
MAT223 - Review Sheet

Prof K. Leung with a few minor amendments by Prof. Hoell

Beginning on the next page,you’ll find a handy list of theorems, definitions, and concepts we’ve
used throughout the term which may aid your course review. The list was write by a former MAT223
prof K. Leung and given out during December 2016 in preparation for the final exam. Since this
semester we covered a few different things from that term, a few important things are missing from
this sheet, namely pivots, LU Factorization, orthogonal complements and Fundamental Theo-
rem of Linear Algebra.1 Please keep in mind that the material is somewhat incomplete when you
read this.

1Plenty of material from this list was removed as well since there were things this term which we did not cover that
semester. In fact, more was removed from the sheet than needs to be added in case you’re curious.
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linearly
independent

A collection of k vectors {v1, . . . , vk} is linearly independent if

a1v1 + . . . + akvk = 0 implies a1 = . . . = ak = 0.

linearly dependent

A collection of k vectors {v1, . . . , vk} is linearly dependent if there is
a1, . . . , ak ∈ R, not all zero, such that

a1v1 + . . . + akvk = 0

span (noun)

The span of {v1, . . . , vk} is the set of all linear combinations of
v1, . . . , vk.

span{v1, . . . , vk} = {a1v1 + . . . + akvk | a1, . . . ak ∈ R}

span (verb)
{v1, . . . , vk} spans a subspace U if every vector in U is a linear com-
bination of v1, . . . , vk and vi ∈ U for all i, i.e. U = span{v1, . . . , vk}

Basis A collection of vectors {v1, . . . , vk} is a basis for a subspace U if
{v1, . . . , vk} is linearly independent and it spans U.

Dimension Dimension of a subspace U is the number of vectors in a basis for U.
Orthogonality Two vectors x and y are orthogonal if x · y = 0.

Orthogonal Sets A collection of vectors {v1, . . . , vk} is an orthogonal set if vi is orthog-
onal to v j if i , j; and all vectors are nonzero.

null space The null space of a matrix A is the set of vectors x such that Ax = 0

image space
The image space of a matrix A is all the vectors v such that v can be
written as Ax for some x. It is exactly the same as the column space of
A.

column space The column space of a matrix A is the span of the column vectors of
A. (It is exactly the same as the image space of A.

row space The row space of a matrix A is the span of the row vectors of A.

rank
The rank of a matrix A is the number of leading 1’s in its row-echelon
form. It is also the dimension of the row space, column space and
image space of A.

Cofactor
The (i, j)-th cofactor of a square matrix A is denoted by Ci j such that
Ci j = (−1)i+ j det(Ai j), where Ai j is the matrix by deleting the i-th row
and the j-th column of A.

Eigenvalue λ is an eigenvalue of A if Av = λv for some nonzero v.
Eigenvector v is an eigenvector of A if Av = λv for some λ ∈ R and v , 0

Eigenspace
The eigenspace Eλ of A corresponding to an eigenvalue λ is the collec-
tion of all eigenvectors with eigenvalue λ, along with the zero vector.
Thus Eλ = null(λI − A).

Characteristic
polynomial

The characteristic polynomial cA(λ) of a square matrix A is defined as
cA(λ) = det(λI − A).

Algebraic Multiplicity The multiplicity m of an eigenvalue λ0 is the number such that cA(λ) =

(λ − λ0)m p(λ) for some polynomial p(λ) such that p(λ0) , 0.
Geometric
Multiplicity The geometric multiplicity of an eigenvalue λ is dim null(λI − A)
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Theorems, propositions, lemmas, etc.
• Let U be a subspace. If {v1, . . . , vk} spans U and {w1, . . . , wm} is a linearly independent set in

U, then m ≤ k.

In other words, the number of vectors in a linear independent set cannot be more that the
number of vectors in a spanning set.

• If both {v1, . . . , vk} and {w1, . . . ,wm} are bases for a subspace U, then k = m.

In other words, for a fixed subspace, every basis contains the same number of vectors.

• Any independent set in U can be enlarged to a basis for U and any spanning set of U can be
cut down to a basis for U.

• For any nonzero subspace U, U has a basis.

• Let U be a subspace such that dim U = m. Then a set of m vectors in U is linearly independent
if and only if it spans U.

• Let U and V be subspaces such that U ⊆ V . Then dim U ≤ dim V .

• If U and V are subspaces such hat U ⊆ V and dim U = dim V . Then U = V .

• Cauchy inequality: Let x, y ∈ Rn. Then |x · y| ≤ ‖x‖‖y‖, with equality holds when x and y are
linearly dependent.

• Triangle inequality: Let x, y ∈ Rn. Then ‖x + y‖ ≤ ‖x‖ + ‖y‖.

• Every orthogonal set is linearly independent.

• If {x1, . . . , xk} is an orthogonal set, then ‖x1 + . . . + xk‖
2 = ‖x1‖

2 + . . . + ‖xk‖
2.

• Row operations won’t change the row space and column operations won’t change the column
space.

• rank(A) = rank(AT ).

• col(AB) ⊆ col(A) and row(AB) ⊆ row(B).

• rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B).

• Let A be an m × n matrix. Then rank(A) + dim null(A) = n.

• The determinant of an n × n matrix A is given by

det(A) = ak1Ck1 + . . . + aknCkn = a1 jC1 j + . . . + an jCn j,

where j, k are any integer between 1 to n. This is the cofactor expansion of A.

• Properties of determinants

– If A contains a zero row or column, then det A = 0.
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– If two rows or columns are interchanged, the determinant of the resulting matrix is
− det A.

– If a row or column of A is multiplied by a constant k, the deerminant of the resulting
matrix is k det A.

– If two distinct rows or columns of A are identical, then det A = 0.

– If a multiple of a row (or column) of A is added to a different row (or column), then the
determinant stays the same.

– det A = det AT

– det[v1 . . . b + c . . . vn] = det[v1 . . . b . . . vn] + det[v1 . . . c . . . vn]

– det(AB) = det(A) det(B) (both are square matrices)

• A is invertible if and only if det A , 0.

• Let λ be an eigenvalue of A with algebraic multiplicity m. Then we have 1 ≤ dim Eλ ≤ m

• Let A be an n×n matrix. Then A is diagonalizable if (a) the sum of the geometric multiplicities
of all of its eigenvalues is n; and (b) for each eigenvalue λ, the algebraic multiplicity m equals
dim Eλ.

• If A has n distinct eigenvalues, then A is diagonalizable.
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Algorithms

Prove that a collection of
vectors {v1, . . . , vk} is
linearly indepenedent.

• Write “Let a1v1 + . . . + akvk = 0”.

• Then manipulate the above to try to get a1 = . . . = ak = 0.

Prove that a collection of
vectors {v1, . . . , vk} spans
Rn

• Consider the matrix A = [v1 . . . vk].

• Row reduce A to an echelon form R.

• If R does not contain a zero row, then the collection of vectors
spans Rn. Otherwise the collection does not span Rn.

Find a basis for the null
space of A.

• Row reduce A to an echelon form R.

• Solve the system Ax = 0. For any parameter column, write
something like “Let x5 = s, x4 = t”,etc.

• Write down the basic solutions to the homoegeneous system
Ax = 0

• The basic solutions is a basis for the null space of A.

Find a basis for the col-
umn space (or image
space) of A.

• Row reduce A to an echelon form R.

• Find the columns in R such that it contains leading 1’s.

• The corresponding columns of the original matrix A (not R) are
a basis for the column space of A.

Find a basis for the row
space of A.

• Row reduce A to an echelon form R.

• The nonzero rows of R (not A) are a basis for the row space of
A.

If U = span{v1, . . . , vk},
find a basis for U.

Method 1:

• Let A = [v1 . . . vk].

• Then U is the column space of A. Use the (above) method to
find a basis for col(A) = U.

Method 2:

• Let A = [v1 . . . vk]T .

• Then U is the row space of A. Use the (above) method to find a
basis for row(A) = U.
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Given an orthogonal ba-
sis {v1, . . . , vk} for U, ex-
press a vector w ∈ U in
terms of a linear combi-
nation of the basis vec-
tors

• Write w = a1v1 + . . . + akvk.

• Use the expansion formula (not covered this term) to get ai =
w·vi
vi·vi

.

Diagonalize A (n × n)

• Solve the characteristic equation det(A − λI) = 0 for λ.

• For each root λ, find a set of basic solutions the homogeneous
system (A − λI)v = 0.

• If the total number of basic solution vectors are n, then A is di-
agonalizable.

• Put the basic solution vectors as column vectors to get P. Put
their corresponding eigenvalues as entries in D in corresponding
column.

• Then A = PDP−1.

6



Keywords, Definitions, Theorems, etc
• System of linear equations, augmented matrix, consistent, elementary row operations, reduc-

tion algorithm, row-echelon form, reduced row-echelon form

• Homogeneous system, basic solution, trivial solution

• matrix addition, multiplication, scalar multiplication, vectors, dot product, transpose, symmet-
ric matrices

• (AB)T = BT AT .

• A is invertible if there is B such that AB = BA = I.

• If A and B are invertible, then AB is also invertible, where (AB)−1 = B−1A−1.

• Elementary matrix: Performing elementary row operations is the same as multiplying by a
corresponding elementary matrix on the left.

• A function T : Rn → Rm is linear if T (x + y) = T (x) + T (y) for all x and y in Rn; and
T (cx) = cT (x) for all c ∈ R and x ∈ Rn.

• Rotation transformation, reflection transformation.

• Vectors, tip-to-tail method, parallelogram law, parallel, orthogonal vectors

• Vector equation of a line. x = p + tv, t ∈ R. Here p is a point (as the position vector from the
origin) and v is the direction vector.

• U is a subspace of Rn if (0) 0 ∈ U; (1) If x, y ∈ U, then x + y is also in U; and (2) If x ∈ U and
c ∈ R, then cx is also in U.

Algorithms

Solving a system Ax =

b.

• Method 1: Row reduce the augmented Matrix [A|b]

• Method 2: If A is an invertible square matrix, find A−1. Then
x = A−1b.

Find A−1. • Method: Row reduce [A|I] to [I|A−1].

If A is reduced to B by
row operations, find U
such that B = UA.

• Row reduce [A|I] to [B|U].

For a linear map T , find
the matrix A such that
T (x) = Ax.

• Use A = [T (e1) . . . T (ek)]

7



The Big Equivalence table
Let A be an m × n matrix with column vectors v1, . . . , vn. The followings are equivalent.

• The homogeneous system Ax = 0
has only the trivial solution.

• The homogeneous system Ax = 0
has a unique solution.

• Every column of A contains a pivot
position.

• Every column of the echelon form of
A contains a leading 1.

• The vector equation x1v1 + . . . xnvn =

0 has only trivial solutions x1 = x2 =

. . . xn = 0.

• The column vectors of A, namely
v1, v2, . . . , vn are linearly indepen-
dent.

• null A = {0}.

• rank(A) = n

• The rows of A span Rn

• The n × n matrix AT A is invertible

• BA = I for some n × m matrix B.

rankn
⇐=,

rankm
=⇒

• For every b ∈ Rm, the homogeneous
system Ax = b is consistent.

• For every b ∈ Rm, b = Ax for some
x ∈ Rn.

• Every row of A contains a pivot
position.

• There is no zero row in the echelon
form of A.

• For every b ∈ Rm, the vector
equation x1v1 + . . . xnvn = b has a
solution.

• The column vectors of A, namely
v1, v2, . . . , vn span Rm.

• col A = Rm.

• rank(A) = m

• The rows of A are linearly indepen-
dent.

• The m × m matrix AAT is invertible

• AB = I for some n × m matrix B.

m = n
⇑

⇓

• A is invertible.

• A can be reduced to I by a series of elementary row operations.

• det A , 0.

• 0 is not an eigenvalue of A.

• The columns of A is a basis for Rn.

• The rows of A is a basis for Rn.
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1 Last Words
• This is just a review sheet. Memorizing this review sheet won’t guarantee that you will get

a good mark in the final exam. Instead try to understand the logic and the proof behind each
statement.

• There will be “proof” questions in the final exam. They will require some more logical think-
ing.

• If you are interested in a more “proof” settings and would like to know more of the theory, take
MAT224. We will discuss more on general vector spaces, instead of Rn; and change of bases,
etc.

• Good luck in your final and happy studying.
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