
Chapter 1

Conservation Equations

Nearly all of the modeling of physical phenomena is based on the simple state-
ment “You can’t get something for nothing” i.e. there are certain important physical
properties that must be conserved. This section presents a generic recipe for deriv-
ing conservations equation of all kinds and will demonstrate the physical basis of
most of the frequently occurring terms in partial (and ordinary) differential equa-
tions. When we are finished, we should, with a bit of thought, be able to formulate
any quantitative problem in continuum mechanics.

1.1 Conservation of anything

Integral Form Consider an arbitrary inertial frame in space of volumeV en-
closed by a surfaceS i.e.

V

S

dS

Here,dS is the vector normal to a small patch on the surfaceS. This vector
points outwards by convention.

If we now consider how any quantityΦ (in units of stuff per unit volume) can
change within this volume, the only way to change the amount ofΦ with time is to
flux it through the boundary or create it within the volume. If we letF be the flux of
Φ in the absence of fluid transport (e.g. heat conduction),ΦV be the transport flux
(stuff per unit area per unit time) andH be a source or sink ofΦ then the statement
of conservation ofΦ for the volumeV becomes

d

dt

∫
V

ΦdV = −
∫

S
F · dS−

∫
S

ΦV · dS+
∫

V
HdV (1.1.1)

The negative signs in from of the surface integrals are present because a positive
outward flux corresponds to a negative rate of change of the integral on the left
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side of Eq. (1.1.1). This equation is always true, independent of the size of the
blob and even if the fields are not continuous; however, because of the integrals,
any information on the spatial structure of the fields on a scale smaller than the
“blob” size is lost.

Equations for averaged properties: ODE’s and box models This loss of spa-
tial information is not always a bad thing and sometimes we are only interested in
the changes in theaverageproperties in the blob with time. An example would be
the mean concentration of a tracer in an ocean basin or “geochemical reservoir”.
Equations for average properties, however, are readily derived from Eq. (1.1.1).

First we define the volume average of a functionf as

f̄ =
1
V

∫
V

fdV (1.1.2)

Next we will simply lump all the flux terms into two terms i.e. the stuff coming in
minus the stuff coming out

∫
S

[F + ΦV] · dS = Ṁout − Ṁin (1.1.3)

whereṀ has units of stuff per unit time. Using these definitions and dividing
Eq. (1.1.1) by the volumeV yields

dΦ̄
dt

= Φ̇in − Φ̇out + H̄ (1.1.4)

whereΦ̇ = Ṁ/V .
Equation (1.1.4) is anOrdinary differential equationfor changes in the aver-

age volume density ofΦ with time. All information about the spatial variation of
Φ within the volume, the fluxes or the sources has been removed but this approach
is often good enough for government work orBox Modelsif only averaged prop-
erties are necessary. If the functional form of the sources and fluxes are known,
Eq. (1.1.4) can often be solved analytically, however, quite often the fluxes depend
on the concentrations, can be strongly non-linear or there are many substances to
solve for simultaneously. Chapter 4 will deal with numerical solutions of systems
of ODE’s.

Equations for locally continuous fields: PDE’s If we’re interested in spatial
variations as well as time, we need to subdivide into many smaller blobs. How
small is small? In continuum mechanics, we have the concept of theRepresentative
Volume Elementor RVE (or useful blob size). Given some spatial fieldΦ, the scale
at which the RVE is defined is determined by several properties

1. Φ is relatively constant on a scale comparable to the RVE, i.e. the average
value ofΦ̄ defined for the RVE is a good approximation toΦ anywhere in
the RVE.
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2. the average ofΦ for each contiguous RVE varies smoothly i.e.Φ̄ is differ-
entiable (e.g.∇Φ makes sense at the scale of the RVE).

Caveats:Once we presume that there is a scale where the RVE is well defined we
are also assuming that

1. when we discuss the variation ofΦ in space we really are talking about the
average ofΦ i.e. Φ̄ defined for the RVE

2. We are not interested in anything smaller than this scale

3. Any variation smaller than this scale does not change the gross behaviour of
the problem.1

Given the existence of a suitable continuum length scale, we can now rewrite
Eq. (1.1.1) as a local partial differential equation. Because the property of interest
is differentiable, we can replace the surface integrals in Eq. (1.1.1) using Gauss’
theorem

−
∫

S
F · dS−

∫
S

ΦV · dS = −
∫

V
∇· (F + ΦV)dV (1.1.5)

Moreover, because the surface and volume are fixed in an inertial frame then the
time derivative of the summed properties is equal to the sum of the local time
derivatives or

d

dt

∫
V

ΦdV =
∫

V

∂Φ
∂t

dV (1.1.6)

Substituting Eqs. (1.1.5)–(1.1.6) into (1.1.1) yields

∫
V

[
∂Φ
∂t

+ ∇· (F + ΦV) − H

]
dV = 0 (1.1.7)

BecauseV is of arbitrary shape and size, Eq. (1.1.7) can only be satisfied if the
term in square brackets is zero everywhere (or at least for every RVE), therefore

∂Φ
∂t

+ ∇· (F + ΦV) − H = 0 (1.1.8)

This is the general form which all conservation laws take in continuum mechanics.

1.2 General conservation of mass, energy and momentum

Given Eq. (1.1.8) for the conservation of anything, it is now straightforward to con-
sider conservation of the 3 most important quantities, mass, energy and momentum
(force balance).

1Quite often, problems in Earth Sciences violate caveats 2 and 3 yet we persevere by introducing
“sub-grid” parameterizations of small scale processes or produce combined “micro-macro” models
that try to patch together important small scale processes and the large scale dynamics.
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Conservation of Mass To derive conservation of mass we just substituteΦ = ρ
(density is the amount of mass per unit volume),F = 0 (mass flux can only change
due to transport) andH = 0 (mass cannot be created or destroyed) into Eq. (1.1.8)
to get

∂ρ

∂t
+ ∇· (ρV) = 0 (1.2.1)

This equation is often referred to asthe continuity equation.

Conservation of Energy (heat) For a single phase material, the amount of heat
per unit volume isΦ = ρcP T wherecP is the specific heat (energy per unit mass
per degree Kelvin) at constant pressure andT is the temperature. The heat flux has
two components due to conduction and transport. In the absence of transport the
heat flux isF = −k∇T wherek is thethermal conductivity. Note that heat flows
opposite to∇T , i.e. heat flows from hot to cold. The transport flux isρcP TV.
Finally, unlike mass, heat can be created in a region due to terms like radioactive
decay or viscous dissipation and shear heating. We will just lump all the source
terms intoH . Thus the simplest conservation of heat equation is

∂ρcP T

∂t
+ ∇· (ρcP TV) = ∇· k∇T + H (1.2.2)

For constantcP andk, this equation can also be rewritten using Equation (1.2.1) as

∂T

∂t
+ V · ∇T = κ∇2T + H (1.2.3)

Whereκ = k/ρcP is the thermal diffusivitywith units m2s−1. Note: terms that
look like

DVT

Dt
=

∂T

∂t
+ V · ∇T (1.2.4)

are known as thematerial derivativeand can be shown to be the change in time of
some property (here temperature) as observed in a frame moving with at velocity
V (we will show this explicitly in Section 5.2).

Conservation of Momentum Conservation of momentum or force balance can
be derived in exactly the same way, however momentum is a vector field (not a
scalar field like temperature). In general momentum ismV, therefore the amount
of momentum per unit volume isΦ = ρV. Other than advecting momentum, the
only other way to change the momentum in our RVE is to exert forces on it. These
forces come in two flavors. First, there is the stress that acts on the surface of the
volume with local forcef = σ ·dS. As stress is simply force per unit area, the stress
can also be thought of as a flux of force orF = −σ (the negative sign insures that if
the net force on the volume points in, the momentum increases). The second force
acting on the volume are any body forces such as gravity. The body force acts a
source of momentum, thusH = ρg whereg is the net acceleration. Substituting
into Eq. (1.1.8) yields conservation of momentum

∂ρV
∂t

+ ∇· (ρVV) = ∇· σ + ρg (1.2.5)
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This equation can also be derived (perhaps more simply) by considering the con-
tinuous form of Newton’s Lawf = ma. The easiest way to understand Eq. (1.2.5)
is to think in terms of each of the three components of the momentum which must
be conserved individually. Using index notation, Eq. (1.2.5) can be written for the
ith component of the momentum as

∂ρVi

∂t
+

∂

∂xj
[ρViVj] =

∂σij

∂xj
+ ρgi (1.2.6)

wherei = 1, 2, 3 and summation is assumed overj = 1, 2, 3. Using conservation
of mass, Eq. (1.2.5) can also be written

∂V
∂t

+ (V · ∇)V =
1
ρ
∇· σ + g (1.2.7)

Note that the advection of momentum(V · ∇)V is non-linear and this is the term
that leads to much of the interesting behaviour in fluid mechanics.

1.3 Constitutive relations and approximations

Equations (1.2.1), (1.2.2) and (1.2.6) are applicable to any continuum. To complete
the equations, however, requires some additional constraints that relate stress to
velocity (strainrate) or displacement, as well as any thermodynamic equations of
state for material properties such as heat capacity, density or conductivity (although
these are often assumed to be constant).

Viscous fluids The simplest rheology for a fluid is that of an isotropic incom-
pressible fluid where the stress is

σij = −Pδij + η

(
∂Vi

∂xj
+

∂Vj

∂xi

)
(1.3.1)

whereP is the fluid pressure,η is the shear viscosity, and the final bracket on the
right hand side is the strain-rate tensorε̇ij . Substituting into (1.2.7) for a constant
viscosity fluid gives the Navier-Stokes equation

∂V
∂t

+ (V · ∇)V = −1
ρ
∇P + ν∇2V + g (1.3.2)

whereν = η/ρ is the dynamic viscosity.

Elastic bodies Conservation of momentum also applies to elastic rheologies.
Here however the stress is proportional to displacement not velocity. Hooke’s law
for an isotropic elastic medium is

σij = 2µεij + λεkkδij (1.3.3)

where

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(1.3.4)



6

is the strain tensor,µ is the shear modulus andλ is the bulk modulus.u are the
elastic displacements from equilibrium. In an elastic medium, the position of a
particle isx = x0 + u and the displacements are assumed small. The velocity of a
particle is therefore

V =
∂x
∂t

=
∂u
∂t

(1.3.5)

Substituting into Eq. (1.2.7) and assuming that the advective terms are small (they
are orderu · u which is very small) yields

∂ 2u
∂t2

=
µ

ρ
∇2u +

λ + µ

ρ
∇(∇· u) + g (1.3.6)

which can be shown to be a wave equation for seismic waves (and can be de-
composed into shear waves and compressional waves!). When all the body forces
balance the displacements so that there is no time dependence, the equation is said
to be the equilibrium condition that

∂σij

∂xj
+ fi = 0 (1.3.7)

Rotating frames and fictitious forces All of the above equations are derived
in an inertial framethat is undergoing no accelerations. Although our laboratory
frame is actually on a rotating planet (and therefore in an accelerating frame), these
equations are usually adequate for most solid-earth problems. The principal ex-
ceptions are for flows of low viscosity fluids over large regions of the surface (e.g.
ocean, atmosphere and core dynamics). For the most part, however, these fluids
are moving only slowly relative to the rate of rotation of the earth and therefore it
is convenient to transform the inertial equations into equations relative to a frame
rotating with the earth. As it turns out, only the momentum equation is actually ef-
fected by this transformation (because spatial derivatives are instantaneous in time
and material derivatives are invariant to rotation, e.g. see [1] for a derivation). It can
be shown that in a frame rotating at a constant angular velocityΩ (e.g. 1 revolution
per day) the Navier-Stokes Equation becomes

∂V
∂t

+ (V · ∇)V + 2Ω× V = −1
ρ
∇P + ν∇2V + g′ (1.3.8)

where2Ω×V is theCoriolis Forceandg′ is gravity minus thecentripetal acceler-
ation (which is about 1/300th of gravity and is negligible) [1]. Both of these forces
are “fictitious forces” that arise from the accelerating frame. Nevertheless at least
coriolis force has far from fictitious consequences.

1.4 Scaling and “dimensional analysis”

Every term in each of the above equations reflects a physical process and each of
these processes have inherent length scales and time scales. If we had to solve for
everything, for every problem we would quickly end up in an intractable mess with
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no hope of salvation. Fortunately, not every process is important in every problem
and through judicious use of approximations andscaling, we can usually tailor the
equations to our problem. The most important tool for determining the relative
magnitude of various terms is throughnon-dimensional scaling(often called by
the overly fancy namedimensional analysis). There are actually three principal
purposes to making the equations dimensionless.

1. reduce the number of true parameters.

2. Understand the relative magnitudes of the various processes.

3. Make the equations more tractable for numerical solution (all variables are
of order 1).

The mechanics of scaling are straightforward but are best demonstrated with
specific examples. Here we will do two basic examples to get the flavor of the
exercise. More examples can be found in Chapter 2.

Example 1: Heat flow and the Peclet number The first problem will demon-
strate the basic techniques of scaling on a simple two-process problem. In the ab-
sence of any heat sources, and assuming constant material properties, the simplest
1-D equation for heat flow is

∂T

∂t
+ W

∂T

∂z
= κ

∂ 2T

∂z2
(1.4.1)

This equation includes two processes, advection of heat at velocityW , and diffu-
sion of heat with thermal diffusivityκ. As an example problem, this equation could
be used to solve for the temperature distribution directly beneath an upwelling man-
tle plume or ridge (see Figure 1.1a). While it may appear that there are at least two
free parameters (W andκ as well as some temperatures), there is in fact only one
parameter and it is independent of temperature.

To show this we begin by replacing the dimensional variables with dimension-
less ones. The choice of scaling values is a bit of an art. Examination of Figure 1.1a
shows that for the case of an upwelling through a thermal layer of depthd, which
has constant temperaturesT0 at z = 0 andT1 at z = d and has a characteristic
velocityW0, the sensible scaling is

z = dz′

t =
d

W0
t′

∂

∂z
=

1
d

∂

∂z′
(1.4.2)

W = W0W
′

T = T0 + (T1 − T0)T ′

where the primes denote dimensionless variables. Brute force substitution of (1.4.2)
into (1.4.1) gives

∆TW0

d

[
∂T ′

∂t′
+ W ′ ∂T ′

∂z′

]
=

κ∆T

d2

∂ 2T ′

∂z′2
(1.4.3)
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where∆T = T1 − T0. Multiplying both sides byd/(∆TW0) and dropping the
primes yields (in 1-D whereV = W0k)

∂T

∂t
+

∂T

∂z
=

1
Pe

∂ 2T

∂z2
(1.4.4)

where

Pe =
W0d

κ
(1.4.5)

is the Peclet numberwhich controls the relative strength of advection to diffu-
sion. If Pe is large, advection dominates and the last term is negligible2. If Pe
is small, diffusion dominates. However there is only one parameter that controls
all solutions. Figure 1.1 shows the analytic steady state solution to (1.4.4) with
dimensionless boundary conditionsT (0) = 1, T (1) = 0 and a range ofPe.

Another, more physical way to derive the Peclet number is to consider the
time it takes each process to affect the entire layer. The time it takes to advect
across the layer at speedW0 is tadv = d/W0 while the time it takes for heat to
diffuse a distanced is tdiff = d2/κ. Thus the Peclet number is simply the ratio
of the diffusion time to the advection time, i.e.Pe = tdiff/tadv (compare also to
Eq. (1.4.3)). This is the characteristic property of all the zillions of dimensionless
numbers that crop up in continuum mechanics. They are always simply ratios of
times or forces generated by any two terms. Thus any two processes will generate a
dimensionless number (although if the processes are coupled the overall number of
numbers may be less). Based on the sizes of these dimensionless numbers, further
approximations are made to simplify the equations.

Example 2: Scaling the quick and dirty way. . . instant dimensionless numbers
This example will demonstrate the maxim “two processes = 1 number” by demon-
strating some quick and dirty scaling arguments for understanding the momentum
equation. Consider the dimensional Navier stokes equation for a rotating frame

∂V
∂t

+ (V · ∇)V + 2Ω× V = ν∇2V − 1
ρ
∇P + g′ (1.4.6)

which has at least 4 independent processes, advection of momentum, Coriolis
force, viscous diffusion and pressure terms. The first trick to Q&D scaling is to
simply replace all the derivatives with fractions that have the same units and scales.
For example the non-linear advection term(V ·∇)V is of the same units and scale
as the fractionU2

0 /L whereU0 is a characteristic velocity andL is a characteristic
length scale. If we again scale time to the advection timetadv = L/U0 then we
can approximate (1.4.6) as

U2
0

L
+

U2
0

L
+ 2ΩU0 = ν

U0

L2
− O(g) (1.4.7)

where all the pressure and body force terms have been lumped into one term of or-
der the body forces. Since all of these terms have units of acceleration (length/time2)

2except in narrow boundary layers
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Figure 1.1: (a) Cornerflow solution for solid flow beneath a ridge. Layer depth isd,
Upwelling rate on axis isW0. (b) Analytic solution to the simplest steady state-advection
diffusion problem. The solution isT (z) =

(
ePez − ePe

)
/
(
1 − ePe

)
. This problem is

a good estimate for the thermal structure directly on axis. Note that the Peclet number
controls the width of the thermal boundary layers which are of orderl = 1/Pe.
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the ratio of any two of the processes is a dimensionless number with a fancy name.
It is clear that the first two terms the local acceleration and the advected accelera-
tion are of the same magnitude and we will call the first two terms theinertial terms
and treat them together. To generate any of the important dimensionless numbers
we just consider the relative magnitude of any two terms. For this problem there
are three important numbers.

The Reynolds number is the ratio of inertial accelerations to viscous forces i.e.

Re =
U0L

ν
(1.4.8)

Comparison to Eqs. (1.4.4)–(1.4.5) shows that the Reynolds number and the
Peclet number fill the same role. Thus the Reynolds number controls the size
of viscous boundary layers. LargeRe means turbulent flow with thin viscous
boundary layers. SmallRe flow are strongly viscous.

The Rossby number is the ratio of inertial accelerations to coriolis accelerations
i.e.

Ro =
U0

2ΩL
(1.4.9)

If Ro → 0, the system is effectively in solid body rotation. ForRo > 1
rotation can be neglected relative toinertial forces(e.g. laboratory flume
experiments). Many interesting problems happen for Rossby numbers of
order 1.

The Eckman number is the square root of the ratio of viscous forces to coriolis
forces

Ek =
[

ν

2ΩL2

]1/2

(1.4.10)

The Eckman number controls the size of boundary layers in rotational prob-
lems. For largeEk viscous forces dominate and coriolis terms can be ne-
glected.

Table 1.1 gives some representative values of scales and dimensionless num-
bers for the earth’s mantle, the Gulf Stream, and your bathtub. By inspecting the
relative magnitudes of the different processes, this quick scaling suggests that for
mantle convection we can neglect inertial and rotational forces. For the oceans we
can neglect (with some care) viscous forces, and for our bathtub we can neglect
coriolis forces (thus destroying the direction of bathtub draining myth).

Caveats: Small parameters This approach is good for a quick back of the enve-
lope estimate of the relative magnitude of different terms. Usually when one term is
much smaller than another it can just be thrown out (at least as a first guess). Some
caution should be exerted however when the small value multiplies the terms with
the highest derivatives (e.g.(1/Pe)∇2T in example 1). As demonstrated in figure
1.1b, a large Peclet number does not necessarily imply that diffusion can be ne-
glected, rather it means that it only becomes important in narrow boundary layers.
Without these boundary layers, however, some problems are poorly posed. A more
drastic example from magma migration will be shown in class.
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Table 1.1:Some scales and scaling for three fluid problems.

The mantle The Gulf Stream Your Bathtub
U0 3 cm/yr (10−9 ms−1) 1 ms−1 .01 ms−1

L 3000 km 100 km 1 m
ν 1018 m2s−1 10−6 m2s−1 10−6 m2s−1 (10−2 m2s−1 corn syrup)
Ω 2π/day (7.3 × 10−5 s−1) 7.3 × 10−5 s−1 7.3 × 10−5 s−1

Re 3 × 10−21 1011 104 (1 corn syrup)
Ro 2 × 10−12 .07 70
Ek2 8 × 108 7 × 10−13 7 × 10−3 (70 for cs)

1.5 Summary

Beginning with conservation of anything for a fixed volume, we have come up with
a large number of equations that govern the physics of just about every continuum
problem we can think of. Using scaling, we have also shown how to simplify (?)
these equations and how to get the first vague understanding of the relative impor-
tance of different processes for different problems. Now it’s time to start solving
these equations. Fortunately there are really only three basic types of equations that
come out of this analysis, Ordinary Differential Equations which depend only on
time, Time dependent Partial differential equations (space and time) and boundary
value problems (just space). The following sections will show how to deal with
each of these basic types in turn.
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