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These notes are going to present a striking result, fundamental to understanding how the
concepts we’ve seen all semester relate to one another. But, equally important, we’re going
to see a remarkable picture which illustrates the theorem.

1 Prelude: Orthogonal Complements

Before we get to the main theorem, a bit on the terminology it uses. We’ll begin with a
natural de�nition.

De�nition 1

Let S ⊆ Rn be a subspace. The set S ⊥ ⊆ Rn is de�ned to be the collection of all vectors
v ∈ Rn orthogonal to S and called the orthogonal complement of S in Rn. In other
words,

S ⊥ = {u ∈ Rn | u · v = 0, v ∈ S }

You should be able to prove that S ⊥ is a subspace ofRn (see exercises). The purpose of these
notes is to establish a version of the Fundamental Theorem of Linear Algebra. The result
can be thought of as a type of representation theorem, namely, it tells us something about
how vectors are by describing the canonical subspaces of a matrix A in which they live. To
understand this we consider the following representation theorem.

Theorem 1

Let v ∈ Rn and let S ⊆ Rn be a subspace. Then there are vectors s ∈ S , s⊥ ∈ S ⊥ such
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that
v = s + s⊥

In other words, vectors can be expressed in terms of pieces living in orthogonal
spaces.

The above theorem is sometimes expressed in the notation Rn = S ⊕S ⊥ where the notation
is called the “direct sum" of S and S ⊥.

Proof

The proof needs a small fact which you will see if you take MAT224. Here’s the fact:
not only does every subspace S ofRn have a basis, it actually has an orthonormal basis,
namely a basis B consisting of vectors s j where ||s j|| = 1 holds for all j and si · s j = 0
when i , j. The hard part of this statement actually is showing that subspaces have
bases (which we’ve done). From there the idea is to use an algorithm to turn a given
basis into one in which all the vectors are made orthogonal and of unit length. But it’s
a technical detail I don’t want to describe here, I only want to use the result. So let’s
agree S has an orthonormal basis as described. Set s = (v · s1)s1 + · · · + (v · sdim S )sdim S

which must clearly be an element of S . Then de�ne s⊥ = v−s. It’s obvious that v = s+s⊥
and you can verify that s⊥ ∈ S ⊥ giving the result. �

Where this is going: We’ll soon see that for an m × n matrix A we have (ker A)⊥ = col(AT ). If
this is true, then that means (using the notation above) that Rn = ker(A)⊕col(AT ). In this case
a vector x ∈ Rn can be written as x = p+v where Av = 0 and p ∈ row(A) since row(A) = col(AT ).
In other words if b ∈ col(A) we can solve Ax = b and since x ∈ Rn = ker(A) ⊕ col(AT ) we can
write x as

x = p + vh

In the above p ∈ row(A) since row(A) = col(AT ). The space of possible vh’s is dim(ker(A))-
dimensional, so the nullity describes the lack of unique solvability for the linear system
Ax = b.

2 The Fundamental Theorem of Linear Algebra

We can now get on with proving the main theorem in this course, the capstone to our
understanding what it means to solve systems of linear equations.

Proposition 1

Suppose A is an m × n matrix. Then

col(AT )⊥ = ker A
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Proof

Suppose v ∈ ker A, then Av =


0
0
...
0

 =

(row1(A)) · v
(row2(A)) · v

...
(rown(A)) · v

 so v is orthogonal to rowi(A) for

i = 1, ...,m. Therefore v ∈ (row(A))⊥ = (col(AT ))⊥, i.e. ker A ⊆ (col(AT ))⊥. As well, if
v ∈ (col(AT ))⊥ then, in particular, we must have that v · (rowi(A)) = 0 for i = 1, ...,m. But
in this case we’d again have v ∈ ker A. Thus (col(AT ))⊥ ⊆ ker A. Since the sets contain
each other they must be equal and we’re done.

�

If v ∈ (S ⊥)⊥ then clearly v · s⊥ = 0 for all s⊥ ∈ S ⊥. If {s1, ..., sdim S } is an orthonormal basis for S
and {s⊥1 , ..., s

⊥
dim S⊥} is an orthonormal basis for S ⊥ we can write out

v = (v · s1)s1 + · · · + (v · sdim S )sdim S + (v · s⊥1 )s⊥1 + · · · + (v · s⊥dim S⊥)s⊥dim S⊥

= (v · s1)s1 + · · · + (v · · · sdim S )sdim S ∈ S

So (S ⊥)⊥ ⊆ S . As well, clearly for s ∈ S we have s ∈ (S ⊥)⊥ since s · s⊥ = 0 must be true for all
s⊥ ∈ S ⊥. Thus, S ⊆ (S ⊥)⊥. From these facts it follows that

S = (S ⊥)⊥

must hold for all subspaces S ⊆ Rn. (Make sure you can verify this statement). Applying this
general fact to the previous theorem we immediately get the following.

Theorem 2: Fundamental Theorem of Linear Algebra

Suppose A is an m × n matrix. Then

col(AT ) = (ker A)⊥

So that
Rn = ker(A) ⊕ col(AT )

gives an orthogonal decomposition of Rn into the null space and the row space of
matrix A. Therefore, for b ∈ col(A) we have that Ax = b is solved by

x = p + vh

for p ∈ row(A) a particular solution, Ap = b, and vh ∈ ker A a generic vector in ker A.

2.1 The Diagram

The content of this theorem, the fundamental theorem of linear algebra, is encapsulated
in the following �gure. If a picture is worth a thousand words, this �gure is worth at least
several hours’ thought.
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Figure 1: Solving Ax = b for an m × n matrix A with rank(A) = r.

Notice this picture has all the major players we’ve seen in this course: there are vectors,
subspaces, dimensions, and they are all playing a role in the way we conceptualize solving
a linear system of equations. Moreover, note the duality in the picture: the subspaces on
the right-hand side, those living in Rm, are the corresponding subspaces appearing on the
left-hand side for the transpose of A rather than A (e.g. col(A) appearing on the upper right
is just row(AT ) whereas we see row(A) on the upper left-hand side). The subspaces meet at
right angles because they’re orthogonal complements of each other and the intersection of
the spaces is the zero subspace of the respective ambient space (Rn or Rm). Try to visualize
how the picture changes as we look at limiting values of possible rank for A. Namely, how
would this above change in the case where rank(A) = n say? Or m? Or if A is square and
invertible? If A is symmetric? Etc.

3 Exercises

You should be able to do the following.

1. Calculate the orthogonal complements of the improper subspaces of Rn.

2. Let v ∈ R3 be a nonzero vector. Describe (span{v})⊥.

3. Prove that S ∩ S ⊥ = {0} holds for any subspace S ⊆ Rn.

4. Prove that S ⊥ is a subspace of Rn whenever S is.

5. Prove that for S ⊆ Rn a subspace we have dim S + dim S ⊥ = n.

6. If S ,W are subspaces of Rn show that S ⊆ W =⇒ W⊥ ⊆ S ⊥

7. Let S = {x ∈ R4 | x1 + x2 + x3 + x4 = 0}. Prove that S is a subspace and �nd a basis for S ⊥.
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8. Prove that every m×n matrix A de�nes a linear transformation from row(A) onto col(A),
i.e.

TA : row(A)→ col(A)

9. Consider A, an m × n matrix and b ∈ Rm. Consider the following claim1: One and only
one of the following systems is solvable

(a) Ax = b
(b) AT y = 0 with yT b , 0

Prove that the above options cannot BOTH hold. In other words, if one of the above
holds the other one mustn’t.

1A variation of this strange-sounding claim is very important in numerous applications including, very
importantly, in differential equations.
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