’t see
things like this, just be aware that this stuff can be subtle.

(c) Sometimes we argue by contradiction, which is to say, we assume
that the result we want to show isn’t true and use logic to arrive at
something we know to be false. Suppose A and B are statements (called
propositions but not to be confused with the word Proposition used
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before as a kind of theorem!) and we are hoping to show that statement
A implies statement B (written A =⇒ B symbolically). Well, since

(not B) =⇒ (not A) if and only if A =⇒ B

then if we can prove (not B) =⇒ (not A) then we can conclude the
claim we wanted to establish must be true. Make sure you understand
why A =⇒ B is equivalent to (not B) =⇒ (not A). It may help
to think of examples “If I win the lottery, then I’ll be rich" must be the
same as “If I’m not rich, I did not win the lottery". But also notice that
these are distinct from B =⇒ A. After all, not every rich person won
the lottery.8 8 A little terminology here. If A =⇒ B

we say that A is “sufficient" for B and that
B is “necessary" for A. If A =⇒ B but
B =⇒ A then we say “B is necessary but
not sufficient for A".

(d) Sometimes we may argue inductively. That is to say, if we want to
prove a statement P(n) is true for all natural numbers n we need to
show

• P(0) is true. This establishes a “base case", i.e. the case for n = 0
(or, often n = 1 or whatever).

• If P(k) is true for (k >base case) then P(k + 1) is true.

We won’t use this much but it’s there if we want it. The following is an
example of an inductive argument.

Example 1

Prove that 12 + 22 + · · ·+ n2 =
n(n+1)(2n+1)

6 for n = 1, 2, 3, ...

Proof

Here P(n) is the claim that 12 + 22 + · · ·+ n2 =
n(n+1)(2n+1)

6
holds for positive natural numbers. Suppose n = 1. Then
12 =

1(1+1)(2·1+1)
6 . This gives the base case. Next, if it were

true that for k ≥ 1 we had that 1 + 22 + 32 + · · · + k2 =
k(k+1)(2k+1)

6 then we would have

12 + 22 + · · ·+ k2 + (k + 1)2 =

=
k(k+1)(2k+1)

6 by inductive hypothesis︷                  ︸︸                  ︷
12 + 22 + · · ·+ k2

+ (k + 1)2

=
k(k + 1)(2k + 1)

6
+

6(k + 1)2

6

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)[k(2k + 1) + 6(k + 1)]

6

=
(k + 1)[2k2 + 7k + 6]

6

=
(k + 1)(k + 2)(2k + 3)

6
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which equals (k+1)((k+1)+1)(2(k+1)+1)
6 , the result for k + 1.

Since P(k) =⇒ P(k + 1) we necessarily then have that P(n)
holds for all n.

Caution!

A surprising number of students make serious errors when working
through proofs because of mixing up the hypotheses and the conclu-
sion by mistakenly assuming what is to be proven! This can often
happen in sometimes subtle ways so let’s review.
Let C be a claim we wish to prove. For instance the claim might be
something like “there are infinitely many prime numbers". We could
restate this claim as “For every given prime number, there exists a
larger prime number". Stated this way, it’s more obvious what the
hypothesis and conclusion are, namely the hypothesis here is “If you
give me a prime number" and the conclusion is “There will always be
a larger prime number". If I call the hypothesis P and the conclusion
Q, we want to prove that P =⇒ Q and we would be wrong to assert
Q without having begun at P.

Sets

A lot of the definitions and proofs in the course are phrased in the language
of sets. Sets are the primary foundational objects in mathematics. A set S
is simply a collection of elements. These elements are often indicated as
an unordered list S = {s1, s2, ..., sm} say for the case of a finite set (a set
with a finite number of things in it). The real numbers R are an example of
a familiar (hopefully) set with an infinite number of elements9. So is the set 9 The real numbers are the continuum

of numbers on the number line used for
graphing functions in high school. This is
the set which contains all integers, fractions,
and numbers like π, e and other numbers
with non-repeating decimal expansion.

N = {0, 1, ....} of natural numbers.
We use the notation #S to denote the number of elements10 in the set S .

10 Also called the cardinality of the set S .

For example #{2, 3, 5, 7, 11} = 5. By fiat we say that #S = ∞ for sets S with
an infinite number of elements.

The primary relationship used to describe sets is membership, denoted
by the symbol ∈ or its negation < read as “in" or “not in", respectively. This
symbol is used to indicate that an element is in a given set: namely, s ∈ S
means the element s is a member of the set S . These symbols can be oriented
in a reversed way as 3 and = so that

s ∈ S ⇐⇒ S 3 s

In other words, the above are equivalent statements.
Often, the sets we encounter in this course are described by listing condi-
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tions inside the defining brackets of the set. For example

Q = {
p
q
| p, q ∈N, q , 0}

describes the set of rational numbers. Notice, in the above, that the vertical
line | (some people use colons instead of vertical lines) separates the left
hand side, which gives a description of the elements, from the right hand
side, which gives a restriction on the things appearing on the left hand side.
Notice, in the above, p, q don’t really exist since they represent placeholders
for numbers which meet some restrictive criteria: if I were to replace them in
all occurrences, I would still have the same set description, namely

{
p
q
| p, q ∈N, q , 0} = {

s
r
| s, r ∈N, r , 0}

are both perfectly valid descriptions of the set Q. This property of the vari-
ables appearing in the sets above, that the variables can be replaced by any
other unused variable provided the replacement is done in all occurrences
of the variable, is termed binding and the variables are said to be bound
variables. A misunderstanding of the differences between free and bound
variables is a source of constant trouble for many MAT223 students. If you
are confused - don’t wait to get unconfused because this issue is crucial in
understanding the concepts throughout the semester.

As well, there are a few natural binary operations11 The first one is the 11 Operations which takes two operands, in
this case two sets.union operation, denoted ∪. Unioning two sets S 1, S 2 creates a new set

S 1 ∪ S 2 containing all elements which appear in either set S 1 or S 2 or both.
The way we write this fact is

S 1 ∪ S 2 = {s | s ∈ S 1 or s ∈ S 2}

Another natural binary operation is the intersection operation ∩ which takes
two sets S 1, S 2 and creates a new set S 1 ∩ S 2 containing elements which
appear in both S 1 and S 2.

In addition to the above there are binary inclusion relationships. For
instance S 1 ⊂ S 2 means that S 1 is a subset of set S 2. What that means is that
everything in S 1 must also be in S 2. Namely

s ∈ S 1 =⇒ s ∈ S 2, for all s ∈ S 1

Establishing that implication above, for an arbitrary element s ∈ S 1, is all
that’s required to show that S 1 ⊂ S 2. Here I want to make an important
point about notation: different people prefer different conventions, and some
authors prefer the notation S 1 ⊂ S 2 to generally indicate that S 1 is a proper
subset of S 2, namely that S 1 is not actually equal to S 2. Those authors
may use notation like S 1 ⊆ S 2 to indicate the neutral position, not making
assumptions about whether S 1 is a proper subset or not. But many authors
(the majority) use the notation ⊂ and ⊆ interchangeably and will use the
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notation S 1 ( S 2 to denote that S 1 is a subset contained in, but not equal to,
set S 2. All of these notations have their reversed counterparts ⊃,⊇,) which
simply reverse the inclusion relationship to be read from right to left.

When are two sets equal? Clearly, when they have the same elements. In
other words S 1 = S 2 must means that everything in set S 1 must appear in set
S 2, i.e. S 1 ⊆ S 2 and everything in set S 2 must appear in set S 1 i.e. S 2 ⊆ S 1.
In other words

S 1 = S 2 ⇐⇒ S 1 ⊆ S 2 and S 2 ⊆ S 1

This is a standard approach to showing two sets are equal which we’ll use
through the semester so make sure you understand what it says and why it’s
valid.

Two final comments about sets. First, there’s a (somewhat pathological)
set that appears as a subset of every set - namely, the empty set. The empty
set, denoted ∅ (or {}) is what its name implies, it’s a set with no elements.
Its utility is there for reasons of mathematical consistency well beyond the
scope of what we will encounter in this course. Note well that ∅ is the only
set satisfying #∅ = 0. Secondly, there’s an operation called complementing,
which given a set S produces a set S c called the complement of S . S c is a set
whose elements are all elements not appearing12 in S . For instance, what is 12 A subtle point: the idea of taking

complements raises the question of to
which ambient set are we referring? For
instance, is ∅c = N or R or something else
altogether? For the most part, the context
is clear and so this isn’t an issue. When
complete clarity is needed, the notation
S 2 \ S 1 will be used. S 2 \ S 1 means all
elements in S 2 which are not in S 1. This
indicates that S 2 is the ambient set for which
to take complements.

Qc? Well, it should be all numbers not expressible as ratios of integers. In
other words, it’s the set of irrational numbers. So we have π ∈ Qc,

√
2 ∈ Qc,

etc.

Expectations

In general we expect complete facility with the logic of things like “A =⇒

B is equivalent to (notB) =⇒ (notA)" on tests and quizzes. In other words,
basic logic and solid reasoning is what we expect of you.

That said, of course we don’t expect you to be able to prove super hard
things on quizzes or tests so you shouldn’t stress too much. Most of what we
will ask for in a conceptual or proof-style question on a test can be done in
only a few lines, just a short, rigorous explanation which correctly applies
definitions or known theorems. Often, amazingly, performing a rigorous
argument isn’t a whole lot harder than being able to write down a definition
and think about what it actually means, and think through the consequences
of the assumptions you’ve been given.

As well, you may be asked to give definitions of things we’ve gone over
in lecture or in homework. These should be easy, free points. All we ask is
to restate a definition. It’s our way of checking that you are paying attention
and really internalizing the concepts. But, of course, the definition has to be
precise and correct!
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Tips on Preparing

I haven’t discovered some new, super-fancy and stress-free way of mastering
mathematics. All I can offer are a few, very general suggestions. They do
work, but you actually have to do them in order for them to work. Most
people end up trying to “yeah, yeah" and cut a few corners. What you do with
my well-meant suggestions is up to you.

1. Working with friends can help a lot. It can help because it gives you the
opportunity to explain your reasoning, out loud, to another person. You’d
be surprised how helpful that can be.

2. Working all the suggested problems. Mathematics isn’t a spectator
sport. The only thing that makes you better is practice, practice, practice.

3. Not getting behind. The semester moves fast. It’s very easy to procrasti-
nate and fall behind on homework. It’s a recipe for disaster in a course like
this because cramming won’t help much. Staying on schedule and being
diligent with the homework requires discipline but it’s worth it.

4. Don’t miss tutorials. Exiting course grades are strongly correlated with
attendance in tutorials and performance on quizzes. Not attending tutorials
is a very reliable predictor of poor final grades.

5. Use the class Piazza. It’s there for you to ask questions and learn from
each other. I wish it had been around when I was a student.

6. Try to make time each day to work on MAT223 related things. This
could be as easy as reading the book for 20 minutes every other day and
doing problems in the days between. If you can find a routine where
you reliably spend a portion of each day working problems, thinking
through concepts, reading material, etc. you’ll find your ability to retain
the information greatly enhanced.

7. Get enough sleep. You’d be amazed at the benefits of sleep. I tried very
hard as an undergrad to sleep a lot, especially before any tests. In general,
the mental sharpness a good night’s sleep gave far outweighed any little
cramming I’d get by staying up too late.

8. Try reading ahead. If you read a few pages of the next lecture’s topic, it
often improves your ability to follow the lecture.

Crowdsourced Tips for Success

An excellent question was asked on Piazza in Fall, 2016. I’m sharing it and a
few of the responses it received since I consider the advice therein to be very
helpful. Here was the original posting.13 13 Forgive the small font, it happens to be

the only way to have a reasonable looking
image but it’s admittedly hard to read.
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And here’s the first answer posted, which indicates the diligence typical of
students who perform well on hard tests.

Then I chimed in with my two cents.

And there was another commenter with additional ideas.

And, lastly, a voice from one of the 3 students who earned a perfect score
on midterm 2. As in my own thoughtlets before, there isn’t really a “royal
road" here. There’s just hard work and the ability to stay calm in a test
environment. Being prepared is one of the best ways to remain calm.
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I encourage you to study the success stories carefully and glean what you
can from them. The big takeaway is that doing well requires a lot of work,
and a strong desire to succeed. Good luck in your studies!

Exercises

Do the following exercises offline.

1. Describe the sets {x ∈ R | x
2 = k, k ∈N} and {x, y ∈ R | x

y = 2, y , 0}

2. Describe the set {x ∈N | x , kl, k, l ∈N, k < x, l < x, k , 1, l , 1}

3. Write down a definition of S 1 ∩ S 2 using set notation.

4. Show that (S 1 ∩ S 2)c = S c
1 ∪ S c

2 holds for all sets S 1 and S 2.

5. Show that (S 1 ∪ S 2)c = S c
1 ∩ S c

2 holds for all sets S 1 and S 2.

6. Prove that (S 1 ∩ S 2) ⊂ (S 1 ∪ S 2) holds for all sets S 1 and S 2.

7. Are the notations {s} ⊂ S and s ∈ S interchangeable? Why or why not?

8. Prove that for any subset T of set S , we have S = T ∪ T c

9. Here’s a claim: S = T ⇐⇒ #S = #T . If true prove it. If false, give a
counterexample.

10. Use induction to prove that 1 + 2 + · · ·+ n =
n(n+1)

2 for all positive
integers n.

11. Use induction to prove that 2 + 22 + · · ·+ 2n = 2n+1 − 2 holds for all
n > 0.

12. Use induction to prove that 7n < 8n+1 holds for n ≥ 0, n ∈N

13. Use induction to prove the following claim: Every nonempty subset of
N has a smallest element.
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14. Consider a set S . We define a new set, P(S ) = {all subsets of S}.

• Write down P({0, 1}).

• Write down P({0}) and P(P({0}))

• Use induction to prove that #P(S ) = 2#S holds for all sets with
#S < ∞

15. (Harder). Consider the set S = {s | s < s}. Is this set well-defined? Why
or why not?

16. (Harder). Use induction to prove that 8n − 3n is divisible by 5 for n > 0

17. (Harder). Consider a well-known incorrect use of induction used to
“prove" the false claim that cars are all the same colour. The “proof" goes
like this:

The claim is that cars are all the same colour. This is equivalent to the
claim that any set of cars must contain cars of the same colour. The claim is
trivially true for the base case of n = 1 cars since, after all, a car has only
one colour.14 Next, we’ll assume that the claim is true for all sets of n cars 14 Though this isn’t true for real cars, we’ll

actually pretend this is true for cars here.
In other words this line is not where the
mistake happens.

are we’ll now consider a set of n + 1 cars, {car 1, car 2, ..., car n, car n + 1}.
We’ll consider two subsets of this set C1 = {car 1, car 2, ..., car n} and
C2 = {car 2, ..., car n, car n + 1}, each of which is a set of n cars. Therefore,
by our induction hypothesis, C1 and C2 only contain cars of a single colour.
But then again, since there’s overlap in the entries of C1 and C2 the colour
of each must be the same. Therefore {car 1, car 2, ..., car n, car n + 1} must
have only cars of a single colour. Thus, cars are all of the same colour.

What went wrong with the above “proof"?

18. (Harder). In a previous question you were asked to use induction to show
that every nonempty subset of N has a smallest element. Now show the
converse. Namely show that if the claim that every nonempty subset of N

has a smallest element is a true fact about set the N, then induction is a
valid method of proof.
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This chapter introduces you to the main subject of study in this course:
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systems and develop a rigorous procedure for solving the solvable ones.



20

Linear Equations

This course is about solving systems of linear algebraic equations. We’ll
be dealing with methods of abstracting the fundamental concepts which are
crucial in understanding such systems. In order for this to be comprehensible,
we’ll need to have a completely thorough understanding of the concrete
specifics on which the abstraction in based.

With that in mind, let’s first recall that a single linear algebraic equation, in
variables x and y is an equation like

ax + by = c

In the above, x, y are variables while the numbers a, b, c are coefficients. As
the coefficient c doesn’t appear as being multiplied by a variable, we give it
a special name and refer to it as the constant term. Often we place constant
terms on the right hand side of the equals sign. If the constant term c = 0 we
call the equation homogeneous.

In general, coefficients are givens, in the sense that we cannot change
their explicit values whereas the variables are unknowns because they are
placeholders for numbers we’d like to determine. Therefore, we often refer to
the above as one equation in two unknowns. For example,

x − 2y = 5

has a = 1, b = −2 and c = 5. All this is just to remind you that the
letters we’ll use to represent coefficients are fixed values whereas generally
the letters we use to represent variables are meant to be unknown but not
necessarily fixed values.

By a solution to a linear equation like the above we mean an assignment
of values to the variables resulting in a valid equality. For instance, the
assignment of x = 3 and y = −1 in the above yields 3 − 2(−1) = 5. In this
example the assignment x = 3, y = −1 works as well. In fact, this example
actually has infinitely many solutions as we can see by rewriting it as

x = 5 + 2y

In this form notice that each value we assign to the variable y, by construction
must result in a valid assignment of a value for x. In other words, you can
now immediately see that, for instance, if y = 17 then x = 5 + 2(17) = 39
so x = 39, y = 17 must be a valid solution to the original equation. 15 15 Notice that writing it this way is equiv-

alent to writing x = f (y), viewing x as a
function of y.

By a solution set to a linear equation we mean the collection of all possible
solutions. For instance, the solution set to the equation x − 2y = 5 is

{(x, y) | x = 5 + 2y, y ∈ R}

which is the set of all pairs of numbers satisfying the constraint that the first
number in the pair is always 5 plus twice the second number in the pair.
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Phrasing things this (overly verbose) way should highlight that we may also
write the solution set above as

{(x, y) | x = 5 + 2t, y = t, t ∈ R} (0.0.1)

a point we focus on in the next section.
A final remark. In high school, you’ll recall that the solution set for linear

equations like −mx+ y = b is visually represented as the graph of the function
y = f (x) = mx + b. While this visual reminder is helpful early one when
we increase the number of variables it can become much harder to visualize
solution sets.

Parameterized Solutions

We can express the relationship between y and x implicitly expressed in the
equation x = 5 + 2y by writing the solution in so-called parameterized form
as  x = 5 + 2t

y = t, t ∈ R

Where, in the above, we’ve introduced a parameter t ∈ R, which implicitly
varies over an infinite range of values.16 Namely, t = 1, t = −3, t = π 16 Take a moment to compare the above with

(0.0.1) to verify that they are equivalent.give three different values of pairs (x, y) each of which solves the original
linear equation. We refer to the parameterized solution above as the general
solution to the linear equation as every particular solution like x = 3, y =

−1 can easily be obtained from the general solution by using a particular
choice of parameter.

Definition 1

A parameterized solution to a linear equation is a solution written in
terms of one or more parameters. Parameters are variables presumed
to vary over a given range of values, each of which gives a valid
solution to the original linear equation.

As the definition indicates and the next example clarifies, parameterized
solutions may well consist of multiple parameters.

Example 2

Find the general solution, in parametric form, to the linear equation in
three unknowns 2x − 3y + 6z = 19.
Solution: We pick a variable (in this case x) to stay on the left hand
side of the equals sign and move all others to the right giving

2x = 19 + 3y − 6z

Diving by the coefficient on x gives us x = 19
2 + 3

2 y − 3z. Finally, we
can introduce two parameters t, s to write the parameterized solution
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as 
x = 19

2 + 3
2 t − 3s

y = t

z = s

for s, t ∈ R

The utility of the above is that we can set t and s to be any numbers we
wish and plugging them into the formula will immediately yield a valid
assignment of values to variables x, y, z. For instance, t = 2, s = 1 gives,
x = 8, y = 2, z = 1 as one particular solution to the linear equation.

In the previous example there was nothing canonical about the choice of x
as staying on the left hand side of the equals sign. We could just as well have
written the parameterized solution as, say,

x = t

y = − 19
3 + 2

3 t + 2s

z = s

for t, s ∈ R. Another important remark is that the parameters are logically
bound variables17 which means that they may be replaced by different 17 Make sure you understand the discussion

about free versus bound variables in the
Introduction.

variables, provided the replacement is made in all occurrences, if you wish.
For example, in the above example we’d obtained

x = 19
2 + 3

2 t − 3s

y = t, t ∈ R

z = s, s ∈ R

But we can use a new parameter t̃ = 3
2 t and s̃ = −3s to give an equivalent

general solution to the same problem
x = 19

2 + t̃ + s̃

y = 2
3 t̃, t̃ ∈ R

z = − 1
3 s̃, s̃ ∈ R

This is a subtle and important point which will recur throughout the course
- if t, s are arbitrary numbers, then so must be t̃ = c1t and s̃ = c2s for any
nonzero c1, c1so there cannot be a unique parametric form for the general
solution to a linear equation.

In fact, having done such a change of parameters doesn’t warrant giving
the parameters new symbols! We often prefer to simply write

x = 19
2 + 3

2 t − 3s

y = t, t ∈ R

z = s, s ∈ R

describes the same solution set as


x = 19

2 + t + s

y = 2
3 t, t ∈ R

z = − 1
3 s, s ∈ R
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Notice that we use the same symbols t, s in both parameterized forms of
the general solution without any problems since, owing to the fact that the
parameters are bound variables, they are simply placeholders for particular
numbers and therefore don’t have intrinsic values associated with them.
Again, this is often a point of confusion for many students so please review
this example carefully.

General Linear Equations

We can generalize the simple examples described in the previous section by
increasing the number of variables and coefficients in a linear equations. To
do this we often write things like

a1x1 + a2x2 + · · ·+ anxn = b

for a linear equation in n variables x1, ..., xn. We also call this one equation in
n unknowns. As we’ve done before we have the constant term b on the right
hand side of the equals sign. If b = 0 we call this equation homogeneous.
We use subscripts on coefficients and variables since otherwise for equations
with lots of variables we’d quickly run through the alphabet and not have
enough symbols. We say that the equation is consistent if it has at least one
solution and inconsistent otherwise. For example, the linear equation x − 2y =

5 is consistent since, as we already saw, it has infinitely many solutions
(which we can describe using a parameterized form for the general solution).
You might be wondering how a linear equation could be inconsistent. To see
how this could happen consider a simple equation of the form ax = b with
a = 0 and b = 1. Clearly no value of x could solve such an equation so
therefore the equation must be inconsistent.

Systems of Linear Equations

A system of linear equations is precisely what its name implies - namely, a
collection of linear equations in the same unknown variables. For example

x − 2y = 5
7x + 15y = 6

(0.0.2)

is a linear system of two equations in the two variables x, y.
Generalizing this, we have a system of m linear equations in n unknowns,

generally takes the form

a11x1 + a12x2+ · · · +a1nxn = b1

a21x1 + a22x2+ · · · +a2nxn = b2
...

...
...

am1x1 + am2x2+ · · · +amnxn = bm

(0.0.3)

In the above, we’re using double subscripts like ai j to denote the coefficient
of variable x j appearing in the ith equation. In general of course, the order
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matters - i.e. a31 , a13 etc. We can unambiguously reference the coefficients
in such a system by the notation ai j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. We may refer
to the coefficient ai j as the (i, j)′th coefficient of the system. As well, the
coefficients appearing on the right, b1, ..., bm are the constant terms. If the
constant terms are all zero, then the linear system is homogeneous.

The important thing is that the variables x1, x2, ...xn are the same in all
equations. Each equation in (0.0.3) can be seen as imposing an additional
constraint on the allowed values for the variables x1,...,xn, since in general
adding new equations can never serve to increase the possible numbers of
solutions to the system. As with linear equations, by a solution to a linear
system of equations we simply mean a particular assignment of values to
the variables such that all equations in the system are valid. Of course, the
collection of all possible solutions to a given system of equations is called the
solution set of the system. Notice that this definition allows for the solution
set to be empty. If there is one, and only one, solution in the solution set
for a given linear system, then we say the solution is unique. These are
summarized below.

Definition 2

A linear system is said to be

• Consistent if there is at least one solution in the solution set

• Inconsistent if there are no solutions

Moreover, we say that the solution is unique if it is consistent and
there is one and only one solution solution in the solution set. If the
system is consistent but there is more than one solution, we say that a
given solution is not unique.

The following is a fundamental result characterizing the nature of consis-
tency of solutions to systems of linear equations.

Theorem 1

A linear system of equations

a11x1 + a12x2+ · · · +a1nxn = b1

a21x1 + a22x2+ · · · +a2nxn = b2
...

...
...

am1x1 + am2x2+ · · · +amnxn = bm

can only have 0, 1 or infinitely many solutions.
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Proof

If the system of equations is not solvable then it definitely has 0
solutions and there’s nothing left to prove. So suppose that the
system of equations is consistent and that the solution set is S . If
#S = 1 then, yet again, there’s nothing left to prove. So let’s
consider the case of #S > 1. In other words, suppose that there
are two distinct elements s1, s2 ∈ S , where s1 , s2. Each so-
lution, s1 say, is just a set of values for the variables in the lin-
ear system, i.e. s1 = {x1 = c1, x2 = c2, ..., xn = cn} and
s2 = {x1 = d1, x2 = d2, ..., xn = dn} where ci , di for at least
one i. But then now we can define

s3 = {x1 = k1c1 + k2d1, x2 = k1c2 + k2d2, ..., xn = k1cn + k2dn}

for any choice of nonzero numbers k1, k2 such that k1 + k2 = 1. You
can easily verify that s3 ∈ S and s3 , s1, s3 , s2. Notice
we can select infinitely many choices of nonzero k1, k2 such that k1 +

k2 = 1 so therefore there are infinitely many more ways to select ele-
ments like s3. Thus, #S = ∞ and the result is proved. �

Equivalence

Our strategy in solving systems of linear equations is to perform various
manipulations on them in order to transform them into equivalent, but simpler
to solve, systems. The following definition gives us the right manipulations to
attempt.

Definition 2: Equivalent Systems

Two systems of linear equations are said to be equivalent if, and only
if, they have the same solution set.

Making this concrete, let’s consider (0.0.2). We already saw that the
first equation in (0.0.2), x − 2y = 5, has infinitely many solutions, which
we were able to produce in a simple parameterized form. However, not all
of those solutions will be solutions to the full system (0.0.2). For instance
x = 1, y = −2 solves the first but not the second of the equations in the
system. To try to solve a system like (0.0.2) we recall a few observations
about manipulations of simultaneous algebraic equations from high school.
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Definition 3: Elementary manipulations of systems

For a system of linear algebraic equations

a11x1 + a12x2+ · · · +a1nxn = b1

a21x1 + a22x2+ · · · +a2nxn = b2
...

...
...

am1x1 + am2x2+ · · · +amnxn = bm

we can always

1. Swap the order of any two equations (called interchange)

2. Multiply both sides of any equation by a nonzero constant (called
scaling)

3. Replace an equation with the result of adding a multiple of it and
another equation (called replacement)

The set of solutions to the system of equations which results from
any of the above elementary manipulations is the same as the set of
solutions to the original system (the systems are equivalent).

The way that we systematically solve systems of linear equations is by
careful and successive application of the allowed equation manipulations
listed above so that the system appears in a nicer for than it began. The next
example illustrates this in detail.

Example 3

Solve system (0.0.2)
x − 2y = 5

7x + 15y = 6

by use of elementary equation operations.
Solution Let’s begin by replacing the current second equation with

new second equation = −7 × (first equation) + second equation

This results in the system

x − 2y = 5
0x + 29y = −29

Next we apply the scaling operation

new second equation =
1

29
(second equation)

to get the system
x − 2y = 5

y = −1
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We’ll perform one last elementary manipulation of the rows by replac-
ing the first row with the result of adding the first equation and twice
the second equation as in

new first equation = first equation + 2(second equation)

The result of which yields

x = 3

y = −1

which, as you can check, solves the original system of equations.

Make sure you heed the following caution about correct manipulations of
linear systems.

Caution!

You’ll notice that nowhere in the list of elementary equation manip-
ulations is there a rule saying something like “put one variable in
terms of another and substitute that variable into another equation
and..." Often, students learn to solve a simple system by means of
such substitution techniques. This is NOT how we solve systems of
linear equations in general.
For instance, it would be wrong (and result in no points on an exam)
to try to solve

x − 2y = 5
7x + 15y = 6

by saying

x − 2y = 5
7x + 15y = 6

=
x = 2y + 5

7x + 15y = 6

=⇒ 7(2y + 5) + 15y = 6

=⇒ (14 + 15)y = 6 − 35

=⇒ y = −
29
29

= −1

=⇒ x = 2(−1) + 5 = 3

The above “method" for solving the linear system is not allowed in
the course. The reasons for why it’s not a reliable method will, hope-
fully, become obvious as the course progresses. The only methods
we may use to solve systems of linear equations right now are those
outlined in the Elementary Manipulations of Systems.

Of course, just like with single equations we may encounter parameterized
solutions when solving systems of equations as the next example illustrates.
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Example 4

Solve
x + y + 7z = 0
5x + y − z = 8

.

We begin with a replacement operation, subtracting 5 times the first

row from the second row resulting in
x + y + 7z = 0
−4y − 36z = 8

. We can

then perform a scaling operation on the second equation by dividing it

by −4 which gives
x + y + 7z = 0
y + 9z = −2

. Then we use a replacement

operation to subtract equation 2 from equation 1 yielding

x −2z = 0
y + 9z = −2

At this point we can see that both x and y variables can be solved
for in terms of the variable z so we can write the solution set in the
following parameterized form

x = 2t

y = −2 − 9t

z = t, t ∈ R

Since the system is solvable we say the system is consistent. Because
the solution set is infinite, the solution is not unique.

The Reduction Algorithm

We’re going to systematize the method we introduced in the last section for
attempting to solve systems of linear equations. Let’s begin by noting that
when give a system like

x − 2y − 4z = 5
7x + 15y + 2z = 6
x + 3y − 12z = 0

we can concentrate on the coefficients by considering the array of numbers
making up the system, namely,

1 −2 −4 5
7 15 2 6
1 3 −12 0


referred to as the augmented matrix of the linear system. Each row of the
above matrix18corresponds to an equation in the original system. The first 3 18 Matrix in this context simply means a

two-dimensional array of numbers.columns of the above matrix correspond to variables in the original system,
whereas the 4th column corresponds to the constant terms. For the purposes
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of trying to solve a linear system it’s enough to work with the associated
augmented matrix. The array of numbers

1 −2 −4
7 15 2
1 3 −12


is the coefficient matrix for the system and


5
6
0

 is the constant matrix for the

system. Thus, the augmented matrix is the coefficient matrix and the constant
matrix for a system separated by a vertical line.19 19 Many authors choose not to include the

vertical line since the constant matrix always
appears as the rightmost column of the
augmented matrix.

It’s easier to work with numbers rather than with equations. Since each
row of the augmented matrix associated to a linear system is an equation of
the system, our elementary manipulations of systems from last section can
now be restated in terms of operations on rows of matrices.20 20 The plural form of matrix is matrices.

Definition 4: Elementary Row Operations

The following are called elementary row operations on a matrix.

1. Swap the order of any two rows (called interchange)

2. Multiply a row by a nonzero constant (called scaling)

3. Add any multiple of one row to a different row (called replace-
ment)

Performing any of the above elementary row operations to an aug-
mented matrix for a linear system produces an augmented matrix for
an equivalent system.

Any two augmented matrices whose linear systems have the same solution
set are said to be equivalent (or row equivalent). Clearly elementary row
operations produce equivalent matrices. We indicate that two matrices, A and
B are equivalent by the notation A ∼ B.

Let’s go back and revisit an earlier example from the point of view of
augmented matrices.

Example 5

Solve
x − 2y = 5

7x + 15y = 6

by use of elementary row operations on the associated augmented
matrix.
The corresponding augmented matrix is1 −2 5

7 15 6
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We can apply a replacement operation by adding −7 times row 1 to
row 2, which will give us the opportunity to use a nice notation as
well. 1 −2 5

7 15 6

 R2−7R1
−−−−−−→

1 −2 5
0 −29 −29


Then we perform a scaling operation, followed by another replace-
ment operation.1 −2 5

0 29 −29

 1
29 R2
−−−−→

1 −2 5
0 1 −1

 R1+2R2
−−−−−−→

1 0 3
0 1 1


The system above corresponds to

x = 3
y = 1

so we can simply read

off the solution.

In the last example we used a helpful bookkeeping system to indicate
which elementary row operation we performed. Namely we used arrows

with row combinations above them. For instance
R4−5R2
−−−−−−→ would indicate

replacing row 4 by row 4 minus five times row 2. Swapping two rows could

be indicated by, say,
R2↔R5
−−−−−−→ which would mean interchange rows two and

five.
Caution!

Be careful when using elementary row operations to avoid combining
multiple operations into a single step. Namely, when performing a
sequence of elementary row operations, get in the habit of doing them
one at a time. Namely, instead of1 0

0 1

→ 0 5
7 0


The above should be indicated as being the following sequence1 0

0 1

 R1↔R2
−−−−−−→

0 1
1 0

 5R1
−−−→

0 5
1 0

 7R2
−−−→

0 5
7 0


Whether or not a matrix is considered an augmented matrix, we’re going

to look at an algorithm for solving a system by applying a sequence of row
operations to a corresponding matrix. For this, we begin by characterizing
a “nice" form for matrices. Namely, in the preceding example, we ended up

with the “nice" matrix
1 0 3
0 1 1

 which has a form allowing us to simply

read off the values of the associated variables. Our goal is to develop a
systematic procedure for applying elementary row operations to matrices
to get them into this kind of “nice" form so we can immediately read off

solutions, if they are solvable, or determine if the solution is inconsistent
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otherwise.
We say that a row is a zero row if every number in that row is zero. As

well, we call the first nonzero entry in a nonzero row the leading entry for
that row.

Definition 5: Row Echelon and Reduced Row Echelon Form

A matrix is said to be in row echelon form or REF if it satisfies

1. Any zero rows appear at the bottom of the matrix

2. The leading entry in a given nonzero row appears in a column to
the right of the leading entry in the row above it (if any).

3. All entries (if any) in a column below a leading entry are zero.

Furthermore, a matrix is said to be in reduced row echelon form or
RREF if it’s in row echelon form and additionally satisfies

1. All (if any) leading entries are 1.

2. Each leading 1 (if any) is the only nonzero entry in its column.

The above is a lot to absorb so give it some thought. While being cumber-
some to state it has the power of being very precise. So precise, in fact, that a
computer can readily verify whether a given matrix is in RREF.

Example 6

We use the convention that � is an arbitrary nonzero number (i.e.
leading entry) and ∗ shall denote any number. Then, as you can
verify, 

� ∗ ∗ ∗

0 0 � ∗

0 0 0 0


and 0 � ∗

0 0 0


are both in REF.
The matrices 0 1 ∗ 0

0 0 0 1

 ,


1 ∗ 0 ∗

0 0 1 ∗

0 0 0 0
0 0 0 0


are in RREF. These example illustrate the more general fact that REF
and RREF matrices have a “staircase" like pattern to them.

It turns out (though we will not prove it) that every matrix is equivalent
to a matrix in reduced echelon form. In other words, given any matrix, there
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exists a sequence of elementary row operations you can apply to it which
will, in the end, result in a matrix in RREF. Notice that this fact implies that
to each matrix, there are special positions, called pivot positions which are
locations of leading entries in the RREF of a given matrix. For example,
the matrix 

0 0 4
1 0 2
0 0 0


has pivot positions, indicated by �, in the locations


� 0 0
0 0 �

0 0 0

, namely in

the (1, 1) and (2, 3) spots. Similarly, pivot columns of a matrix are columns
containing pivot positions. So, in the preceding example, columns 1 and 3
are pivot columns. Notice that, in this example, 0 can occupy a pivot position
since pivot position is defined by the equivalent reduced form of a given
matrix, not necessarily by the current form of the matrix.

The Reduction Algorithm

We can now describe an algorithm which will be used to determine if a given
linear system is consistent and, if so, what it’s solution set it. Namely, the
algorithm will find a matrix’s unique RREF form by using elementary row
operations.

Definition 6: Reduction Algorithm

Apply the following to A in order to produce the unique RREF matrix
equivalent to A.

1. Select the leftmost nonzero column, if one exists. This is a pivot
column. If none exists, the matrix is already in RREF, so stop.

2. Select (possibly using row interchanges) a nonzero entry from this
pivot column to place into the pivot position. This entry is called a
pivot.

3. Use replacement operations to produce zeros in the pivot column
below the pivot.

4. Apply the above steps 1–3 on the submatrix of rows to which the
above has not already been applied.

After applying the above, the matrix will be in REF. Since, at each
pass through steps 1–3 a new leftmost column is selected, this is
called the forward phase of the algorithm. Now to get it into RREF
we must apply the backwards phase to the output.

1. Select the rightmost pivot position, if one exists. If needed, use
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a scaling operation to ensure that the pivot occupying the pivot
position is 1. If none exists, stop.

2. Use replacement operations with the pivot you’ve selected to
create zeros above the pivot.

3. Apply the above two steps on the submatrix of rows for which the
above has not yet been applied.

The following demonstrates the algorithm.

Example 7

The algorithm can be applied to any matrix but for this example, we’ll

apply it to the augmented matrix


1 −2 0 5
7 −8 1 5
2 8 5 −53

. To begin, the

first column happens to be the leftmost nonzero column. It’s pivot po-
sition already contains 1 as a pivot. We apply replacement operations,
using that pivot to create zeros in the pivot column.
1 −2 0 5
7 −8 1 5
2 8 5 −53

 R2−7R1
−−−−−−→


1 −2 0 5
0 6 1 −30
2 8 5 −53

 R3−2R1
−−−−−−→


1 −2 0 5
0 6 1 −30
0 12 5 −63


Next, we apply the algorithm to the submatrix

 6 1 −30
12 5 −63

, namely

we have 
1 −2 0 5
0 6 1 −30
0 12 5 −63

 R3−2R2
−−−−−−→


1 −2 0 5
0 6 1 −30
0 0 3 −3


We next apply to algorithm to the submatrix

[
3 | −3

]
for which there’s

nothing to apply. So we have now completed the forward phase.

Notice that our resulting matrix,


1 −2 0 5
0 6 1 −30
0 0 3 −3

 is in row echelon

form. We proceed to the backwards phase. The rightmost pivot is the
element 3 in the third column.
1 −2 0 5
0 6 1 −30
0 0 3 −3


1
3 R3
−−−→


1 −2 0 5
0 6 1 −30
0 0 1 −1

 R2−R1
−−−−−→


1 −2 0 5
0 6 0 −29
0 0 1 −1


Now we go through the steps again with the next most rightmost
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pivot, which happens to be the 6. This gives
1 −2 0 5
0 6 0 −29
0 0 1 −1


1
6 R2
−−−→


1 −2 0 5
0 1 0 − 29

6
0 0 1 −1

 R1+2R2
−−−−−−→


1 0 0 5 − 29

3
0 1 0 − 29

6
0 0 1 −1


which equals


1 0 0 − 14

3
0 1 0 − 29

6
0 0 1 −1

. Applying the algorithm one last time

to the last remaining pivot we see that it’s already a 1 and we can stop.

Notice that the result


1 0 0 − 14

3
0 1 0 − 29

6
0 0 1 −1

 is in RREF.

The prior example illustrates the utility of the reduction algorithm in
solving linear systems. Namely, to solve the linear system

x −2y = 5
7x −8y +z = 5
2x +8y +5z = −53

we simply apply the reduction algorithm to the associated augmented matrix,
1 −2 0 5
7 −8 1 5
2 8 5 −53

 ∼

1 0 0 − 14

3
0 1 0 − 29

6
0 0 1 −1

 which in this case corresponds to

x = − 14
3 , y = − 29

6 , z = −1.
Suppose that we have applied the reduction algorithm to an augmented

matrix for a linear system and the result is, say,
1 0 2 6
0 1 5 7
0 0 0 0


Which corresponds to the system of equations

x +2z = 6
y +5z = 7

The variables, x and z which appear in the pivot columns are referred to as
basic variables (sometimes also called a leading variable) while the variable
in the non-pivot column, y is a free variable. We’ve seen how to deal with
cases like this before, namely we expressed the solutions in terms of a
parameter by expressing the basic variables in terms of the free variables.
Namely, the solution set is given by

x = 6 − 2t

y = 7 − 5t

z = t, t ∈ R
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Definition 7: Solving Systems by Reduction Algorithm

Given a linear system

a11x1 + a12x2+ · · · +a1nxn = b1

a21x1 + a22x2+ · · · +a2nxn = b2
...

...
...

am1x1 + am2x2+ · · · +amnxn = bm

construct the corresponding augmented matrix [A | b], where A is the
coefficient matrix of the system and b is the constant matrix of the
same system. To solve the system do the followiing:

1. Apply the reduction algorithm to the augmented matrix [A | b] to
produce an RREF matrix R

2. If the RREF matrix R has a row of the form
[
0 0 · · · 0 1

]
the original system is inconsistent

3. Otherwise express all basic variables in terms of any free variables
which may appear. If there are no free variables the solution is
unique otherwise express your answer in a parameterized form
(with free variables acting as parameters).

We remark that in the above we’ve observed that if the RREF of the
aumented matrix corresponding to a linear system contains a row like[
0 0 · · · 0 1

]
then the original system must be inconsistent. After

all, such a row would correspond to an equation of the form 0x1 + 0x2 + · · ·+

0xn = 1, an impossibility. We can make this is a little more concrete in the
following theorem.

Theorem 8

A linear system is consistent if and only if the last column of the
associated augmented matrix is not a pivot column

Proof

First let’s assume that the given linear system is consistent and prove
that the last column of the associated augmented matrix is not a
pivot column. This is logically equivalent to saying that we want to
show that if the last column of the associated augmented matrix is a
pivot column then the system must be inconsistent. Well, if the last
column is a pivot column then the RREF of the augmented matrix
has a row that looks like

[
0 0 · · · 0 1

]
, and we’ve seen above

that this corresponds to a nonsolvable equation, so the system must be
inconsistent.
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Next, if the last column of the associated augmented matrix is not a
pivot column there can never be a row like

[
0 0 · · · 0 1

]
in the

reduced form of the augmented matrix and we can proceed to step 3
of the outline above for solving systems.

�

The reduced form of an augmented matrix allows us to determine some
answers to questions of the size of the solution set for a linear system. The
next theorem makes this precise.

Theorem 9

Suppose that a linear system of m equations in n variables has an
associated augmented matrix which has p pivots positions. Then

1. If n = p the system has a unique solution

2. If p < n the system has infinitely many solutions

Proof

If p < n then there are 0 < n − p free variables, each of which must
appear as a parameter in the solution set. If there are any parameters
in the solution set there must be infinitely many solutions. If p = n
then every variable is a basic variable and there can be no parameters,
so the solution is unique. �

Phrasing the above slightly differently, the solution is unique when every
variable is a basic variable.

Exercises

The following are exercises for you to practice offline for more practice. Not
working these homework questions is a recipe for disaster.

1. Give three examples of linear equations which have zero, one, and in-
finitely many solutions respectively.

2. Solve x + 2y = 3, leaving your answer in parameterized form.

3. Solve x + 2y + 3z = 4 leaving your answer in parameterized form.

4. Prove that the Elementary Manipulations of Systems result in equivalent
systems.

5. Use Elementary Manipulations of Systems to solve the following, leaving
your answer in parameterized form where appropriate.

(a)
4x + y = 0

16x + 4y = 0
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(b)
x + 2y = 3

2x + 5y = 6

(c)
4x + y + 6z = 0

5x + y = 1

(d)
4x + y + 6z = 0

2x + 2y + 2z = 9
5x + y = 1

6. Suppose I have a system of three equations in three unknowns. Can such
a system have exactly 3 distinct solutions? Can it have exactly 2 distinct
solutions? Explain why or why not.

7. Show that the elementary row operations each have an inverse row oper-
ation of the same type. In other words, show that any of the elementary
row operations can be undone by an elementary row operation of the same
type.
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In this chapter, we see how to “geometrize" the world in which vectors
live, even when we cannot directly visualize them. As the material becomes
more abstract, we are going to need to rely more and more on the intuitions
we develop in this simple setting which is a generalization of the geometry
we’ve done in high school.



40

The Dot Product in R2

To begin with, we recall that R2 =
{
(a1, a2) | a1, a2 ∈ R

}
, namely ordered

pairs of real numbers. We often identify these ordered pairs of numbers with

column vectors, i.e. we can represent R2 as {
a1

a2

 | a1, a2 ∈ R}. In class and

in the text we’ve defined the dot product between two vectors u =

u1

u2

,
v =

v1

v2

 in R2 to be the number given by

u · v = u1v1 + u2v2

I’m going to show you that this dot product has a geometric interpretation.
Let’s first recall the law of cosines from high school trigonometry, which is a
generalization of the law of Pythagoras21 21 Which says that for right triangles

with sides a, b and hypotenuse c then
c2 = a2 + b2.

Theorem 10: Law of Cosines

Consider a triangle with side lengths a, b, and c with angle θ opposite
to side with length c. Then

c2 = a2 + b2 − 2ab cos θ

Proof

To prove the law of cosines, we’ll consider only the
case of an obtuse angle θ only, the case where θ is acute
is proven similarly. Consider the following picture

Then, extend the above triangle to sit inside of a right triangle as in
the following image
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Notice that α+ (π − θ) = π
2 , since the sum of the interior angles must

add up to 180 degrees (π radians). This means that θ − π
2 = α. Then,

by definition, we have sinα = e
a i.e. e = a sinα = a sin(θ − π

2 ) =

−a cos θ. As well, cosα = d
a gives d = a cos(θ − π

2 ) = a sin θ. Then,
since the larger triangle pictured above is a right triangle we have that

c2 = d2 + (e + b)2

= d2 + e2 + 2eb + b2

= (a sin θ)2 + (−a cos θ)2 + 2b(−a cos θ) + b2

= a2(cos2 θ+ sin2 θ) + b2 − 2ab cos θ

= a2 + b2 − 2ab cos θ

The last line followed from the fact that sin2 θ+ cos2 θ = 1. This is the
desired result. �

We also recall the length of a vector in R2 is defined as ||v|| =
√

v · v.

Caution!

Don’t forget that when calculating ||v|| you must take a square root.

I.e. ||
12

 || =
√

12 + 22 =
√

5. Many students forget to take the

square root when doing this calculation.

We can then obtain the following result helping to give the dot product a
geometric interpretation.

Theorem 11

If v and w are two vectors in R2 then

v ·w = ||v|| ||w|| cos θ

where θ is the angle between the vectors v and w.



42

Proof

The law of cosines shows that ||v − w||2 = ||v||2 + ||w||2 −
2||v|| ||w|| cos θ. But direct calculation reveals

||v −w||2 = (v −w) · (v −w)

= v · v + w ·w − v ·w −w · v

= ||v||2 + ||w||2 − 2v ·w

Comparing these two formulas gives the claimed identity. �

The above is a nice formula relating the dot product to geometrical
information about the vectors in question. Namely the dot product encodes
information about the lengths of the vectors being “dotted" along with
information about the angle between them.

The above is a nice formula relating the dot product to gemetrical infor-
mation about the vectors in question. Namely the dot product encodes the
lengths of the vectors being “dotted" along with information about the angle
between them. Provided that neither v , 0, w , 0 we have that the angle
between v and w will satisfy

cos θ =
v ·w
||v|| ||w||

Therefore, if θ ∈ (0, π2 ) ∪ (
3π
2 , 2π) we’ll have v ·w > 0 and if θ ∈ ( π2 , 3π

2 ) we’ll
have v ·w < 0. But also we have the fact that v ·w will be zero if and only if
the angle between v and w is right. When v and w have a right angle between
them we say that they are orthogonal to each other. In other words we have
proven that

Theorem 12

Two vectors v, w ∈ R2 are orthogonal if and only if v ·w = 0.

Notice that this definition shows the zero vector 0 is trivially orthogonal to
every vector.

The Dot Product in Rn

In this section we’ll derive a few fundamental results for vectors living in the
larger geometrical space, Rn. To begin with, the space Rn is the collection
of ordered lists of n real numbers, Rn = {(a1, a2, ..., an) | a1, a2, ..., an ∈ R}

which we can represent as n × 1 column vectors, i.e. we think of Rn as being

the set {


a1

a2
...

an

 | a1, a2, ..., an ∈ R}. We extend the definition of dot product onto
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the space Rn as follows: if v =


v1
...

vn

, w =


w1
...

wn

 ∈ Rn then

v ·w = v1w1 + · · · vnwn

An important point for you to keep in mind, which can help in various
proofs and/or calculations is that

xT y = yT x =
[
x · y

]
On the LHS above we have matrix multiplication of 1 × n and n × 1 matrices
resulting in a 1× 1 matrix on the right, whose sole entry is the dot product of
the two n × 1 vectors. For this reason, par abus de langage, we often simply
write

xT y = x · y

Caution!

We should keep in mind that, strictly speaking, the above cannot be
correct since the LHS is a 1 × 1 matrix whereas the RHS is a number.
We will often use this (admittedly somewhat confusing) notation.

And, just as before we have that for all v, w ∈ Rn, v ·w = w · v holds. For
all scalars c ∈ R we have (cv) ·w = v · (cw) = c(v ·w). And v · v ≥ 0 always
holds with v · v = 0 if and only if v = 0. The last fact allows us to define the
length (or “norm") of a vector v ∈ Rn as

||v|| =
√

v · v

You should convince yourself of the fact that ||cv|| = |c|||v|| holds for all c ∈ R

and all v ∈ Rn as a check on your understanding of the notations. In addition,
we define the unit vector parallel to v , 0 as v̂ = v

||v|| . You should verify
that, in fact, v̂ has length 1. The procedure used to create v̂ from v, namely
taking a nonzero vector and diving by its length to produce a new nonzero
vector parallel to the original one, it called unitizing or normalizing the vector
and v̂ is called the unit vector in direction v.

Example 8

We calculate

̂
1
2
3

. Notice that ||


1
2
3

 || = √
12 + 22 + 32 =

√
14. Thus

̂
1
2
3

 =

√

14
14

2
√

14
14

3
√

14
14


Our first result is an extension of the law of cosines to Rn and is consid-

ered one of the most important inequalities in mathematics.22 22 The Cauchy-Schwarz inequality is
foundational in mathematics as it allows one
to derive many other important inequalities
used in a host of areas.
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Theorem 13: Cauchy-Schwarz inequality

For all vectors v, w ∈ Rn we have the following inequality holds

|v ·w| ≤ ||v|| ||w|| (0.0.4)

Equality holds when and only when v and w are scalar multiples of
each other.

Proof

First of all, if either (or both) of v, w are equal to the zero vector
then the result is immediate. Therefore, we can assume that both
v and w are not equal to 0. Then, since length of vectors is always
non-negative, we have

0 ≤ || (w||v|| ± v||w||) ||2

= (w||v|| ± v||w||) · (w||v|| ± v||w||)

= (w||v||) · (w||v||) + (w||v||) · (±v||w||)

+ (±v||w||) · (w||v||) + (v||w||) · (v||w||)

= ||w||2||v||2 ±w · v||v|| ||w|| ± v ·w||w|| ||v||+ ||v||2||w||2

= 2||v||2||w||2 ± 2(v ·w)||v|| ||w||

Which gives the following two inequalities,

(v ·w)||v|| ||w|| ≤ ||v||2||w||2, −(v ·w)||v|| ||w|| ≤ ||v||2||w||2

Since we’ve assumed that neither v nor w is zero we can divide by the
terms ||v|| ||w|| to get

v ·w ≤ ||v|| ||w||, −v ·w ≤ ||v|| ||w||

But that’s the same as saying −||v|| ||w|| ≤ v ·w ≤ ||v|| ||w||, i.e. |v ·w| ≤
||v|| ||w||, as claimed.
Next, the claim is the inequality is actually an equality when the
vectors are scalar multiples of one another. In other words, if we first
assume that v = cw for some choice of c ∈ R then

|v ·w| = |(cw) ·w|

= |c(w ·w)|

= |c||w||2|

= |c|||w||2

= |c|||w|| ||w||

= ||cw|| ||w||

= ||v|| ||w||



45

which is the claimed result.
If, on the other hand, if we knew that v , cw for all choices of c ∈ R,
then in particular we would have that ||v − cw||2 , 0. Writing this out
means that there is no c which solves the quadratic equation

||v||2 − c(2v ·w) + c2||w||2 = 0

The quadratic formula tells us the only way for this to happen is for
the discriminant of this quadratic polynomial 4(v ·w)2 − 4||v||2 ||w||2 to
be negative. Thus, (v ·w)2 < ||v||2 ||w||2 and taking square roots gives
|v ·w| < ||v|| ||w|| so the inequality is strict. �

By analogy to R2, we now define two vectors v and w in Rn to be orthog-
onal if v ·w = 0. It turns out (but we will not prove this) that this definition is
well-founded in the sense that vectors in Rn are at right angles to each other
if and only if v ·w = 0. We only proved this for n = 2 but it turns out to still
be true in Rn generally.

We define the obvious extension of orthogonality and orthonormality to
sets of vectors.

Definition 14: Orthogonal and Orthonormal Sets

S = {v1, ..., vk} ⊂ Rn is said to be an orthogonal set of vectors in Rn

if vi · v j = 0 whenever i , j. The set S is said to be an orthonormal
set of vectors if it’s orthogonal and all vectors vi have length 1, i.e.
||vi|| = 1.

We use the Cauchy-Schwarz inequality to prove the next geometric fact
about Rn which is illustrated in the following figure

Figure 2: An illustration of one variant of
the triangle inequality
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Theorem 15: Triangle Inequality

For all v, w ∈ Rn we have that ||v + w|| ≤ ||v||+ ||w||

Proof

Consider

||v + w||2 = (v + w) · (v + w)

= v · v + v ·w + w · v + w ·w

= ||v||2 + 2(v ·w) + ||w||2

≤︸︷︷︸
by Cauchy Schwarz

||v||2 + 2||v|| ||w||+ ||w||2

= (||v||+ ||w||)2

In other words, ||v + w||2 ≤ (||v||+ ||w||)2. The quantities which appear
here being squared are non-negative which means we can take the
positive square root to conclude that

||v + w|| ≤ ||v||+ ||w||

as advertised.

As we’ve already seen the parallelogram rule for vector addition in lecture,
we can give this a geometric interpretation by introducing a distance between
two vectors v, w ∈ Rn as

d(v, w) = ||v −w||

You should verify that in R2 this does precisely correspond to the distance
between the tips of two vectors connecting the geometric points described
by v, w to the origin. In other words, the definition of distance is very well
motivated.

We then can use our work thus far to help conclude the following variation
of the triangle inequality above, which is illustrated in the figure above.

Theorem 16: Triangle Inequality (Second Version)

For all vectors u, v, w in Rn we have that

d(v, w) ≤ d(v, u) + d(u, w)
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Figure 3: An illustration of another variant
of the triangle inequality

Proof

Consider

d(v, w) = ||v −w||

= ||(v − u) + (u −w)||

≤︸︷︷︸
By Theorem 2.2

||v − u||+ ||u −w||

= d(v, u) + d(u, w)

as advertised. �

Projections and Expansions

In this section we explore an important use of the dot product which will help
us later when we deal with subspaces and bases. We see how the dot product
allows us to tell how “similar" two vectors are to one another in a way we’ll
make precise.

To begin, consider two vectors v and d , 0 in Rn. Let’s see if we can
construct a new vector, projdv, the projection of vector v onto vector d in
such a way that

1. projdv will be a vector parallel to d

2. projdv will have a tip at the closest point to v along the line in direction d.

Notice, as in Figure 5, we can find where projdv ends by imagining a line
connecting the tip of v to the line parallel to d in such a way that these
meet at right angles. Rephrasing this symbolically, we can pose this as an
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algebraic constraint on the vector projdv as demanding that

d · (v − projdv) = 0

Subject to

projdv = cd

for an, as yet unknown, constant c.23 23 After all, this is simply a precise restate-
ment, in mathematical form, of the verbal
description in the preceding paragraph, or in
figure 5.
Figure 4: An illustration of the vector
projection of two vectors in R2.

We can substitute the second of the above into the first to get

0 = d · (v − projdv)

= d · (v − cd)

= d · v − c||d||2

Solving for c then gives that c = d·v
||d||2 . Since projdv = cd this then gives a

formula for the projection in the following definition.

Definition 17: Vector Projection

Let v and d , 0 ∈ Rn. The projection of v onto d is given by

projdv =
d · v
||d||2

d

and is the unique vector parallel to d such that d and v − projdv are or-
thogonal. We call the scalar c = d·v

||d||2 the component of v along d.

The next theorem verifies that our choice in the above actually does
minizime the distance from the line parallel to d to v.



49

Theorem 18

Let v and d , 0 ∈ Rn. The vector projection projdv minimizes the
distance from v to the line parallel to d in the sense that

||v − projdv||2 < ||v − cd||2

holds for all c , d·v
||d||2 .

Proof

Consider ||v − cd||2 = ||v||2 − 2cv · d + c2||d||2. This is a polynomial
expression in variable c. Since

||d||2 > 0

the polynomial is an upwards opening parabola. The roots of the
polynomial are

c± =
2d · v ±

√
4(d · v)2 − 4||d||2||v||2

2||d||2

=
d · v ±

√
(d · v)2 − ||d||2||v||2

||d||2

The polynomial therefore is minimized at the value of c lying in
between the polynomial’s two roots i.e. the value c which minimizes
the function f (t) = t2||d||2 − 2td · v + ||v||2 is

c =
c+ + c−

2

=
d · v
||d||2

as claimed. �

Exercises

You should do the following problems offline.

1. Verify that ||v|| ≥ 0 with ||v|| = 0 if and only if v = 0.

2. Let ||v|| = 2 and ||w|| = 4 and w · v = 2. Compute ||2v + 17w||.

3. Let ||v|| = 2 and ||w|| = 3 and v ·w = 5. Compute ||12v − 7w||.

4. In introducing the Cauchy-Schwarz inequality, it was alleged to generalize
the dot product formula involving cosine which we found in R2. Explain
how.
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5. Explain why the triangle inequality (Theorem 2.2) has its name.

6. Prove that d(cv, w) = |c|d(v, 1
c w) holds for all 0 , c ∈ R and v, w ∈ Rn

7. Show that v ·w = 1
4 (||v + w||2 − ||v −w||2) for all v, w ∈ Rn.

8. Show that ||v||2 + ||w||2 = 1
2 (||v + w||2 + ||v −w||2) for all v, w ∈ Rn.

9. Pythagorean theorem in Rn. Namely, if v, w ∈ Rn then ||v + w||2 =

||v||2 + ||w||2 if and only if v and w are orthogonal.

10. True/False: v, w ∈ Rn are orthogonal if and only if ||v −w|| = ||v + w||

11. True/False: v+w and v−w ∈ Rn are orthogonal if and only if ||v|| = ||w||

12. Suppose S = {v1, ..., vk} ⊂ Rn is a collection of nonzero mutually
orthogonal vectors, i.e. i , j =⇒ vi · v j = 0. Prove that the vectors in S
are linearly independent.

13. True/False: All linearly independent sets of vectors in Rn are orthogonal.

14. Let A be an m× n matrix. Prove that AT A = In if and only if the columns
of A are orthogonal.

15. Show that,24 for all non-negative numbers x, y ∈ R we have
√

xy ≤ 24 The left hand side of the inequality is
called the geometric mean of the numbers
x, and y, whereas the right hand side is the
arithmetic mean of the same numbers. This
result shows that the geometric mean is
bounded by the arithmetic mean. Sometimes
this fact is called the “AM-GM inequality".

1
2 (x + y).

16. If a1, ..., an are real numbers then

|a1 + · · ·+ an|
√

n
≤

√
a2

1 + · · ·+ a2
n

17. Let a1, ..., an be real and b1, ..., bn be positive. Then prove that

a2
1

b1
+

a2
2

b2
+ · · ·+

a2
n

bn
≥

(a1 + · · ·+ an)2

b1 + · · ·+ bn

and that equality holds when and only when a1
b1

= a2
b2

= · · · = an
bn

.

18. Let x, y, z be positive numbers. Prove that√
x(3x + y) +

√
y(3y + z) +

√
z(3z + x) ≤ 2(x + y + z)

19. Find proj[
1 2

]T

34


20. Find proj[
2 1 2

]T


3
4
5


21. Find proj[

3 −1 2
]T


−3
4
7
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22. Let v, d ∈ Rn and d , 0. Show that projd(projdv) = projdv

23. Let 0 , d ∈ Rn. Prove that projdv = 0 if and only if v and d are
orthogonal.

24. (Harder). Suppose S = {v1, ..., vk} ⊂ Rn is an orthogonal set. Let v ∈ Rn

be arbitrary and let ci be the component of vi along v i.e. ci =
vi·v
||vi ||2

for
i = 1, ..., k. Show that

||v − (c1v1 + · · ·+ ckvk)|| ≤ ||v − (a1v1 + · · ·+ akvk)||

holds for all a1, ..., ak ∈ R

25. (Harder). Suppose S = {v1, ..., vk} ⊂ Rn is an orthonormal set. Let
v ∈ Rn be arbitrary and let ci be the component of vi along v i.e. ci =

vi·v
||vi ||2

for i = 1, ..., k. Show that

c2
1||v1||

2 + · · ·+ c2
k ||vk ||

2 ≤ ||v||2





The Rank Theorems

In this chapter we’re going to see how a number, the rank of a matrix,
can help characterize how “reliable" or “defective" a matrix is. To do this
though, there’s a lot of technical background needed to make precise what we
intuitively mean when we refer to “sizes" of spaces in Rn.
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Subspaces of Rn

A subspace of Rn is a collection of vectors closed under the algebraic vector
operations. Namely S ⊆ Rn is a subspace if and only if c1u + c2v ∈
S holds for all numbers c1, c2 whenever u, v ∈ S . Spans of vectors are
natural examples of subspaces. Since Rn and {0} (called the zero subspace)
are always subspaces of Rn they are “improper" subspaces and any other
subspace is said to be proper. A subset T ⊂ S of a subset S is a subspace of
subspace S if it’s a subset of S and satisfies the subspace criteria.

Example 9

We prove that S = {tv | 0 , v ∈ Rn} is a subspace. Consider u, w ∈ S .
Then u = av for some value of a ∈ R and w = bv for some b ∈ R.
So c1u + c2w = (c1a + c2b)v = c̃v which must be in S . As c1, c2

were arbitrary this means that S is a subspace.

The above example is generalizable in the sense that spans of vectors are
always subspaces. The reader is encouraged to sit down and prove this claim,
it’s time well spent.

In addition there are a few canonical subspaces that arise when working
with matrices.

Example 10

Let A be an m × n matrix. The following are canonical subspaces.

1. col(A) = span{columns of A} is a subspace of Rm called the col-
umn space of A.

2. row(A) = col(AT ) is a subspace of Rn called the row space of A.

3. Nul(A) = {x | Ax = 0} is a subspace of Rn called the null space
of A. This is also denoted null(A) or ker(A).

4. Eλ(A) = ker(A − λI) for square matrices A is the eigenspace of A
for eigenvalue λ. The nonzero elements (if there are any) of Eλ(A)
are called eigenvectors of A with eigenvalue λ.

Each of the above is left as an exercise to the reader to verify that they
are in fact subspaces.

Notice that, in the above definition of eigenspace Eλ(A) that certainly
a priori one should expect there to be constraints on numbers λ for which
Eλ(A) , {0}.

We begin with an extremely fundamental result.25 25 Although this looks innocuous enough,
it will serve as the underpinning of all of
our future results on subspaces. Notice that,
at its heart, the proof only uses facts about
homogeneous systems of linear equations.
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Theorem 19: Subspace Theorem

Let S be a subspace of Rn. If S is spanned by m vectors and contains
k linearly independent vectors, then k ≤ m.

Proof

Suppose that {v1, ..., vm} is a spanning set and {w1, ..., wk} is a set of
linearly independent vectors. Since the first set is a spanning set we
have that w j = c1v1 + · · · cmvm holds for j = 1, ..., k where for each j
we have a new set of constants c1, ..., ck. We can write this as

wl = c1lv1 + c2lv2 + · · · cmlvm

for constants ci j where 1 ≤ i ≤ m, 1 ≤ j ≤ k. Viewing the ci j’s as
entries of an m × k matrix C we have that the above is equivalent to
W = VC for W = [w1 · · ·wk] and V = [v1 · · · vm]. If k > m then C
has more columns than rows so Cx = 0 has a nontrivial solution x.
From this we have that Wx = 0 has a nontrivial solution which im-
plies the columns of W are linearly dependent contrary to assumption.
Thus k ≤ m. �

The above theorem tells us that for subspaces of Rn we have that

# (independent vectors in S ) ≤ # (spanning vectors in S )

In the above (and below) I’m using the notation that #U denotes the number
of elements in a finite set U (where #U = ∞ if the set has infinitely many
elements).

The above theorem is remarkably powerful. Notice that it is a counting
result: one number (number of independent vectors) is guaranteed to be
bounded by some other number (number of spanning vectors). The above
also tells us that if we could find a collection of linearly independent span-
ning vectors in a subspace that we would “saturate" the above inequality, i.e.
the inequality would be an equality. Bases are sets which have this property.

Bases

As mentioned, a basis B for a subspace S ⊆ Rn is a collection of linearly
independent spanning vectors. So S = span{B} and all elements of B are
linearly independent. Our first result is to convince you that such things exist.
If you’re not used to thinking this way it might be surprising that this needs to
be proven at all, but just because we can define something doesn’t mean that
there’s anything guaranteed to meet the criteria in our definition.

Theorem 20

Let S , {0} be a subspace of Rn. Then there’s a basis for S .
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Proof

Since S , {0} there’s a nonzero vector in S and therefore there are
sets of linearly independent vectors within S . Suppose that {v1, ..., vk}

is a set of independent vectors in S chosen to be as large as possible.
Set W = span{v1, ..., vk}. By the subspace property of S we have that
W ⊆ S . There are two options.
Option 1. W = S . There’s nothing left to prove since then {v1, ..., vk}

is a basis for S .
Option 2. W , S . In this case there’s a vector w ∈ S but not in
W. Consider the equation c1v1 + · · · ckvk + ck+1w = 0. Either
ck+1 = 0 or not. If ck+1 = 0 then c1v1 + · · · ckvk = 0 which then
gives c1 = · · · = ck = 0 since the set {v1, ..., vk} is linearly inde-
pendent. But, in that case we see that {v1, ..., vl, w} is a larger linearly
independent set than {v1, ..., vk} contrary to our assumptions on how
{v1, ..., vk} was chosen. Therefore ck+1 , 0. But in that case, then
c1v1 + · · · ckvk + ck+1w = 0 gives w ∈ span{v1, ..., vk}, i.e. w ∈ W,
which is contrary to assumption. So this option can never occur. �

Example 11

Consider ei the i’th columns of the n × n identity matrix In. Then,

since any x =


x1
...

xn

 ∈ Rn satisfies x = Inx = x1e1 + · · ·+ xnen we

see that {e1, ..., en} spans Rn. Moreover, since the e j’s are mutually
orthogonal, they form a linearly independent set. So {e1, ..., en} is a
basis for Rn.

Our next result is that bases (plural of “basis") have a fixed size.

Theorem 21

A basis for a subspace S ⊆ Rn can only have one size.

Proof

Consider two bases for S ,A and B. SinceA is a basis and hence
spanning we have S = span{A}. But since B is a basis its vectors
are linearly independent so we have, by the subspace theorem, that
#B ≤ #A. Switching the roles in this argument ofA and B shows
that #A ≤ #B. Therefore #A = #B �

The above result then allows us to unambiguously define the dimension of
a subspace.
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Definition 3

The dimension dim S of a nonzero subspace S ⊆ Rn is #B for any
basis B of S .

Since the zero subspace cannot admit any linearly independent vectors
(see exercises), we simply declare that

dim{0} = 0

Notice that we have freedom in choosing whatever basis we like when
calculating the dimension of a given subspace since the amount of vectors in
every basis must necessarily be the same.

As another example, since, as we’ve seen, {e1, ..., en} is a basis for Rn we
have that

dim(Rn) = n

Example 12

Let S = {


s

t + s
t

 | s, t ∈ R}. Prove that S is a subspace and find it’s

dimension.

Solution: Notice that S = {


s
s
0

 +

0
t
t

 | s, t ∈ R} = {s


1
1
0

 + t


0
1
1

 |
s, t ∈ R so S = span{


1
1
0

 ,


0
1
1

}. Since spans of vectors are subspaces,

this means S is a subspace and {


1
1
0

 ,


0
1
1

} is a spanning set. Notice

that you can easily verify c1


1
1
0

 + c2


0
1
1

 = 0 =⇒ c1 = c2 = 0

so {


1
1
0

 ,


0
1
1

} are linearly independent. Thus {


1
1
0

 ,


0
1
1

} is a basis

for the subspace S . Since there are 2 vectors in this basis we have
dim S = 2.

Expansions and Orthogonalization

Given a basis B = {b1, ..., bk} for a subspace S ⊆ Rn how do we actually
represent a given vector v ∈ S in terms of the vectors b1, ..., bk? Well, we
can make this problem much more easily tractable if we assume that the
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vectors b1, ..., bk are mutually orthogonal. In that case, notice that since
v ∈ S = span{B} we must have that there are numbers b1, ..., bk such that

v = b1b1 + · · ·+ bkbk

It remains to determine the numbers b1, ..., bk. But that’s simple since we can
just use orthogonality of the vectors b j as in

b j · v = v j · (b1b1 + · · · bkbk)

= b1v · b1 + b2v · b2 + · · ·+ bkv · bk

= 0 + 0 + · · ·+ 0 + b jb j · b j + 0 + · · ·+ 0

= b j||b j||
2

This means that the coefficient must be given by

b j =
b j · v
||b j||2

Therefore, given the basis vectors b1, ..., bk for a subspace S we can uniquely
express a vector v ∈ S in terms of these basis vectors as

v =
b1 · v
||b1||2

b1 +
b2 · v
||b2||2

b2 + · · ·+
bk · v
||bk ||2

bk

The above should look familiar. After all, we can rewrite it as

v = projb1v + projb2v + · · ·+ projbk v

where you’ll recall that projbj v =
b j·v
||b j ||2

b j defines the vector projection of v
onto b j.

The above representations of v in terms of basis vectors are called expan-
sion formulas since they “expand" the vector v in terms of the basis vectors
b j.

All of the above was predicated on the assumption of orthogonality of
the basis vectors {b1, ..., bk}. The formula clearly26 won’t work if the basis 26 Try to verify why

vectors fail to be orthogonal. What should we do if this happens to be the
case? The approach we’ll take is the following: given any basis B1 for a
subspace S ⊆ Rn we can produce, via an algorithm, another basis B2 for the
same subspace which has the property that its vectors are orthonormal. The
algorithm which we use to produce an orthonormal basis from an arbitrary
basis is called the Gram-Schmidt orthonormalization procedure.
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Theorem 22: Gram-Schmidt Orthonomalization Procedure

Let {b1, ..., bk} ⊆ Rn be a basis for a subspace S . Define

w1 = b̂1

w2 = x̂2, x2 � b2 − projw1b2

w3 = x̂3, x3 � b3 − projw2b3 − projw1b3

...

wk = x̂k, xk � bk − projwk−1bk − projwk−2bk − · · · − projw2 bk − projw1bk

The vectors {w1, ..., wk} produced as above are an orthonormal basis
for S .

Proof

To prove the claim requires showing two things: first, that
span{w1, ..., wk} = span{b1, ..., bk} and second, that {w1, ..., wk}

is orthonormal.

1. Proof that span{w1, ..., wk} = S . For this we use induction.
Obviously, span{w1} = span{b1} since w1 = b̂1. Suppose then
that span{w1, ..., wl} = span{b1, ..., bl} for l < k. Then, first of
all, notice that span{w1, ..., wl, wl+1} = span{w1, ..., wl, bl+1 −

(projw1bl+1 + · · ·+ projwlbl+1)}. Thus, span{w1, ..., wl, wl+1} =

span{w1, ..., wl, bl+1 − (projw1bl+1 + · · · + projwlbl+1)} =

{c1w1 + · · · + clwl + · · · + cl+1bl+1 − cl+1(projw1bl+1 +

· · · + projwlbl+1 | c1, ..., cl+1 ∈ R)} which is equal to
{c̃1w1 + · · · + c̃lwl + cl+1bl+1 | c̃1, ..., c̃l, cl+1 ∈ R}. But since,
by the inductive assumption, span{w1, ..., wl} = span{b1, ..., bl}

we have {c̃1w1 + · · · + c̃lwl + cl+1bl+1 | c̃1, ..., c̃l, cl+1 ∈ R} =

{c1b1 + · · ·+ clbl + cl+1bl+1 | c1, ..., cl, cl+1 ∈ R}. In other words
span{w1, ..., wl+1} = span{b1, ..., bl+1}. Therefore, by induction,
we have span{w1, ..., wk} = S .

2. Proof of orthonormality. The vectors wi are normalized by con-
struction, so all that needs to be verified is that they are mutually
orthogonal. For this, we can again apply induction. Notice that, as
a base case, we have w1 · w2 = 0 since b1 · (b2 − projb1b2) = 0.
To justify this we simply recall that it’s generically true that
d · (v − projdv) = 0. Assume that {w1, ..., wl} is an orthonormal set
for l < k. Then, for j ≤ l we have
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w j ·wl+1 = w j · (bl+1 − projw1bl+1 − · · · − projwlbl+1)

= w j · (bl+1 −
w1 · bl+1

||w1||2
w1 − · · · −

wl · bl+1

||wl||2
wl)

= w j · bl+1 −
w1 · bl+1

||w1||2
w1 ·w j −

w2 · bl+1

||w2||2
w2 ·w j − · · ·

−
wl · bl+1

||w1||2
wl ·w j

as wi·w j=0︷︸︸︷
= w j · bl+1 − 0 − 0 − · · · −

w j · bl+1

||w j||2
w j ·w j − 0 − · · · − 0

= w j · bl+1 −w j · bl+1

= 0

Where we’ve used that wi · w j = 0 for i , j, i ≤ l, from the
inductive hypothesis. The above calculation shows that wl+1 is or-
thogonal to {w1, ..., wl}, so then {w1, ..., wl, wl+1} is an orthogonal
set. Therefore, by induction, {w1, ..., wk} is an orthonormal set, as
advertised.

�

Rank Unification

We next define something which has been used many times throughout the
course but, until now, wasn’t named.

Definition 4

The rank of a matrix A, denoted rank(A) is the number of pivots in
A.

We’ve seen that, say, for an m × n matrix if rank(A) = m then the
columns of A span Rm and if rank(A) = n then the columns of A are linearly
independent. If you don’t see why please work it out on your own as an
exercise. Rank is the glue that binds the row picture (number of equations)
to the column picture (number of variables). It also is the link between the
geometrical point of view (spanning, independence, etc) and the algebraic
point of view (consistency, unique solvability, etc).

The following theorem tidily expresses the connection between rank and
dimension. As well, it provides a description of how to produce bases for
certain subspaces.
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Theorem 23: Rank Theorem

Let A be an m × n matrix with rank r. Then

dim(col(A)) = dim(row(A)) = r

Moreover, if A ∼ R where R is in row-echelon form then

1. The r nonzero rows of R form a basis for row(A)

2. The r pivot columns of A form a basis for col(A)

Proof

First of all if A ∼ R then we must have row(A) = row(R) since
the elementary row operations necessarily don’t alter the span of the
corresponding rows (see exercises). But the r nonzero rows of R are
necessarily linearly independent since each row has a leading entry
appearing to the right of the row preceding it (if any). Therefore the r
nonzero rows of R are a basis for row(R) = row(A). Notice this also
shows that dim(row(A)) = r.
Next, the pivot columns of R are obviously linearly independent
(make sure you verify why!) and they span the subspace of Rm given
by

S = {



a1

a2
...

ar

0
...
0


| a1, a2, ...ar ∈ R}

Notice the above is, essentially, Rr with m − r extra 0’s. Since
A ∼ R there’s an invertible matrix U such that UA = R, in other
words R = [Ua1...Uan]. Denote the pivot columns of A by indices
j1, ..., jr. Since pivot columns of R are a basis for col(R) we have that
{Ua jk }

r
k=1 is a basis for col(R).

The theorem will be proved if we can show that {a jk }
r
k=1 is a basis for

col(A).

1. Proof that {a jk }
r
k=1 is independent. First of all, if 0 = c1a j1 +

c2a j2 + · · · + cra jr then multiplying by U gives 0 = c1Ua j1 +

· · ·+ crUa jr . But {Ua jk }
r
k=1 is a basis for col(R) so in particular is

linearly independent and thus c1 = c2 = · · · cr = 0. In other
words the set {a jk }

r
k=1 is linearly independent.

2. Proof that {a jk }
r
k=1 spans col(A). Pick any column of A, say
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aq. Since {Ua jk }
r
k=1 is a basis for col(R) we have that there are

constants c1, ..., cr such that Uaq = c1Ua j1 + · · · + crUa jr .
But U is invertible, so aq = c1a j1 + · · · cra jr . In other words
aq ∈ span{a jk }

r
k=1, i.e. any column of A may be expressed uniquely

as a linear combination of the r pivot columns of A.

This proves the theorem. �

NB: Note the asymmetry in the two statements above. For a basis of
row(A) we can use the nonzero rows of the corresponding row-equivalent
echelon matrix to A whereas for a basis of col(A) we must use the pivot
columns of A itself! Study the following example very carefully.

Example 13

Consider A =

0 0
1 0

. Obviously, A ∼
1 0
0 0

. The theorem above

tells us that {
01

} must be a basis for col(A) and {
10

} must be a basis

for row(A).

Notice we would be wrong to think that {
10

} must be a basis for

col(A) and {
00

} is a basis for row(A) which is what we would get

if we (incorrectly!) used the pivot column of the reduced matrix as
the basis vector of the column space and the pivot row of the original
matrix as the basis vector of the row space.

The next example provides an illustration of the utility of the rank theo-
rem.

Example 14

Find a basis for (and dimension of) the subspace S =

span{


1
2
3

 ,


4
5
6

 ,


7
8
9

}.
Solution: We can view S as the row space of matrix A =


1 2 3
4 5 6
7 8 9

.
Applying the reduction algorithm to matrix A yields A ∼ R =
1 0 −1
0 1 2
0 0 0

. The rank theorem says that a basis for row(A), and

therefore of S , will be given by the nonzero rows of R. Therefore, a
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basis for S is given by {


1
0
−1

 ,


0
1
2

}. We can also conclude from this

that dim(S ) = 2.

In the preceding example, we could just as well have chosen to view S

as the column space of


1 4 7
2 5 8
3 6 9

. If we did, we would then find that A ∼


1 0 −1
0 1 2
0 0 0

 so the first two columns of A are pivot columns and therefore

{


1
2
3

 ,


4
5
6

} is a basis for S . Notice that this produces a different basis than we

obtained previously, and that when using the column space, we must select
privot columns from the original matrix rather than its reduced form.

Rank and Nullity

There are rank(A) pivot columns in a given m × n matrix A and the n − r
non-pivot columns correspond to free variables. Each such free variable
corresponds to a basis element for ker(A). This follows from the fact that the
reduction algorithm will produce linearly independent vectors for the general
solution to the homogeneous problem Ax = 0 (see exercises). This means we
have proven the following theorem.

Theorem 24: Rank-Nullity Theorem

Let A be an m × n matrix. Then

rank(A) + dim(ker(A)) = n

The above is called the rank-nullity theorem since dim(ker(A)) is also
called the nullity of A. If you think of the nullity (very loosely speaking)
as characterizing how severe the “loss of information" is when multiplying
vectors by A then the rank-nullity theorem tells us that rank(A) and the
nullity are tradeoffs where the rank(A) controls the information-preservation
of the linear map induced by A.27 27 Again, these are metaphorical statements

because I haven’t actually defined “informa-
tion" etc. To clarify slightly, the dimension
of a subspace, in measuring the number
of independent vectors allowed in a space,
encodes the possible “information" available
to store in a subspace.

This class is about solving systems of linear equations. The rank-nullity
theorem is a way to quantitatively characterize how far a given matrix might
be from having Ax = b be uniquely solvable. It’s one of the most important
results in a first course on linear algebra and understanding it is a major task
for you this term.
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Example 15

Find a basis for (and dimension of) the null space of
1 2 3
5 1 0

.
Solution: We apply row reduction and find that

1 2 3
5 1 0

 ∼1 0 − 1
3

0 1 5
3

. Before going further, we notice that we can immedi-

ately deduce that rank(
1 2 3
5 1 0

) = 2 so the rank-nullity theorem

allows us to know that dim(ker(
1 2 3
5 1 0

)) = 1. To find a basis for

this space we write all basic variables in terms of free variables, i.e.

x1 = 1
3 x3, x2 = − 5

3 x3 so ker(
1 2 3
5 1 0

) = span{


1
−5
3

}. Thus {


1
−5
3

}
is a basis for ker(

1 2 3
5 1 0

).

Rank Inequalities

Throughout this section I also use the fact (which is left to you in the exer-
cises) that if S ⊆ W where S , W are subspaces of Rn then dim S ≤ dim W
holds, with equality if and only if W = S . It’s not a simple exercise so you
should prove it slowly and carefully to be sure.

To begin with a simple result which we shall get a lot of mileage out of,
notice that

rank(A) = dim(row(A))

= dim(col(AT ))

= rank(AT )

Therefore

rank(A) = rank(AT )

A fact which we’ll get to use shortly.
Since col(A) ⊆ Rm is a subspace we have that rank(A) = dim(col(A)) ≤

dim(Rm) = m. By similar reasoning we have that rank(A) = rank(AT ) ≤ n.
So then, we have that

rank(A) ≤ min(m, n)

must hold for all matrices. The case of maximal rank therefore occurs when
equality is met above, namely
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Definition 5

An m × n matrix has full rank or maximal rank when rank(A) =

min(m, n)

Notice that we know, from the invertible matrix theorem in the textbook,
that a square matrix with full rank must be invertible. Our first theorem
shows us that multiplication by an invertible matrix “preserves information".

Theorem 25

Let A be an m × n matrix and M be an m ×m invertible matrix. Then

rank(A) = rank(MA)

Proof

If M is invertible then it can be written as a product of elementary ma-
trices M = E1 · · · Ek. Then MA = E1 · · · EkA represents a sequence
of elementary row operations performed on the matrix A, each of
which preserves the row space. Therefore

row(A) = row(E1 · · · EkA) = row(MA)

And if the spaces are the same the dimensions must be equal in which
case the result immediately follows. �

Using the above we can also verify that if P is an invertible n × n matrix we
have

rank(AP) = rank((AP)T )

= rank(PT AT )

=︸︷︷︸
since PT is invertible

rank(AT )

= rank(A)

In other words we’ve shown that

rank(A) = rank(AP)

for all invertible matrices P. So again, multiplication by invertible matrix
leaves rank “invariant". The above two results are generalized in the follow-
ing theorem.

Theorem 26

Let A, B, C be matrices such that the products below are well-defined.
Then

1. col(AB) ⊆ col(A)
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2. row(CA) ⊆ row(A)

In the above ⊆ will simply be = when B or C respectively is invert-
ible.

Proof

We only prove the first statement since the proof of the other can be
shown to follow by use of transposes. Let B have columns {b j}. Then
the matrix AB has columns {Ab j}, each term Ab j is a linear combi-
nation of the columns of A so therefore we have that the columns of
AB are in the column space of A. In other words col(AB) ⊆ col(A).
To prove the case of equality we can appeal to the prior results we’ve
already seen. Suppose B is invertible. Then, since col(AB) ⊆ col(A)
and rank(AB) = rank(A) if B is invertible we see col(AB), a sub-
space of col(A), has the same dimension as col(A). Therefore if B is
invertible then col(AB) = col(A). �

A sometimes useful result is the following inequality.

Theorem 27

If A and B are two matrices whose product is defined then

rank(AB) ≤ min(rank(A), rank(B))

Proof

Since the prior theorem showed us that col(AB) ⊆ col(A) we then
have that rank(AB) = dim(col(AB)) ≤ dim(col(A)) = rank(A).
Similarly we have row(AB) ⊆ row(B) gives that rank(AB) =

dim(row(AB)) ≤ dim(row(B)) = rank(B). The result follows. �

Maximal Rank

In this section, we’re going to look at the cases where the rank of an m × n
matrix A is as large as possible. We’ve already seen that the case of maximal
rank occurs when rank(A) = min(m, n). If A were square, then A having
full rank ensures that Ax = b is always uniquely solvable. Since the nullity
captures the “size" of the subspace controlling the homogeneous solution it
controls the “size" of the obstruction to uniqueness if the equation is solvable
but not uniquely solvable. The following theorems describe both possibilities
for maximal rank.
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Theorem 28: Rank = # of Columns

Let A be m × n. The following are equivalent statements.

1. rank(A) = n

2. rows of A span Rn

3. columns of A are independent

4. AT A is invertible

5. There’s an n × m matrix C such that CA = In. (The matrix C is
called a “left inverse" of A)

6. Ax = 0 has only the trivial solution

Proof

I only prove (3) =⇒ (4) =⇒ (5) leaving the cases
(5) =⇒ (6) =⇒ (1) =⇒ (2) =⇒ (3) as an exercise.
So, suppose that (3) holds and the columns of A are independent.
Then that means that Ax = 0 =⇒ x = 0. So consider

AT Ax = 0 =⇒ xT AT Ax = 0

=⇒ (Ax)T Ax = 0

=⇒ [||Ax||2] = 0

=⇒ ||Ax||2 = 0

=⇒ Ax = 0

=⇒ x = 0

So the square matrix AT A admits only the trivial solution for its
associated homogeneous problem. By the invertible matrix theorem
we have that AT A must be invertible. Thus (3) =⇒ (4).
Next, if (4) holds then AT A is invertible. In that case, set
C = (AT A)−1AT . Obviously this choice of C gives the desired
conclusion and so (4) =⇒ (5).

�

The other possibility of full rank is dealt with in the next theorem.

Theorem 29: Rank = # of rows

Let A be m × n. The following are equivalent statements.

1. rank(A) = m

2. columns of A span Rm

3. rows of A are independent
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4. AAT is invertible

5. There’s an n ×m matrix C such that AC = Im

6. Ax = b is solvable for all b ∈ Rm

Proof

I only prove (3) =⇒ (4) =⇒ (5) =⇒ (6) leaving the cases
(6) =⇒ (1) =⇒ (2) =⇒ (3) as an exercise. So, suppose
that (3) holds and the rows of A are independent. Then that means
that the m rows are a collection of m independent vectors inside of
Rn. But that means that dim(row(A)) = rank(A) = m. From this
we see that rank(A) = m, but also since rank(AT ) = rank(A) we
have that rank(AT ) = m as well. In other words, the matrix AT , has
rank equal to its amount of columns. Therefore, our prior theorem,
applied to the matrix AT , says that (AT )T AT = AAT is invertible.
Thus (3) =⇒ (4). Next, assuming (4) we can set C = AT (AAT )−1

and easily verify that AC = I. So (4) =⇒ (5).
Finally, assuming (5) means that there’s a matrix C whose columns
c j, j = 1, ..., m solve Ac j = e j. Then, of course, for b ∈ Rm,
b = b1e1 + · · · bmem we have

A(b1c1 + · · · bmcm) = b1Ac1 + · · · bmAcm

= b1e1 + · · · bmem

= b

which means that Ax = b is solvable by setting x = b1c1 + · · · bmcm

so (5) =⇒ (6).
�

Exercises

You should be able to do the following.

1. Prove that spans of vectors are always subspaces.

2. True/False: If S 1 and S 2 are subspaces of Rn then so is S 1 ∪ S 2. If true,
prove it, otherwise give a counterexample.

3. True/False: If S 1 and S 2 are subspaces of Rn then so is S 1 ∩ S 2. If true,
prove it, otherwise give a counterexample.

4. Find E3(

1 1
4 1

) and E−1(

1 1
4 1

).
5. Find Eλ(In) for all values of λ ∈ R.
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6. Prove that invertible linear transformations map bases of Rn onto bases of
Rn. In other words if A is an invertible n × n matrix, prove that {Av j}

n
j=1 is

a basis whenever {v}nj=1 is.

7. Prove that if A ∼ B then row(A) = row(B).

8. Prove that the reduction algorithm applied to Ax = 0 will produce a
basis for null(A) whenever null(A) , {0}. Hint: think about reduced
row-echelon form.

9. In the proof of Theorem 1.2, how do I know it’s possible to choose a
largest set of linearly independent vectors {v1, ..., vk}?

10. It was claimed that the zero subspace admits no basis. Explain why.

11. Suppose that AB is invertible. Is A? If so prove it. If not, give a coun-
terexample.

12. Suppose A, B are n× n matrices. Use rank inequalities to show that if A is
not invertible then AB must be non-invertible as well.

13. Prove that if U, V are subspaces of Rn then U ⊆ V implies dim U ≤
dim V .

14. Use a theorem on maximal rank to prove that the polynomial p(x) =

1 + x2 has no real roots.

15. Let A =
[
2 2 3

]
. Find a basis for ker(A) and a basis for ker(AT ).

16. Suppose that A, B are square matrices of the same size and that col(B) ⊆
ker A. What can I say about AB?

17. Let A = [ai j] where ai j = i + j for 1 ≤ i, j ≤ n. Determine rank(A).

18. Suppose that A is m × n. Show that ker A = ker(UA) for all invertible
m ×m matrices U. Then also show that dim(ker(A)) = dim(ker(AB)) for
all invertible n × n matrices B.

19. Let

A =

1 2 3
3 2 1


(a) Find a matrix B such that AB = I2 or show that such a B doesn’t exist.

(b) Find a matrix C such that CA = I3 or show that such a C doesn’t
exist.

20. Let

A =


a 1 a 0 0 0
0 b 1 b 0 0
0 0 c 1 c 0
0 0 0 d 1 d


where a, b, c, d are unspecified real numbers.
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(a) Prove that rank(A) > 2.

(b) Prove that if a = d = 0 and bc = 1 then rank(A) = 3.

21. Let A be an n × n matrix.

(a) Show that A2 = 0 if and only if col(A) ⊆ ker(A).

(b) Show that A2 = 0 implies rank(A) ≤ n
2

(c) Find a matrix A such that col(A) = null(A)

22. Let c , 0 be in Rm and r ∈ Rn and define A = crT

(a) Show that col(A) = span{c} and row(A) = span{r}.

(b) Find dim(ker(A))

(c) Show that ker A = null(r)

23. Prove that if dim S = m then any set of m linearly independent vectors in
S must be a basis.

24. Prove that if dim S = m then any set of m spanning vectors in S must be
a basis.

25. Prove that the only proper subspaces of R3 are lines through the origin
and planes through the origin.

26. Prove the remaining equivalent statements in the theorems on full rank
(Theorems 9 & 10).

27. Let B be m × n and AB be k × n. Suppose that rank(AB) = rank(B).
Show that ker B = ker(AB).

28. Show that, for every n ×m matrix A, the matrix Im + AT A is invertible.

29. Suppose that S ⊂ R8 where dim S = 5. Is there a subspace V ⊆ R8 such
that dim V = 2 and V ∩ S = {0}. Justify your answer.



The Fundamental Theorem of Linear Algebra

We are going to present a striking result, fundamental to understanding
how the concepts we’ve seen all semester relate to one another. But, equally
important, we’re going to see a remarkable picture which illustrates the
theorem.
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Prelude: Orthogonal Complements

Before we get to the main theorem, a bit on the terminology it uses. We’ll
begin with a natural definition.

Definition 6

Let S ⊆ Rn be a subspace. The set S⊥ ⊆ Rn is defined to be the col-
lection of all vectors v ∈ Rn orthogonal to S and called the orthogo-
nal complement of S in Rn. In other words,

S⊥ = {u ∈ Rn | u · v = 0, v ∈ S }

You should be able to prove that S⊥ is a subspace of Rn (see exercises)
The purpose of these notes is to establish a version of the Fundamental

Theorem of Linear Algebra. The result can be thought of as a type of
representation theorem, namely, it tells us something about how vectors are
by describing the canonical subspaces of a matrix A in which they live. To
understand this we consider the following representation theorem.

Theorem 30

Let v ∈ Rn and let S ⊆ Rn be a subspace. Then there are vectors s ∈
S , s⊥ ∈ S⊥ such that

v = s + s⊥

In other words, vectors can be expressed in terms of pieces living in
orthogonal spaces.

The above theorem is sometimes expressed in the notation Rn = S ⊕ S⊥

where the notation is called the “direct sum" of S and S⊥.
Proof

The proof needs a small fact we saw early in the section on Gram-
Schmidt. Here’s the fact: not only does every subspace S of Rn

have a basis, it actually has an orthonormal basis, namely a basis B
consisting of vectors s j where ||s j|| = 1 holds for all j and si · s j = 0
when i , j. How do we know? We’ve already proven that subspaces
all have bases. From there all that’s left is to use the Gram-Schmidt
algorithm to turn a given basis into one in which all the vectors are
made orthogonal and of unit length.
So S has an orthonormal basis as described. Then set

s = (v · s1)s1 + · · ·+ (v · sdim S )sdim S

which must clearly be an element of S . Then define s⊥ = v − s. It’s
obvious that v = s + s⊥ and you can verify that s⊥ ∈ S⊥ giving the
result. �
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Example 16

Consider the subspace S = span{e1} ⊂ R4. Then S⊥ = {v ∈ R4 | v ·
e1 = 0}. A basis for S⊥ is provided by {e2, e3, e4}. Clearly any vector
w ∈ R4 can be written as

w = c1e1 + c2e2 + c3e3 + c4e4 = s + s⊥

as claimed by the theorem.

Where this is going: We’ll soon see that for an m × n matrix A we have
(ker A)⊥ = col(AT ). If this is true, then that means (using the notation above)
that Rn = ker(A) ⊕ col(AT ). In this case a vector x ∈ Rn can be written
as x = p + v where Av = 0 and p ∈ row(A) since row(A) = col(AT ).
In other words if b ∈ col(A) we can solve Ax = b and since x ∈ Rn =

ker(A) ⊕ col(AT ) we can write x as

x = p + vh

In the above p ∈ row(A) since row(A) = col(AT ). The space of possible
vh’s is dim(ker(A))-dimensional, so the nullity describes the lack of unique
solvability for the linear system Ax = b.

The Fundamental Theorem of Linear Algebra

We can now get on with proving the main theorem in this course, the cap-
stone to our understanding what it means to solve systems of linear equations.

Proposition 1

Suppose A is an m × n matrix. Then

col(AT )⊥ = ker A

Proof

Suppose v ∈ ker A, then Av =


0
0
...
0

 =


(row1(A)) · v
(row2(A)) · v

...
(rowm(A)) · v

 so v is or-

thogonal to rowi(A) for i = 1, ..., m. Therefore v ∈ (row(A))⊥ =

(col(AT ))⊥, i.e. ker A ⊆ (col(AT ))⊥. As well, if v ∈ (col(AT ))⊥

then, in particular, we must have that v · (rowi(A)) = 0 for i = 1, ..., m.
But in this case we’d again have v ∈ ker A. Thus (col(AT ))⊥ ⊆ ker A.
Since the sets contain each other they must be equal and we’re done.

�
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If v ∈ (S⊥)⊥ then clearly v · s⊥ = 0 for all s⊥ ∈ S⊥. If {s1, ..., sdim S } is
an orthonormal basis for S and {s⊥1 , ..., s⊥dim S⊥ } is an orthonormal basis for S⊥

we can write out (from the expansion formula we saw earlier)

v = (v · s1)s1 + · · ·+ (v · sdim S )sdim S + (v · s⊥1 )s
⊥
1 + · · ·+ (v · s⊥dim S⊥)s

⊥
dim S⊥

= (v · s1)s1 + · · ·+ (v · · · sdim S )sdim S ∈ S

So (S⊥)⊥ ⊆ S . As well, clearly for s ∈ S we have s ∈ (S⊥)⊥ since s · s⊥ = 0
must be true for all s⊥ ∈ S⊥. Thus, S ⊆ (S⊥)⊥. From these facts it follows
that

S = (S⊥)⊥

must hold for all subspaces S ⊆ Rn. (Make sure you can verify this state-
ment). Applying this general fact to the previous theorem we immediately get
the following.

Theorem 31: Fundamental Theorem of Linear Algebra

Suppose A is an m × n matrix. Then

col(AT ) = (ker A)⊥

So that
Rn = ker(A) ⊕ col(AT )

gives an orthogonal decomposition of Rn into the null space and
the row space of matrix A. Therefore, for b ∈ col(A) we have that
Ax = b is solved by

x = p + vh

for p ∈ row(A) a particular solution, Ap = b, and vh ∈ ker A a
generic vector in ker A.

Example 17

Consider the matrix A =


1 0 7 6
0 1 5 2
0 0 0 0

. The fundamental theorem,

applied to AT , tells us that Rm = ker(AT ) ⊕ col(A), which in this case
gives R3 = ker(AT ) ⊕ col(A). Let’s see if this holds.
Since the matrix is in reduced form, we know that a basis for col(A)

is given by the pivot columns, namely {


1
0
0

 ,


0
1
0

}. Next, look at

ker(AT ). Since AT =


1 0 0
0 1 0
7 5 0
6 2 0

 we use row reduction to find a basis
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for the null space. Namely, AT ∼


1 0 0
0 1 0
0 0 0
0 0 0

 and therefore, a basis for

ker(AT ) is given by {


0
0
1

}. Notice that, indeed, ker(AT ) = (col(A))⊥

and that R3 = ker(AT ) ⊕ col(A) as the theorem dictates.

The Diagrams

The content of this theorem, the fundamental theorem of linear algebra, is
encapsulated in the following figure. If a picture is worth a thousand words,
these figures are worth at least several hours’ thought. The figures should
be thought of as a visualization of the effect of the linear transformation TA,
induced by m × n matrix A with rank r.

Decomposition of Rn

Here we consider the orthogonal decomposition described by the fundamen-
tal theorem of the domain of TA, namely Rn = ker A ⊕ col(AT ).

Figure 5: Solving Ax = b for an m × n
matrix with rank(A) = r. The subspaces
on both sides meet at right angles. Notice
that the subspaces appearing on the left
correspond to their “dual subspaces" for
corresponding transpose of the matrix A
appearing on the right hand side.

Notice this picture has all the major players we’ve seen in this course:
there are vectors, subspaces, dimensions, and they are all playing a role in the
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way we conceptualize solving a linear system of equations. Moreover, note
the duality in the picture: the subspaces on the right-hand side, those living in
Rm, are the corresponding subspaces appearing on the left-hand side for the
transpose of A rather than A (e.g. col(A) appearing on the upper right is just
row(AT ) whereas we see row(A) on the upper left-hand side). The subspaces
meet at right angles because they’re orthogonal complements of each other
and the intersection of the spaces is the zero subspace of the respective
ambient space (Rn or Rm). Try to visualize how the picture changes as we
look at limiting values of possible rank for A. Namely, how would this above
change in the case where rank(A) = n say? Or m? Or if A is square and
invertible? If A is symmetric? Etc.

Decomposition of Rm

Next, we consider a nice application of the orthogonal decomposition of the
codomain of the transformation TA described by the fundamental theorem of
linear algebra, namely Rm = ker AT ⊕ col(A).

Figure 6: Finding the best x when Ax = b
isn’t solvable since b < col(A) for an m × n
matrix with rank(A) = r. The subspaces
on both sides meet at right angles. Since
b < col(A) the equation Ax = b isn’t
solvable. But the orthogonal decomposition
of Rm allows a natural approach to finding
the “best" x.

An application

We’re going to expand on the last picture a bit. Consider the following
situation. We’ve collected m output numbers y1, ..., ym from a measuring
device at various times labeled t1, t2, ..., tm. In other words, we have collected
data of the form (ti, yi) for i = 1, ..., m. The values yi could be the reported
valuation on a stock we are interested in purchasing, say, where the “device"
is a computer ticker displaying the values. The values yi could be the median
selling price of a home in a given neighbourhood at a given time ti, say. The
“device" in this instance, might again be an annual financial report or internal
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publication. The point is, the situation I’ve described is quite general. Maybe
the data we’ve collected looks something like the following

Figure 7: A plot of data points (ti, yi) for
various t values.

It would be of obvious financial value to be able to use the data we’ve
gathered to be able to predict new data at times in the future. This would be
doable if, say, we had a model for how the data were produced, namely if we
had a function f : R→ R for which

yi = f (ti), i = 1, ..., m

Simplicity being preferable to complexity in modelling, the easiest thing
to consider as a first approximation would be a linear model. Namely, we
assume f takes the form f (w) = mw + b for fixed numbers m, b. In that case
we’re searching for a model to be able to use for predictive purposes which
takes the form

yi = ati + b i = 1, ..., m (0.0.5)

The problem is that you can see from the figure above that the data points
clearly cannot live on a line. On the other hand, they aren’t that far off so
maybe it’s not hopeless either. Since, as modellers, we’re allowed to choose
the parameters a, b as we like, we can view them as unknowns in the problem
and try to use the data set to determine the best possible choice.

We rewrite equation (0.0.5) as the matrix equation

1 t1
1 t2
1 t3
...

...
1 tm


A

ba


x

=



y1

y2

y3
...

ym


b

(0.0.6)
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Since we’ve already noticed that the points (ti, yi) don’t live on a line we
know that, in the above, we have b < col(A), so there’s no chance of actually
solving the above matrix equation to actually determine the parameters a, b.
But a glance at Figure 2, together with the discussion preceding it, indicates
that we shouldn’t give up. Namely, instead of solving Ax = b which we
know we cannot, we find the vector y ∈ col(A) which is as close as possible
to b. As before, this vector must satisfy AT (y − b) = 0 which means we want
to solve

AT Ax = AT b

Then again, in this particular case, since t1 < t2 < · · · < tm we have that
rank(A) = 2. Our theorem on maximal rank guarantees then that AT A must
be invertible. Therefore, we have found an optimal solution

x = (AT A)−1AT b

In other words, the parameters m, b which provide us with a “best linear
fit" for the data set are

ba
 = (

1 1 · · · 1
t1 t2 · · · tm




1 t1
1 t2
1 t3
...

...
1 tm


)−1

1 1 · · · 1
t1 t2 · · · tm




y1

y2

y3
...

ym


We can clean this up a little by defining 1 =

[
1 1 · · · 1

]T
and t =[

t1 t2 · · · tm
]T

. This allows us to rewrite the above as

ba
 = (

1 1 · · · 1
t1 t2 · · · tm




1 t1
1 t2
1 t3
...

...
1 tm


)−1

1 1 · · · 1
t1 t2 · · · tm




y1

y2

y3
...

ym



=

 m 1 · t
1 · t ||t||2

−1 1 1 · · · 1
t1 t2 · · · tm




y1

y2

y3
...

ym


=

1
m||t||2 − (1 · t)

 ||t||2 −1 · t
−1 · t m

 1 · bt · b


So that b = (

||t||21−(1·t)t
m||t||2−(1·t) ) · b and a = (

mt−(1·t)1
m||t||2−(1·t) ) · b give the best choice of

parameters for fitting the data to a line.
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Figure 8: A plot of data points (ti, yi)
together with the line y = ax + b where a, b
are the best possible parameters. Notice that
while the points don’t fall on the line, they
are not far off.

Exercises

You should be able to do the following.

1. Calculate the orthogonal complements of the improper subspaces of Rn.

2. Let v ∈ R3 be a nonzero vector. Describe (span{v})⊥.

3. Prove that S⊥ is a subspace of Rn whenever S is.

4. Prove that for S ⊆ Rn a subspace we have dim S + dim S⊥ = n.

5. If S , W are subspaces of Rn show that S ⊆ W =⇒ W⊥ ⊆ S⊥

6. Let S = {x ∈ R4 | x1 + x2 + x3 + x4 = 0}. Prove that S is a subspace and
find a basis for S⊥.

7. Prove that every m × n matrix A defines a linear transformation from
row(A) onto col(A), i.e.

TA : row(A)→ col(A)

8. Consider A, an m × n matrix and b ∈ Rm. Consider the following claim28: 28 A variation of this strange-sounding claim
is very important in numerous applications
including, very importantly, in differential
equations.

One and only one of the following systems is solvable

(a) Ax = b

(b) AT y = 0 with yT b , 0

Prove that the above options cannot BOTH hold. In other words, if one of
the above holds the other one mustn’t.
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