1 Dot Product, Cauchy-Schwarz, Etc -

- 1. Verify that $\|\mathbf{v}\| \ge 0$ with $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$.
- 2. Let $||\mathbf{v}|| = 2$ and $||\mathbf{w}|| = 4$ and $\mathbf{w} \cdot \mathbf{v} = 2$. Compute $||2\mathbf{v} + 17\mathbf{w}||$.
- 3. Let $\|\mathbf{v}\| = 2$ and $\|\mathbf{w}\| = 3$ and $\mathbf{v} \cdot \mathbf{w} = 5$. Compute $\|12\mathbf{v} 7\mathbf{w}\|$.
- In introducing the Cauchy-Schwarz inequality, it was alleged to generalize the dot product formula involving cosine which we found in R². Explain how.
- 5. Explain why the triangle inequality has its name.
- 6. Prove that $d(c\mathbf{v}, \mathbf{w}) = |c|d(\mathbf{v}, \frac{1}{c}\mathbf{w})$ holds for all $0 \neq c \in \mathbb{R}$ and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$
- 7. Show that $\mathbf{v} \cdot \mathbf{w} = \frac{1}{4}(||\mathbf{v} + \mathbf{w}||^2 ||\mathbf{v} \mathbf{w}||^2)$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.
- 8. Show that $\|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 = \frac{1}{2}(\|\mathbf{v} + \mathbf{w}\|^2 + \|\mathbf{v} \mathbf{w}\|^2)$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.
- 9. Pythagorean theorem in \mathbb{R}^n . Namely, if $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ then $\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$ if and only if \mathbf{v} and \mathbf{w} are orthogonal.
- 10. True/False: $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal if and only if $\|\mathbf{v} \mathbf{w}\| = \|\mathbf{v} + \mathbf{w}\|$
- 11. True/False: $\mathbf{v} + \mathbf{w}$ and $\mathbf{v} \mathbf{w} \in \mathbb{R}^n$ are orthogonal if and only if $\|\mathbf{v}\| = \|\mathbf{w}\|$
- 12. (Requires linear independence). Suppose $S = {\mathbf{v}_1, ..., \mathbf{v}_k} \subset \mathbb{R}^n$ is a collection of nonzero mutually orthogonal vectors, i.e. $i \neq j \implies \mathbf{v}_i \cdot \mathbf{v}_j = 0$. Prove that the vectors in *S* are linearly independent.
- 13. True/False: All linearly independent sets of vectors in \mathbb{R}^n are orthogonal.
- 14. Show that,¹ for all non-negative numbers $x, y \in \mathbb{R}$ we have $\sqrt{xy} \leq \frac{1}{2}(x + y)$.
- 15. If $a_1, ..., a_n$ are real numbers then

$$\frac{|a_1 + \dots + a_n|}{\sqrt{n}} \le \sqrt{a_1^2 + \dots + a_n^2}$$

16. Let $a_1, ..., a_n$ be real and $b_1, ..., b_n$ be *positive*. Then prove that

$$\frac{a_1^2}{b_1} + \frac{a_2^2}{b_2} + \dots + \frac{a_n^2}{b_n} \ge \frac{(a_1 + \dots + a_n)^2}{b_1 + \dots + b_n}$$

and that equality holds when and only when $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \cdots = \frac{a_n}{b_n}$.

17. Let *x*, *y*, *z* be positive numbers. Prove that

$$\sqrt{x(3x+y)} + \sqrt{y(3y+z)} + \sqrt{z(3z+x)} \le 2(x+y+z)$$

18. Find $\operatorname{proj}_{\begin{bmatrix} 1 & 2 \end{bmatrix}^{T}} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ 19. Find $\operatorname{proj}_{\begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^{T}} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ 20. Find $\operatorname{proj}_{\begin{bmatrix} 3 & -1 & 2 \end{bmatrix}^{T}} \begin{bmatrix} -3 \\ 4 \\ 7 \end{bmatrix}$

¹The left hand side of the inequality is called the *geometric mean* of the numbers *x*, and *y*, whereas the right hand side is the *arithmetic mean* of the same numbers. This result shows that the geometric mean is bounded by the arithmetic mean. Sometimes this fact is called the "AM-GM inequality".

- 21. Let $\mathbf{v} \in \mathbb{R}^n$ and $\neq \mathbf{0}$. Show that $\mathbf{proj}_d(\mathbf{proj}_d\mathbf{v}) = \mathbf{proj}_d\mathbf{v}$
- 22. Let $\mathbf{0} \neq \mathbf{d} \in \mathbb{R}^{n}$. Prove that $\mathbf{proj}_{\mathbf{d}}\mathbf{v} = \mathbf{0}$ if and only if \mathbf{v} and \mathbf{d} are orthogonal.
- 23. (Harder). Suppose $S = \{\mathbf{v}_1, ..., \mathbf{v}_k\} \subset \mathbb{R}^n$ is an orthogonal set. Let $\mathbf{v} \in \mathbb{R}^n$ be arbitrary and let c_i be the component of \mathbf{v}_i along \mathbf{v} i.e. $c_i = \frac{\mathbf{v}_i \cdot \mathbf{v}}{\|\mathbf{v}_i\|^2}$ for i = 1, ..., k. Show that

$$\|\mathbf{v} - (c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k)\| \le \|\mathbf{v} - (a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k)\|$$

holds for all $a_1, ..., a_k \in \mathbb{R}$

24. (Hard). Suppose $S = {\mathbf{v}_1, ..., \mathbf{v}_k} \subset \mathbb{R}^n$ is an orthonormal set. Let $\mathbf{v} \in \mathbb{R}^n$ be arbitrary and let c_i be the component of \mathbf{v}_i along \mathbf{v} i.e. $c_i = \frac{\mathbf{v}_i \cdot \mathbf{v}}{\|\mathbf{v}_i\|^2}$ for i = 1, ..., k. Show that

$$c_1^2 \|\mathbf{v}_1\|^2 + \dots + c_k^2 \|\mathbf{v}_k\|^2 \le \|\mathbf{v}\|^2$$