MAT223 - Review Sheet

Prof K. Leung with a few minor amendments by Prof. Hoell

Beginning on the next page, you'll find a handy list of theorems, definitions, and concepts we've used throughout the term which may aid your course review. The list was write by a former MAT223 prof K. Leung and given out during December 2016 in preparation for the final exam. Since this semester we covered a few different things from that term, a few important things are missing from this sheet, namely **pivots**, **LU Factorization**, **orthogonal complements** and **Fundamental Theorem of Linear Algebra**.¹ Please keep in mind that the material is somewhat incomplete when you read this.

¹Plenty of material from this list was *removed* as well since there were things this term which we did not cover that semester. In fact, *more* was removed from the sheet than needs to be added in case you're curious.

linearly	A collection of k vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly independent if
independent	$a_1\mathbf{v}_1 + \ldots + a_k\mathbf{v}_k = 0$ implies $a_1 = \ldots = a_k = 0$.
linearly dependent	A collection of k vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is linearly dependent if there is $a_1, \dots, a_k \in \mathbb{R}$, not all zero, such that
	$a_1\mathbf{v}_1+\ldots+a_k\mathbf{v}_k=0$
span (noun)	The span of $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is the set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_k$.
	$\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}=\{a_1\mathbf{v}_1+\ldots+a_k\mathbf{v}_k a_1,\ldots,a_k\in\mathbb{R}\}$
span (verb)	$\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans a subspace U if every vector in U is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$ and $\mathbf{v}_i \in U$ for all i , i.e. $U = \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$
Basis	A collection of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a basis for a subspace U if $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent and it spans U .
Dimension	Dimension of a subspace U is the number of vectors in a basis for U .
Orthogonality	Two vectors \mathbf{x} and \mathbf{y} are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.
Orthogonal Sets	A collection of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is an orthogonal set if \mathbf{v}_i is orthogonal to \mathbf{v}_j if $i \neq j$; and all vectors are nonzero.
null space	The null space of a matrix A is the set of vectors \mathbf{x} such that $A\mathbf{x} = 0$
image space	The image space of a matrix A is all the vectors \mathbf{v} such that \mathbf{v} can be written as $A\mathbf{x}$ for some \mathbf{x} . It is exactly the same as the column space of A .
column space	The column space of a matrix A is the span of the column vectors of A. (It is exactly the same as the image space of A.
row space	The row space of a matrix A is the span of the row vectors of A.
rank	The rank of a matrix A is the number of leading 1's in its row-echelon form. It is also the dimension of the row space, column space and image space of A .
Cofactor	The (i, j) -th cofactor of a square matrix A is denoted by C_{ij} such that $C_{ij} = (-1)^{i+j} \det(A_{ij})$, where A_{ij} is the matrix by deleting the <i>i</i> -th row and the <i>j</i> -th column of A .
Eigenvalue	λ is an eigenvalue of A if $A\mathbf{v} = \lambda \mathbf{v}$ for some nonzero v .
Eigenvector	v is an eigenvector of <i>A</i> if $A\mathbf{v} = \lambda \mathbf{v}$ for some $\lambda \in \mathbb{R}$ and $\mathbf{v} \neq 0$
Eigenspace	The eigenspace E_{λ} of <i>A</i> corresponding to an eigenvalue λ is the collection of all eigenvectors with eigenvalue λ , along with the zero vector. Thus $E_{\lambda} = \text{null}(\lambda I - A)$.
Characteristic polynomial	The characteristic polynomial $c_A(\lambda)$ of a square matrix A is defined as $c_A(\lambda) = \det(\lambda I - A)$.
Algebraic Multiplicity	The multiplicity <i>m</i> of an eigenvalue λ_0 is the number such that $c_A(\lambda) = (\lambda - \lambda_0)^m p(\lambda)$ for some polynomial $p(\lambda)$ such that $p(\lambda_0) \neq 0$.
Geometric Multiplicity	The geometric multiplicity of an eigenvalue λ is dim null($\lambda I - A$)

Theorems, propositions, lemmas, etc.

• Let U be a subspace. If $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ spans U and $\{\mathbf{w}_1, \ldots, \mathbf{w}_m\}$ is a linearly independent set in U, then $m \leq k$.

In other words, the number of vectors in a linear independent set cannot be more that the number of vectors in a spanning set.

• If both $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ and $\{\mathbf{w}_1, \ldots, \mathbf{w}_m\}$ are bases for a subspace U, then k = m.

In other words, for a fixed subspace, every basis contains the same number of vectors.

- Any independent set in U can be enlarged to a basis for U and any spanning set of U can be cut down to a basis for U.
- For any nonzero subspace U, U has a basis.
- Let U be a subspace such that dim U = m. Then a set of m vectors in U is linearly independent if and only if it spans U.
- Let U and V be subspaces such that $U \subseteq V$. Then dim $U \leq \dim V$.
- If U and V are subspaces such hat $U \subseteq V$ and dim $U = \dim V$. Then U = V.
- Cauchy inequality: Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$, with equality holds when \mathbf{x} and \mathbf{y} are linearly dependent.
- Triangle inequality: Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.
- Every orthogonal set is linearly independent.
- If $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ is an orthogonal set, then $\|\mathbf{x}_1 + \dots + \mathbf{x}_k\|^2 = \|\mathbf{x}_1\|^2 + \dots + \|\mathbf{x}_k\|^2$.
- Row operations won't change the row space and column operations won't change the column space.
- $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.
- $\operatorname{col}(AB) \subseteq \operatorname{col}(A)$ and $\operatorname{row}(AB) \subseteq \operatorname{row}(B)$.
- $rank(AB) \le rank(A)$ and $rank(AB) \le rank(B)$.
- Let *A* be an $m \times n$ matrix. Then rank(*A*) + dim null(*A*) = n.
- The determinant of an $n \times n$ matrix A is given by

$$\det(A) = a_{k1}C_{k1} + \ldots + a_{kn}C_{kn} = a_{1j}C_{1j} + \ldots + a_{nj}C_{nj},$$

where j, k are any integer between 1 to n. This is the cofactor expansion of A.

• Properties of determinants

- If A contains a zero row or column, then $\det A = 0$.

- If two rows or columns are interchanged, the determinant of the resulting matrix is $-\det A$.
- If a row or column of A is multiplied by a constant k, the deerminant of the resulting matrix is k det A.
- If two distinct rows or columns of A are identical, then $\det A = 0$.
- If a multiple of a row (or column) of *A* is added to a different row (or column), then the determinant stays the same.
- $\det A = \det A^T$
- det[$\mathbf{v}_1 \dots \mathbf{b} + \mathbf{c} \dots \mathbf{v}_n$] = det[$\mathbf{v}_1 \dots \mathbf{b} \dots \mathbf{v}_n$] + det[$\mathbf{v}_1 \dots \mathbf{c} \dots \mathbf{v}_n$]
- det(AB) = det(A) det(B) (both are square matrices)
- A is invertible if and only if det $A \neq 0$.
- Let λ be an eigenvalue of A with algebraic multiplicity m. Then we have $1 \leq \dim E_{\lambda} \leq m$
- Let *A* be an $n \times n$ matrix. Then *A* is diagonalizable if (a) the sum of the geometric multiplicities of all of its eigenvalues is *n*; and (b) for each eigenvalue λ , the algebraic multiplicity *m* equals dim E_{λ} .
- If *A* has *n* distinct eigenvalues, then *A* is diagonalizable.

Algorithms

Prove that a collection of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent.	 Write "Let a₁v₁ + + a_kv_k = 0". Then manipulate the above to try to get a₁ = = a_k = 0.
Prove that a collection of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans \mathbb{R}^n	 Consider the matrix A = [v₁ v_k]. Row reduce A to an echelon form R. If R does not contain a zero row, then the collection of vectors spans Rⁿ. Otherwise the collection does not span Rⁿ.
Find a basis for the null space of <i>A</i> .	 Row reduce A to an echelon form R. Solve the system Ax = 0. For any parameter column, write something like "Let x₅ = s, x₄ = t",etc. Write down the basic solutions to the homoegeneous system Ax = 0 The basic solutions is a basis for the null space of A.
Find a basis for the col- umn space (or image space) of <i>A</i> .	 Row reduce A to an echelon form R. Find the columns in R such that it contains leading 1's. The <i>corresponding</i> columns of the original matrix A (not R) are a basis for the column space of A.
Find a basis for the row space of <i>A</i> .	 Row reduce A to an echelon form R. The nonzero rows of R (not A) are a basis for the row space of A.
If $U = \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$, find a basis for U .	 Method 1: Let A = [v₁ v_k]. Then U is the column space of A. Use the (above) method to find a basis for col(A) = U. Method 2: Let A = [v₁ v_k]^T. Then U is the row space of A. Use the (above) method to find a basis for row(A) = U.

Given an orthogonal ba- sis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ for U , ex- press a vector $\mathbf{w} \in U$ in terms of a linear combi- nation of the basis vec- tors	 Write w = a₁v₁ + + a_kv_k. Use the expansion formula (not covered this term) to get a_i = w·v_i/v_i·v_i.
Diagonalize A ($n \times n$)	 Solve the characteristic equation det(A – λI) = 0 for λ. For each root λ, find a set of basic solutions the homogeneous system (A – λI)v = 0. If the total number of basic solution vectors are n, then A is diagonalizable. Put the basic solution vectors as column vectors to get P. Put their corresponding eigenvalues as entries in D in corresponding column. Then A = PDP⁻¹.

Keywords, Definitions, Theorems, etc

- System of linear equations, augmented matrix, consistent, elementary row operations, reduction algorithm, row-echelon form, reduced row-echelon form
- Homogeneous system, basic solution, trivial solution
- matrix addition, multiplication, scalar multiplication, vectors, dot product, transpose, symmetric matrices
- $(AB)^T = B^T A^T$.
- *A* is invertible if there is *B* such that AB = BA = I.
- If A and B are invertible, then AB is also invertible, where $(AB)^{-1} = B^{-1}A^{-1}$.
- Elementary matrix: Performing elementary row operations is the same as multiplying by a corresponding elementary matrix on the left.
- A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear if $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n ; and $T(c\mathbf{x}) = cT(\mathbf{x})$ for all $c \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$.
- Rotation transformation, reflection transformation.
- Vectors, tip-to-tail method, parallelogram law, parallel, orthogonal vectors
- Vector equation of a line. $\mathbf{x} = \mathbf{p} + t\mathbf{v}, t \in \mathbb{R}$. Here \mathbf{p} is a point (as the position vector from the origin) and \mathbf{v} is the direction vector.
- U is a subspace of \mathbb{R}^n if (0) $\mathbf{0} \in U$; (1) If $\mathbf{x}, \mathbf{y} \in U$, then $\mathbf{x} + \mathbf{y}$ is also in U; and (2) If $\mathbf{x} \in U$ and $c \in \mathbb{R}$, then $c\mathbf{x}$ is also in U.

Algorithms

Solving a system $A\mathbf{x} = \mathbf{b}$.	• Method 1: Row reduce the augmented Matrix [A b]
	 Method 2: If A is an invertible square matrix, find A⁻¹. Then x = A⁻¹b.
Find A^{-1} .	• Method: Row reduce $[A I]$ to $[I A^{-1}]$.
If A is reduced to B by row operations, find U such that $B = UA$.	• Row reduce $[A I]$ to $[B U]$.
For a linear map T , find the matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.	• Use $A = [T(\mathbf{e}_1) \dots T(\mathbf{e}_k)]$

The Big Equivalence table

Let *A* be an $m \times n$ matrix with column vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. The followings are equivalent.

- The homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- The homogeneous system $A\mathbf{x} = \mathbf{0}$ has a unique solution.
- Every column of *A* contains a pivot position.
- Every column of the echelon form of *A* contains a leading 1.
- The vector equation $x_1\mathbf{v}_1 + \dots x_n\mathbf{v}_n =$ **0** has only trivial solutions $x_1 = x_2 =$ $\dots x_n = 0.$
- The column vectors of A, namely v₁, v₂,..., v_n are linearly independent.
- null $A = \{0\}$.
- $\operatorname{rank}(A) = n$
- The rows of A span \mathbb{R}^n
- The $n \times n$ matrix $A^T A$ is invertible
- BA = I for some $n \times m$ matrix B.

- For every b ∈ ℝ^m, the homogeneous system Ax = b is consistent.
- For every $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{b} = A\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$.
- Every row of *A* contains a pivot position.
- There is no zero row in the echelon form of *A*.
- For every $\mathbf{b} \in \mathbb{R}^m$, the vector equation $x_1\mathbf{v}_1 + \ldots x_n\mathbf{v}_n = \mathbf{b}$ has a solution.
- The column vectors of A, namely $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ span \mathbb{R}^m .
- $\operatorname{col} A = \mathbb{R}^m$.
- rank(A) = m
- The rows of *A* are linearly independent.
- The $m \times m$ matrix AA^T is invertible
- AB = I for some $n \times m$ matrix B.

$$m = n_{\bigcup}^{\uparrow}$$

- *A* is invertible.
- A can be reduced to I by a series of elementary row operations.
- det $A \neq 0$.
- 0 is not an eigenvalue of A.
- The columns of A is a basis for \mathbb{R}^n .
- The rows of A is a basis for \mathbb{R}^n .

1 Last Words

- This is just a review sheet. Memorizing this review sheet won't guarantee that you will get a good mark in the final exam. Instead try to understand the logic and the proof behind each statement.
- There *will* be "proof" questions in the final exam. They will require some more logical thinking.
- If you are interested in a more "proof" settings and would like to know more of the theory, take MAT224. We will discuss more on general vector spaces, instead of \mathbb{R}^n ; and change of bases, etc.
- Good luck in your final and happy studying.