LMML prep Nov 23, 2017 Tristan Milne

1 Introduction

1.1 The Framework of Neural Networks
A single layer of width % in a neural network is given by g : R x R™ x R¥ — R¥, where
g(a,W,0) =c(Wa + 0),

where W is a k by n matrix of weights, Wa is a matrix vector product, and © is a vector of offsets,
and o is a non-linearity that acts in a componentwise fashion. Typical choices of o include

1
U(x) = 1 +€—Cﬂ7

o(x) = tanh(z), Hyperbolic Tan,

Sigmoid,

o(z) = max(0, x), Rectifier Linear Unit.

To make a neural network, we can compose a finite sequence of such functions {g;} if we suppose
that n;,1 = k;. Note that the scalar function ¢; may change between layers. Letting g; be the ith
layer, with weights W, and offsets ©;, a neural network with H layers is given by

N(C% w, @) = QH(QHA(- . -92(91(07 Wi, @1)7 W, @2) .. -), Wh, @H)-

Neural networks are extremely effective at various machine learning tasks, including image clas-
sification. In this setting, the output of the neural network is typically a vector of length m of
non-negative entries summing to one, representing a probability distribution on m image classes.
This probability distribution is the conditional probability of each class given the input image a.
Given some training data of properly labelled images {a;, [;}, we show those to the neural network,
and then look for weights and offsets which makes the network match closely the training data.
Before talking about how this is done, let us first establish when this is possible. Is it possible
to find W and © such that a — N(a, W, ©) approximates an image classification function? We
will instead answer a more general question; is it possible for a neural network a — N(a, W, ©) to
approximate an arbitrary continuous function on a compact set?

1.2 The Expressive Power of Neural Networks

It is obvious that our stated goal is not possible for certain choices of function o;. In particular,
if 0; = Id for all ¢, then N becomes a linear function of a, and the answer to our question is no.
Fortunately, there are some good theorems on this subject:

Theorem 1 ([3]). Let K C R"™ be compact. Consider the set ¥ = span{c(Wa + 0) | W €
R™" @ € R™} where a € K. Then ¥ is dense in C(K;R™) if and only if oy is not almost
everywhere a polynomial.

Remark: The theorem pertains to a two layer network with oo = Id, and o, unspecified. It
says that, provided we take a large enough first layer, a 2 layer neural network can approximate
any continuous function if and only if oy is not almost everywhere a polynomial.

LMML prep Nov 23, 2017 Tristan Milne

Remark: Here is a sketch of the proof for the case m = n =1 and ¢ smooth. The set X then
becomes
¥ = span{o(wa +0) | w, 8 € R}.

I will demonstrate that 3 (closure taken in supremum norm) contains all polynomials in a. Indeed,
we observe that

o((w+ h)a+0) —o(wa +6) -
h
for all h. Since K is compact, we observe that

%U(wa +0)ex,

and, iterating this argument,
d* -
WO'('U}G + 6) €.
w

Selecting w = 0, we obtain a*c® () € ¥ for all k, and since o is not almost everywhere a
polynomial, for all k£ there exists # € R such that o (f) # 0. This demonstrates the utility
of the offset parameter, and shows that 3 contains all polynomials in the variable a, and hence
¥ = C(K,R). There is also a version of this density result for LP(K) functions, which may be
more useful for image classification.

Remark: This theorem holds for neural networks with 2 layers. Most neural networks used
today for machine learning tasks have many more than 2 layers, but the extension to this case
is clear; let o(W,wa + 6) be an expression for the output of a neuron in the penultimate layer,
where a is scalar. Here w, # are the weights for the first layer, and W represents all other weights
contributing to the output of that neuron. Then the same result holds for the span of these
functions, provided 6 — o (W, #) is not a polynomial.

1.3 Training Neural Networks

Now that we know that a simple network can approximate a wide range of functions, we may
ask how to obtain the weights and offsets accomplishing this for an image classification task. The
ideal weights and offsets should allow us to discriminate between the image classes we wish to
feed to the neural network. One idea to select these by hand, however this is difficult, as it is not
clear how to select the weights to make it clear when, for example, a dog appears in an image. In
applications neural networks are used to automatically learn good weights and offsets from training
data through gradient descent. Let us now write W to represent both the weights and offsets. Let
f :R™ — R™ be the image classification function we are trying to approximate; if image a is in
class i, then f(a) = e;. The error between the predictions of our network and the true function on
a labelled data set {a;, f(a;)}}_; can be calculated as

V) = 5 37 17(a5) = Nag, W

LMML prep Nov 23, 2017 Tristan Milne

We wish to decrease the value of [, and so it is natural to train this network via gradient descent.
We take a trajectory W (t) satisfying
dW (t)
dt

or, in a discrete time approximation
W (tks1) = W(te) = nVwl(W (tk)),

where 7) is a hyperparameter known as the learning rate. Provided 7 is small enough, this update
is guaranteed to decrease the value of [until a critical point is reached. The hope is that at this
critical point the network closely approximates the desired function.

1.4 What can go wrong

One would hope that gradient descent allows a network to distinguish image classes in the same
way that a human would. Experiments show that this is is not the case, however. For example,
consider training a neural network to recognize the digits 0 to 9 from the MNIST data set. This
data set consists of 28x28 greyscale images of handwritten digits; it is a classical machine learning
task to train a neural network to automatically classify these images. The authors of [4] trained
a 784-100-10 network on this task with sigmoid activation functions (the numbers indicate the
neurons in each layer, with 282 = 784 input neurons, 100 intermediate neurons, and 10 neurons
in the final layer, one for each of the classes). If the standard MNIST data is used with n = 1,
the error decreases steadily. However, if the data is manipulated via a black-white inversion (i.e.
applying the transformation z — 1 — x to the pixel values), the error stays roughly constant, with
small perturbations. This is not ideal, because it is just as easy to distinguish the characters in
the regular data set as it is in the inverted data set. To analyse this, let us consider a scalar neural
network with scalar input a. The gradients for the standard data and transformed data are

ao’ (aw + 0) (1—a)d'((1 —a)w+0),

and so it makes sense that we get different error trajectories, since the gradients are different. The
problem here is that our approach depends on the numerical representation of the data, and not
necessarily the information it carries. The natural solution to this problem is to view the two sets
of data as different parametrizations of the same underlying object. This naturally brings in the
concept of a manifold.

1.5 Neural Networks on Manifolds

We now consider our neural network as a map N : A; x M — Ag, where A;, M and A, are smooth
manifolds representing the input activation manifold, weight manifold, and output activation man-
ifold, respectively. The neural network we were working with earlier in this document is now a
representation of N in a particular set of coordinates. If we put a metric on the output activation

LMML prep Nov 23, 2017 Tristan Milne

manifold, we can define a real valued error function [: M — R. To define a gradient, we will
assume that M is a Riemannian manifold, with metric g. The instantaneous rate of change of [
along a path v is given by

C13(0)) = diC(1)) (1),

= (Val(Y(£), 7' (D)),

where V[is the Riemannian gradient. By Cauchy Shwarz, the tangent vector /(¢) where this

inner product is minimized is ()’ = —V,I. Thus, to follow the direction of steepest descent of
on the manifold, we should consider the trajectory
V(t) = =Vgl(~(1)- (1)

In coordinates w, with coordinate chart ¢, it is not difficult to show that
Ville™ (w)) = GTHw)Vi(p™ (w)),

where the second V here is the regular gradient of [in these coordinates, and G is the metric in
these coordinates. Hence, the discrete time trajectory becomes

W (try1) = W(te) = nG ™ (W (t))VI(e™ (W (tr)))-

Comparing this to above, we observe that the classical gradient descent implicitly assumes that
the coordinates we have selected are orthonormal. Our new approach is intrinsic at the level of
equation , however, since the descent is defined using intrinsic properties. This guarantees that
if N and N are different parametrizations of the same neural network, i.e.

N(a,W) = N(a, g(~ (W),

and W (t) and W (t) are the resulting trajectories under Riemannian gradient descent starting at

Wy and Wy respectively, then

This holds because W (t) and W (t) are just different coordinate representations of the same ODE
on the abstract weight manifold.

This formulation tells us how to maintain the same error trajectory under reparametrizations
of the weight space. Our motivating problem (inverting MNIST) was a re-parametrization of the
activation space, so how do we deal with this? Observe the following

(1—a)w+60=—aw+ (w+0),
= a1 + 6.

LMML prep Nov 23, 2017 Tristan Milne

This makes it clear that inverting the data has the same affect as applying the following reparametriza-
tion to the weight/offset space

(w,0) — (—w,w + 0) = (i, 6).

As such, the inversion of MNIST has the same effect as re-parametrizing the weight space. In
general, any affine transformation on the activation space will have the same effect as the dual
transformation on the weight space. It is now clear how to eliminate the problem that arises when
MNIST is inverted; we need only decide on a Riemannian metric in our standard set of coordinates,
and then ensure that we update this metric to reflect the re-parametrization (w,) — (—w, w + 6)
after the inversion occurs. How do we select this metric? We could declare that for the standard
MNIST data, the regular coordinates of R¥ (k is number of weights) are orthonormal, as we do in
traditional gradient descent. However, this is totally arbitrary; we would like a metric which does
not have an obvious orthonormal coordinate system. I will now motivate such a metric. It is one
of several described in [5].

2 The Outer Product Metric

Our error function puts greater emphasis on data points where the predicted class from the network
is very different from the label. Observe

Vi(w) = = 3" Vi(ay, w) = —= 3 (Fla;) — N{ay, W) Vi Nay, W),
N ¢ N <

and thus the terms where f(a;) — N(aj, W) is large tend to dominate. This may put too much
emphasis on outliers, causing the network to over fit. Thus, we would prefer a minimization scheme
which spreads out the improvement amongst the data set more equitably. Formally, let m be the
instantaneous rate of change of the error function. Let W (t) be a weight trajectory with initial
velocity v, which has m as its instantaneous rate of change in error, i.e.

N
1
m=Vyl(W) -v= N ;V[(aj,w) S 0.

Note that this implies that m is the average instantaneous rate of change on over the data points.
Of all v satisfying this equation, we wish to find one minimizing the variance between the rate of
change on each data point and the average improvement. In other words, minimize
1 1
2 2 2
v > (Vwl(an, W) -v—m)® = ~ > (Vwl(a, W) - v)* = m?.
j=1

j=1

In this setting, m is the average improvement over the entire data set. This is a quadratic mini-
mization problem with linear constraints, and hence is easy to solve. The associated Lagrangian
is

L(v,\) = 01 Q(W)v — m?* + A(Viwl(W) - v —m),

5

LMML prep Nov 23, 2017 Tristan Milne

where Q(W) = + Z;V:1 Vwl(a;, W)Vwl(a;, W)T. Hence, a solution to this minimization problem
solves
QW)v = =AVy (W),
for some A. If Q(W) is invertible, we have
v=-AQW) 'Vl(W),
and therefore the update is
W (tes1) = W (te) = nQ(W (1))~ Vil (W (t)).

Comparing this to equation , we see that this would be the update for gradient descent on a
Riemannian weight manifold with metric

G(W) = % Z Viwl(a;, W)Vl(a;, W)T. (2)

This is the outer product metric in W coordinates, called so because it is a sum of outer products.
Clearly, this matrix is positive semi-definite. We may re-write it as

1
GW) = LUUT, U= [Vwl(a,W)..... Vivl(ax, W)]

Note that U is |[W| x N, and hence UT is N x |W/|. This makes it clear that G is in fact
a degenerate Riemannian metric whenever there are more weights than data points, which is
common in applications (though not always, especially if dataset augmentation is used). This is
not a serious problem even though the inverse of G appears in the gradient descent formula; a
degenerate metric simply gives a non-unique solution to the quadratic minimization problem we
defined above. We have proven the following proposition, from [5]:

Theorem 2. Among all directions v yielding the same instantaneous rate of change of the error
function, a direction provided by gradient descent using the outer product metric spreads out the
improvement most equitably (in the > sense) among the data points.

2.1 Training Using Riemannian Gradient Descent Depends only on
Linear Span of the Activations

In our motivating example, we showed how to standardize training of a neural network under
affine changes to the input activations. This section generalizes this idea by showing that the
same can be done for simultaneous affine transformations of the activations in every layer. More
specifically, when we use Riemannian gradient descent, the error trajectory depends only on the
span of the activations at each layer of the network. This allows us to explore a variety of network
architectures by simply varying the initial point of the descent.

There is one notational change to include here; assume that each layer has a neuron with con-
stant value 1. This allows us to write the inner product plus offset operation as a simple inner
product, and affine transformations applied to the original activations become linear transforma-
tions on the new activations.

LMML prep Nov 23, 2017 Tristan Milne

Theorem 3. Take | as the error function for a neural network N. Take [as the error function
for a neural network N which has identical architecture to N, with the exception that an invertible
linear transformation is applied to the activations of each layer before they are fed to the next
layer. Suppose that these networks are trained by Riemannian gradient descent. Then for the
error trajectory (W (t)) starting at Wy, there is a corresponding initialization for the standard
network Wy producing a weight trajectory W (t) satisfying

LW () = L(W(2)).
Proof. Since the weights are always combined with the activations via a dot product, and the
linear transformations used to define IV are invertible, there is a linear transformation B on the
weight space which reverses the linear transformations involved in [. In other words,

(W) = [(BW).

As such, [is simply a reparametrization of I, and so define W = BW. For the continuous time
version of gradient descent, the error trajectories are therefore the same for both networks. The rest
of this proof is dedicated to showing that the discrete time approximations are actually identical
as well. The update for [is given by

W= W — G Y (W)Vyl(W).
The update for [in the W variables is given by

W s W —nG W)Vl (W).
Observe that

Vil (W) = Vi l(B™'W),
= (BHYI'Vwl(W).
Also, we have B
G(BW) = (BY)'G(W)B™,
and therefore)
G Y BW) =BG *(W)B?",

and hence

W —nG W)V l(W) = BW —nBG*(W)BY(B"H)I Vi l(W),
= B(W —nG~H(W)Vwl(W)),

which we recognize as the update for [modified by B. As such, we can compare the error after
the update as

(W =G~ (W)Vwl(W) = (BW — G~ (W)Vwl(W),

(W — G) L)),

Hence, the error for each network after the first update is identical. It is easy to see that this
continues to hold for subsequent updates. Therefore, if we initialize the modified network at Wy,
we will get the same learning trajectory if we initialize the standard network at B~1W,. O

7

LMML prep Nov 23, 2017 Tristan Milne

Remark: This theorem says that if one uses an intrinsic metric like the outer product metric,
we can explore many network architectures by fixing the network architecture and varying the
initial point. The trouble is that very few practitioners use intrinsic Riemannian metrics; as stated
above, the classic approach tacitly assumes the base coordinates are orthogonal, so the metric
is trivial. All is not lost, however. One neat way to interpret this result is to assume that G
is the identity matrix. This is what a researcher does when they come up with a new network
architecture, and then optimize it using gradient descent, Then, we are effectively doing vanilla
gradient descent on the tilde variables, and this shows that we can find the same error trajectory
by modifying the initial point, and taking the update

W W —nB Y B H)I'Vyl(W). (3)

So, if the tilde variables are such that vanilla gradient descent works extremely well, then we can
accomplish the same thing by updating with equation . A variety of methods in use can be
explained using this approach.

a) Data Whitening: Training data is sometimes whitened before it is fed to a neural network.
This means that the mean of each pixel in the training data is subtracted from each data point,
and the covariance matrix is set to the identity, all of which forms an affine map on the input
activations. More specifically, assuming that we have subtracted the mean value of each pixel
from the data set, the covariance matrix of the input vector X has ijth component

COV(X)ij = E[XZX]],

and assuming that Cov(X) is non-singular, we can transform the input data by multiplying by
a matrix A satisfying
ATA = Cov(X) ™,

to obtain transformed data X = AX which has covariance matrix equal to the identity. Appar-
ently networks tend to train faster if you first whiten the data [1], and this analysis here shows
that the same can be done by using the original data and a non-trivial Riemannian metric. This
metric should actually be easy to calculate. Indeed, assuming for simplicity that X already has
mean 0, then whitening the data has the same effect as multiplying the input weights by A”.
Hence, W = ATW. As such, the matrix B given above is equal to AT in its first ny x nq block,
and is the identity everywhere else. Hence,

B HB™ =ATA™ = Cov(X).

b) Batch Normalization: It can also be shown that, under some assumptions, batch normal-
ization ([2]) is a reparametrization of a standard network and can thus be obtained by using a
standard network architecture and a non-trivial Riemannian metric.

Since these highly effective techniques can all be obtained by using a non-trivial Riemannian metric
on the weight space, it is intriguing to formulate a search for an optimal Riemannian metric in
which gradient descent would behave extremely well.

LMML prep Nov 23, 2017 Tristan Milne

References

[1] Efficient Backprop, in Neural Networks: Tricks of the Trade, Springer, 1998.

[2] S. IoFrFE AND C. SZEGEDY, Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift, arXiv, (2015).

[3] M. LEsuNoO, V. Y. LiN, A. PINKUS, AND S. SCHOCKEN, Multilayer feedforward networks

with a nonpolynomial activation function can approximate any function, Neural Networks,
(1993).

[4] G. MARCEAU-CARON AND Y. OLLIVIER, Practical riemannian neural networks, preprint,
(2016).

[5] Y. OLLIVIER, Riemannian metrics for neural networks I: feedforward networks, Information
and Inference, (2015).

	Introduction
	The Framework of Neural Networks
	The Expressive Power of Neural Networks
	Training Neural Networks
	What can go wrong
	Neural Networks on Manifolds

	The Outer Product Metric
	Training Using Riemannian Gradient Descent Depends only on Linear Span of the Activations

