Extra Exercises

Nicholas Hoell

April 4, 2018

These should challenge you a bit beyond what you've done in textbook exercises. A few of them, which are marked, are quite challenging.

Contents

1	True/False	1
2	Long Answer	2

1 True/False

- 1. Let *A* be a matrix. The pivot columns of the reduced row echelon form of *A* are a basis for the row space of the transpose of *A*.
- 2. If *A* is invertible then $rank(A) = rank(A^{-1})$.
- 3. The rank of a matrix must be at least as big as the dimension of its nullspace.
- 4. A nonzero element of *Nul*(*A*), for a square matrix *A*, must be an eigenvector of *A*.
- 5. If every entry of a square matrix A is positive then $det(A) \neq 0$.
- 6. Let *A* be *m* × *k* and *B* be *k* × *n* matrices which have reduced row echelon matrices given by matrices *M* and *N* respectively. Then the reduced row echelon matrix of *AB* is given by the matrix *MN*.
- 7. Let A be invertible. Then, if λ is an eigenvalue of A, $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .
- 8. If A and B are 2×2 then det(2A + 3B) = 4 det(A) + 9 det(B).
- 9. If *A* is $n \times n$ and has eigenvalues $\lambda_1, ..., \lambda_k$ counted with multiplicities $m_1, ..., m_k$, then $det(A) = \lambda_1^{m_1} \cdots \lambda_k^{m_k}$.
- 10. If *A* is square and $A^T = A^{-1}$ then det(*A*) = 1.

- 11. Eigenvectors are linearly independent.
- 12. If $A\mathbf{x} = \mathbf{0}$ has only the trivial solution then *A* is invertible.
- 13. If *A* is invertible, then so must be its reduced row echelon form.
- 14. The circle $x^2 + y^2 = 1$ is the null space of some linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$.
- 15. The line y = 6x is the null space of some linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$.
- 16. The line y = -6x is the range of some linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$.
- 17. If A is 2×2 then $rank(A) = rank(A^2)$.
- 18. If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly independent vectors in subspace *S* then dim(*S*) > 3.
- 19. Let *A* and *B* be $n \times n$. Then *A* and *B* are invertible if and only if *AB* is invertible.
- 20. If the characteristic polynomial of *A* is $c_A(\lambda) = (\lambda 4)^3(\lambda + 5)$ then *A* is 4×4 .
- 21. If the characteristic polynomial of *A* is $c_A(\lambda) = \lambda(\lambda 1)^2(\lambda + 2)$ then there are no solutions to $A\mathbf{x} = 3\mathbf{x}$.
- 22. If 0 is an eigenvalue of *A* then *A* is not diagonalizable.
- 23. *A* is invertible if and only if row(A) = col(A).
- 24. If *A* and *B* are the same size and each has rank 1 then $rank(A + B) \ge 1$.
- 25. If *A* and *B* are the same size and each have rank *n* then rank(A + B) = n.

2 Long Answer

- 1. (Some hard parts). This problem concerns planes and should challenge your intuitions.
 - A plane in \mathbb{R}^3 is the solution set to an equation of the form ax+by+cz = d. Prove that two planes in \mathbb{R}^3 have either zero or infinitely many intersection points.
 - A plane Π in \mathbb{R}^4 is a set of the form $\Pi = \{\mathbf{p} + s\mathbf{v}_1 + t\mathbf{v}_2 \mid s, t \in \mathbb{R}\}$, where $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent. Prove that two planes in \mathbb{R}^4 can meet at a single point.
 - Suppose two planes Π_1 , Π_2 in \mathbb{R}^4 meet in a line *L*. Prove that there exists a translation¹ of one of the planes causing Π_1 and Π_2 to separate.
- 2. Let

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right)$$

¹A *translation* of a plane $\Pi = \{\mathbf{p} + s\mathbf{v}_1 + t\mathbf{v}_2 \mid s, t \in \mathbb{R}\}$ by the vector **u** is the set $\{\mathbf{u} + \mathbf{p} + s\mathbf{v}_1 + t\mathbf{v}_2 \mid s, t \in \mathbb{R}\}$, often simply denoted $\mathbf{u} + \Pi$. It is a shift of all points in the plane by the vector **u**.

- (a) Find a matrix *B* such that $AB = I_2$ or show that such a *B* doesn't exist.
- (b) Find a matrix *C* such that $CA = I_3$ or show that such a *C* doesn't exist.

3. Let

where *a*, *b*, *c*, *d* are unspecified real numbers.

- (a) Prove that rank(A) > 2.
- (b) Prove that if a = d = 0 and bc = 1 then rank(A) = 3.
- 4. Let *V* be a subspace of dimension *n* and let $S = \{v_1, ..., v_k\}$ be a subset of *V*. Answer True/False to the following:
 - (a) If *S* is a basis for *V* then k = n.
 - (b) If *S* spans *V* then $k \le n$.
 - (c) If *S* is linearly independent then $k \le n$.
 - (d) If *S* is linearly independent and k = n then *S* spans *V*.
 - (e) If *S* spans *V* and k = n then *S* is a basis for *V*.
- 5. Find

$$det \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 2 & 3 \\ 4 & 3 & 2 & 1 & 2 \\ 5 & 4 & 3 & 2 & 1 \end{bmatrix}$$

- 6. For this problem, we'll be considering a transformation. Let **d** be a fixed, nonzero vector in \mathbb{R}^n . Define the transformation $\mathbf{p}_{\mathbf{d}} : \mathbb{R}^n \to \mathbb{R}^n$ by $\mathbf{p}_{\mathbf{d}}(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{d}}{\|\mathbf{d}\|^2} \mathbf{d}$
 - (a) Prove that $\mathbf{p}_{\mathbf{d}}$ is linear and find its standard matrix.
 - (b) Prove that $\mathbf{p}_{\mathbf{d}} \circ \mathbf{p}_{\mathbf{d}} = \mathbf{p}_{\mathbf{d}}$
 - (c) Prove that $\mathbf{x} \mathbf{p}_{\mathbf{d}}(\mathbf{x})$ is orthogonal to **d** for all $\mathbf{x} \in \mathbb{R}^{n}$.
 - (d) Use part (b) to find an example of a nonzero 4×4 matrix, other than the identity, satisfying $A^2 = A$.
- 7. Are all matrices LU-factorizable? If not, provide an example of a matrix which is not factorable in this way.
- 8. A square matrix A is said to be *anti-symmetric* if $A^T = -A$.

- (a) Give two examples of 2×2 anti-symmetric matrices.
- (b) Prove that every square matrix *B* can be written as a sum of a symmetric and an anti-symmetric matrix. Namely, B = S + A where $S^T = S$, $A^T = -A$.
- 9. The *adjugate ad j*(*A*) of a square matrix *A* is (uniquely) defined as the square matrix which satisfies adj(A)A = Aadj(A) = det(A)I. Prove that $adj(A)^{-1} = adj(A^{-1})$ whenever *A* is invertible.
- 10. Let $\mathbf{c} \neq \mathbf{0}$ be in \mathbb{R}^m and $\mathbf{0} \neq \mathbf{r} \in \mathbb{R}^n$ and define $A = \mathbf{c}\mathbf{r}^T$
 - (a) Show that $col(A) = span\{c\}$ and $row(A) = span\{r\}$.
 - (b) Find dim(*Nul*(*A*))
 - (c) Show that $Nul(A) = Nul(\mathbf{r}^T)$
- 11. Let *A* be an $n \times n$ matrix.
 - (a) Show that $A^2 = 0$ if and only if $col(A) \subseteq ker(A)$.
 - (b) Show that $A^2 = 0$ implies $rank(A) \le \frac{n}{2}$
 - (c) Find a matrix *A* such that col(A) = null(A)
- 12. If the rows of a square matrix *A* all sum to the same number *c*, show that *c* is an eigenvalue of *A*.
- 13. If the columns of a square matrix *A* all sum to the same number *c*, show that *c* is an eigenvalue of *A*.
- 14. (Some hard parts). A square matrix is called *nilpotent* if there's an $m \ge 1$ such that $A^m = 0$.
 - (a) Find some examples of nonzero nilpotent matrices.
 - (b) Prove that nilpotent matrices have only 0 as an eigenvalue.
 - (c) Prove that $c_A(x) = (-1)^n x^n$ for nilpotent matrices *A*.
 - (d) If *A*, *B* are both nilpotent, of the same size, and AB = BA holds, then prove AB and A + B are both nilpotent as well.
 - (e) Show that if *A* is nilpotent with $A^{r+1} = 0$, show that I A is invertible and that its inverse is $I + A + A^2 + \cdots + A^r$
- 15. Are all 1×1 matrices diagonalizable?

16. Diagonalize $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

17. Suppose *A* is diagonalizable.

- (a) Is A^n diagonalizable for $n \ge 1$? If yes prove it, if no give a counterexample.
- (b) Is *cA* diagonalizable for all $c \in \mathbb{R}$? If yes prove it, if no give a counterexample.
- (c) Is *MAM*⁻¹ diagonalizable for any invertible *M* with same size as *A*? If yes prove it, if no give a counterexample.
- (d) Is cI + A diagonalizable for all $c \in \mathbb{R}$? If yes prove it, if no give a counterexample.
- 18. Are all elementary matrices diagonalizable? Why or why not.
- 19. Show that, for any $n \times m$ matrix A, the matrix $I_m + A^T A$ is invertible. Give two separate proofs.
- 20. True/False: Every square matrix can be written as the sum of two invertible matrices. If false give a counterexample. If true, prove it.
- 21. Let *B* be $m \times n$ and *AB* be $k \times n$. Suppose that rank(AB) = rank(B). Show that ker B = ker(AB).
- 22. Let $c_A(x)$ be the characteristic polynomial for matrix A.
 - (a) Show $c_{rA}(x) = r^n c_A(\frac{x}{r})$ for all $r \neq 0$
 - (b) Show that $c_{A^2}(x^2) = c_A(x)c_A(-x)$
 - (c) (*This may be quite tricky, but there may be an easy proof*) If $A^m = 0$ for some $m \ge 1$ show that $c_A(x) = x^n$
- 23. Let $A = [a_{ij}]$ be a square matrix with $a_{ij} = 1$ for $1 \le i \le n$ and $1 \le j \le n$. Is A diagonalizable? If yes, diagonalize it. If not, explain why not. *Hint: this can be done in a fast and easy way or a less fast and way less easy way. We suggest you choose the easy way.*
- 24. (Hard). Suppose that A is an $n \times n$ matrix which satisfies $A^2 3A + 2I = 0$.
 - (a) Show that the only possible eigenvalues of *A* are $\lambda = 1, 2$.
 - (b) Show that *A* must be diagonalizable.
 - (c) Find all possible matrices satisfying $A^2 3A + 2I = 0$.
- 25. (Very hard). Suppose that *A* is an $m \times n$ matrix with *n* pivots. Show that there is an $n \times n$ matrix *Q*, with real entries, satisfying

$$Q^2 = A^T A$$

Such a matrix Q would be called the square root of $A^T A$, namely $Q = \sqrt{A^T A}$.

26. (Some hard parts). Suppose that *A* is an $m \times n$ matrix with *n* pivots.

- (a) Prove that there's a positive constant *C* such that $||A\mathbf{x}|| \leq C||\mathbf{x}||$ holds, for all $\mathbf{x} \in \mathbb{R}^n$.
- (b) Verify that $\mathbf{x}^T A^T A \mathbf{x} = ||A\mathbf{x}||^2$
- (c) Show that $A^T A$ is diagonalizable with *strictly positive* eigenvalues. Thus, $A^T A = PDP^{-1}$
- (d) Prove there's a positive constant *c* such that $||P\mathbf{y}|| > c||\mathbf{y}||$ holds for all $\mathbf{y} \in \mathbb{R}^n$
- (e) Show that there's a positive constant *d* such that $||D\mathbf{z}|| > d||\mathbf{z}||$ holds for all $\mathbf{z} \in \mathbb{R}^n$
- (f) Conclude that there's a positive constant $\ell > 0$ such that $||A\mathbf{x}|| > \ell ||\mathbf{x}||$ holds for all $\mathbf{x} \in \mathbb{R}^n$