Stochastic Calculus

Lecture 1 : Brownian motion
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Stochastic processes

A stochastic process is an indexed set of random variables
Xt, teT

i.e. measurable maps from a probability space (22, F, P) to a state
space (E,&) T =time

In this course T = R, or R (continuous time)

But you could have T = N, or N (discrete time), or other things

In this course E = R or RY £ = B(RY)= Borel o-field
= smallest o-field containing open sets

Fix w € Q. Xi(w) is a function of t € R.
So X; is a random function.
In this course we will be studying random continuous functions
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Real random variables

A probability space (2, F, P) consists of a set Q, on which there is a
o-field F

o ifAc Fthen A°ec F
e ifAieF,i=1,23,...,then U;’i1A,’ eF
and a probability measure
0=PD)<PA)<PQ)=1,AcF
e if Aje F,i=1,23,... aredisjoint, A;N A; =0, then
P(UZ A) = 3272 P(A)
A (real-valued) random variable is a measurable map

X (QF,P)— (R,B(R))

Distribution function F(x) = P(X < x)
Measure p(A) = P(X € A)
Characteristic function ¢(t) = E[e™] = [ e™dF(x)
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Random variables in R”

n random variables X, ..., X,
= random n-vector X = (Xi,..., Xn)

= random element of R”

Distribution function
F(Xx1,...,%n) = P(X1 < Xq,...,Xn < Xp)

Measure p(A) = P(X € A)
Characteristic function ¢(ty, ..., t,) = E[e"X].
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Distribution of a stochastic process
Analogously: Discrete time stochastic process Xi, Xo, ... is a random
sequence or a random element of [[2; R

Continuous time stochastic process X;, t > 0 is a random function or a
random element of @ = [[,5o R

Family of finite dim. distr.’s, one foreach t; < --- < 1,
Ftta(X1, ... Xn) = P(Xyy, < X1,..., X, < Xn) (1)

Consistency: Ft1,...,?,',...,1‘n(x1 yeee ,)A(,', c. 7Xn) = Ft1,...,tn(x1 e SR 7Xn)
F generated by cylinder sets E = {Xy,,..., Xi, € A}, A€ B(R")
Kolmogorov Extension Theorem

Let {Ft .  t.}t,.. t.ern n=1,2,.. be a consistent family of finite dimensional
distributions. There is a unique probability measure P on (2, F)
satisfying (1).
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Gaussian processes

X ~ N(m,c?) if X is Gaussian with mean m and variance o2
)

(x—m) .
F(x) = [*, H(y)dy, density f(x) = e a2 (t) = efm—2ot

X = (Xy,...,Xn) ~N(m, C) if it has n-dimensional density

1
vemndetC

A process is Gaussian if all finite dimensional distributions are
Gaussian

e—%(x—m)TC*1(x—m)

Proposition

If (X1, X2) is Gaussian, then they are independent if and only if they
are orthogonal, i.e. Ci2 = Co1 = E[(X1 — my)(Xo — m2)] = 0.
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Brownian motion

Brownian motion B;, t > 0 is a Gaussian process with independent,
stationary increments B;p — B;

Independent increments: By, — By, By, — By, independent if
0<th<b<B<th

Stationary: B, — Bt g Bs.ph— Bs

Biyh — By ~ N (0, h)

P(Bt1 <X1,...,B <Xn):

_ (o-n)? _ Un—Yn_1 P

2[1 2(t—1) e 2tn—t_1)
[of
\/27I't1 \/271' 2—t1) \/27l'(tn—tn_1)

. dyn
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Basic properties of Brownian motion

Mean: m; = E[Bi] =0

Covariance: If s < t,

E[B:Bs] = E[(B; — Bs)Bs] + E[B2] = E[B; — BS]E[Bs] + s=s
B; is Gaussian process with

mi =0 Cst= E[BiBs] = min(s, t)

Proposition
Let B, t > 0 be a Brownian motion.
@ Foranys >0, B; = B:i s — Bs, t > 0 is a Brownian motion
independent of By, u < s
Q@ B, t > 0 is a Brownian motion
© Forany a, aB, »;, t > 0 is a Brownian motion
Q By, t > 0 is a Brownian motion.
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Continuity of Brownian motion

We will construct Brownian motion directly on Q = C(]0, 1]),with its
Borel o-field, under the sup norm ||f||oc = sup;cpo 1 |f(Z)]-

Lemma
If X is N'(0,1) then P(|1X| > a) < e~%/2.

Proof.
We use the exponential Tchebyshev’s inequality: For A > 0,

P(IX| > a) < E[e"]/e*8 = g A+ \/2

Choose )\ = a. O
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Continuity of Brownian motion: Haar functions

Definition
Haar basis of L?[0, 1]

Hn,j(x) = 2" {1[ 2 2j+1)—1[2j+1 2j+2)}

on+17on+1 on+1 7 on+1

Integrals are Schauder funct/ons Snj(X) = [o Hnj(y)dy

Tent of height 2="" between 2 and 2%2_

Definition
Bn(t) = polygonal approx. on the pomtsO 1/2” 2/2" ... 1

2
+Bn+1 (2mi1 )

2j4+1 2j4+1 2j4+1 (222
n+1(2{n%)_5n(2{nt1):Bn+1(2{nt1)— = 2m+1 2

Bo1(1) = Ba(t) = 320" &nSin(X)  &,m indep N(0, 1)

v
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Continuity of Brownian motion

Theorem
Brownian motion has continuous sample paths

Proof.

Polygonal approx. By(t,w) is continuous for each w

Enough to show: B,(w) converges uniformly a.s.

i.e. B(t) =Y p_o Bmy1(t) — Bm(t) + Bo(t) converges uniformly
Bn(t) — B(t) = Z?no:n Bm1(t) — Bm(t)

SUPo< <1 |Bn(t) — B(t)| < -5, SUPo<t<1 [Bm+1(t) — Bm(t)|
Need: Ve > 0, IN(w) < oo a.s., such that for all n > N(w),

(e}

> sup [Bmi1(t) — Bum(t)| < e.

—n 0<t<1
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Continuity of Brownian motion: Proof continued

Proof.

sup |B t) — Bny(t :2*mT+1 max
5P, Brni1(8) = B ,max

gj,m

P(2-" max >27%) < 2P "% ¢l > 27%)

0<j<2m—1

gj,m

2
< omg=2"

(e.e]

Py 2" m| = > 2=/
DP(y_ 27 max lgml > > 27
n=1 m=n m=n

o0 o0
<>y omg=2"%

n=1 m=n
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Continuity of Brownian motion: Proof continued

Borel-Cantelli Lemma
If>"7 1 P(Ap) < oo then almost every w is in at most finitely many A,.

Proof.
It follows that IN; (w) s.t. for n > Ny (w)

. +1 e
2= max . -
f;‘l 0§j§2m_1 |§/>m| S ’;7

Ve, r.h.s.<eforall n> No. O
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Holder continuity

f is locally Holder of order « if for every L < oo

|f(t) = f(s)]

sup —F——2 <0
o<s<t<L |t —8|*

Theorem
Let X;, t > 0 be a stochastic process for which 3y, C,§ > 0,
E[IX; — Xs|"] < C|t — s|'*°

Then X; is a.s. locally Hélder continuous of order a < 6/~

Example: Brownian motion is Holder o < 1/2
2

E[|B; — Bs|?P] = fXZp&%dx = Cplt — sIP
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