
Stochastic Calculus

Lecture 1 : Brownian motion
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Stochastic processes

A stochastic process is an indexed set of random variables

Xt , t ∈ T

i.e. measurable maps from a probability space (Ω,F , P) to a state
space (E , E) T = time

In this course T = R+ or R (continuous time)

But you could have T = N+ or N (discrete time), or other things

In this course E = R or Rd E = B(Rd)= Borel σ-field
= smallest σ-field containing open sets

Fix ω ∈ Ω. Xt(ω) is a function of t ∈ R+.
So Xt is a random function.
In this course we will be studying random continuous functions
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Real random variables
A probability space (Ω,F , P) consists of a set Ω, on which there is a
σ-field F

if A ∈ F then Ac ∈ F
if Ai ∈ F , i = 1, 2, 3, . . ., then ∪∞i=1Ai ∈ F

and a probability measure
0 = P(∅) ≤ P(A) ≤ P(Ω) = 1, A ∈ F
if Ai ∈ F , i = 1, 2, 3, . . . are disjoint, Ai ∩ Aj = ∅, then
P(∪∞i=1Ai) =

∑∞
i=1 P(Ai)

A (real-valued) random variable is a measurable map

X : (Ω,F , P) → (R,B(R))

Distribution function F (x) = P(X ≤ x)

Measure µ(A) = P(X ∈ A)

Characteristic function ϕ(t) = E [eitX ] =
∫

eitxdF (x)
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Random variables in Rn

n random variables X1, . . . , Xn

= random n-vector X = (X1, . . . , Xn)

= random element of Rn

Distribution function

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

Measure µ(A) = P(X ∈ A)

Characteristic function ϕ(t1, . . . , tn) = E [eit ·X ].
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Distribution of a stochastic process

Analogously: Discrete time stochastic process X1, X2, . . . is a random
sequence or a random element of

∏∞
i=1 R

Continuous time stochastic process Xt , t ≥ 0 is a random function or a
random element of Ω =

∏
t≥0 R

Family of finite dim. distr.’s, one for each t1 < · · · < tn,

Ft1,...,tn(x1, . . . , xn) = P(Xt1 ≤ x1, . . . , Xtn ≤ xn) (1)

Consistency: Ft1,...,̂ti ,...,tn
(x1, . . . , x̂i , . . . , xn) = Ft1,...,tn(x1, . . . ,∞, . . . , xn)

F generated by cylinder sets E = {Xt1 , . . . , Xtn ∈ A}, A ∈ B(Rn)

Kolmogorov Extension Theorem
Let {Ft1,...,tn}t1,...,tn∈Rn,n=1,2,... be a consistent family of finite dimensional
distributions. There is a unique probability measure P on (Ω,F)
satisfying (1).
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Gaussian processes

X ∼ N (m, σ2) if X is Gaussian with mean m and variance σ2

F (x) =
∫ x
−∞ f (y)dy , density f (x) = 1√

2πσ2 e−
(x−m)2

2σ2 ϕ(t) = eitm− 1
2 σ2t2

X = (X1, . . . , Xn) ∼ N (m, C) if it has n-dimensional density

1√
2π det C

e−
1
2 (x−m)T C−1(x−m)

A process is Gaussian if all finite dimensional distributions are
Gaussian

Proposition
If (X1, X2) is Gaussian, then they are independent if and only if they
are orthogonal, i.e. C12 = C21 = E [(X1 −m1)(X2 −m2)] = 0.
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Brownian motion

Brownian motion Bt , t ≥ 0 is a Gaussian process with independent,
stationary increments Bt+h − Bt

Independent increments: Bt4 − Bt3 , Bt2 − Bt1 independent if
0 ≤ t1 ≤ t2 ≤ t3 ≤ t4

Stationary: Bt+h − Bt
dist
= Bs+h − Bs

Bt+h − Bt ∼ N (0, h)

P(Bt1 ≤ x1, . . . , Btn ≤ xn) =∫ xn

−∞
· · ·

∫ x1

−∞

e−
y2
1

2t1
√

2πt1

e−
(y2−y1)2

2(t2−t1)√
2π(t2 − t1)

· · · e
−

(yn−yn−1)2

2(tn−tn−1)√
2π(tn − tn−1)

dy1 · · ·dyn
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Basic properties of Brownian motion
Mean: mt = E [Bt ] = 0

Covariance: If s < t ,
E [BtBs] = E [(Bt − Bs)Bs] + E [B2

s ] = E [Bt − Bs]E [Bs] + s = s

Bt is Gaussian process with

mt = 0 Cs,t = E [BtBs] = min(s, t)

Proposition
Let Bt , t ≥ 0 be a Brownian motion.

1 For any s ≥ 0, B̃t = Bt+s − Bs, t ≥ 0 is a Brownian motion
independent of Bu, u ≤ s

2 −Bt , t ≥ 0 is a Brownian motion
3 For any a, aBa−2t , t ≥ 0 is a Brownian motion
4 tB1/t , t ≥ 0 is a Brownian motion.
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Continuity of Brownian motion

We will construct Brownian motion directly on Ω = C([0, 1]),with its
Borel σ-field, under the sup norm ‖f‖∞ = supt∈[0,1] |f (t)|.

Lemma

If X is N (0, 1) then P(|X | ≥ a) ≤ e−a2/2.

Proof.
We use the exponential Tchebyshev’s inequality: For λ > 0,

P(|X | ≥ a) ≤ E [eλX ]/eλa = e−λa+λ2/2

Choose λ = a.
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Continuity of Brownian motion: Haar functions

Definition
Haar basis of L2[0, 1]

Hn,j(x) = 2
n+1

2

{
1

[ 2j
2n+1 , 2j+1

2n+1 )
− 1

[ 2j+1
2n+1 , 2j+2

2n+1 )

}
Integrals are Schauder functions Sn,j(x) =

∫ x
0 Hn,j(y)dy

Tent of height 2−
n+1

2 between 2j
2n+1 and 2j+2

2n+1 .

Definition
Bn(t) = polygonal approx. on the points 0, 1/2n, 2/2n, . . . , 1

Bn+1(
2j+1
2m+1 )− Bn(

2j+1
2m+1 ) = Bn+1(

2j+1
2m+1 )−

Bn+1(
2j+2

2m+1 )+Bn+1(
2j

2m+1 )

2

Bn+1(t)− Bn(t) =
∑2n−1

j=0 ξj,nSj,n(x) ξj,m indep N (0, 1)
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Continuity of Brownian motion

Theorem
Brownian motion has continuous sample paths

Proof.
Polygonal approx. Bn(t , ω) is continuous for each ω

Enough to show: Bn(ω) converges uniformly a.s.
i.e. B(t) =

∑∞
m=0 Bm+1(t)− Bm(t) + B0(t) converges uniformly

Bn(t)− B(t) =
∑∞

m=n Bm+1(t)− Bm(t)
sup0≤t≤1 |Bn(t)− B(t)| ≤

∑∞
m=n sup0≤t≤1 |Bm+1(t)− Bm(t)|

Need: ∀ε > 0, ∃N(ω) < ∞ a.s., such that for all n ≥ N(ω),

∞∑
m=n

sup
0≤t≤1

|Bm+1(t)− Bm(t)| ≤ ε.
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Continuity of Brownian motion: Proof continued

Proof.

sup
0≤t≤1

|Bm+1(t)− Bm(t)| = 2−
m+1

2 max
0≤j≤2m−1

|ξj,m|.

P(2−
m+1

2 max
0≤j≤2m−1

|ξj,m| ≥ 2−
m
4 ) ≤ 2mP(2−

m+1
2 |ξ0,m| ≥ 2−

m
4 )

≤ 2me−2m/2

∞∑
n=1

P(
∞∑

m=n

2−
m+1

2 max
0≤j≤2m−1

|ξj,m| ≥
∞∑

m=n

2−m/4)

≤
∞∑

n=1

∞∑
m=n

2me−2m/2
< ∞
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Continuity of Brownian motion: Proof continued

Borel-Cantelli Lemma
If

∑∞
n=1 P(An) < ∞ then almost every ω is in at most finitely many An.

Proof.
It follows that ∃N1(ω) s.t. for n ≥ N1(ω)

∞∑
m=n

2−
m+1

2 max
0≤j≤2m−1

|ξj,m| ≤
∞∑

m=n

2−m/4

∀ε, r.h.s.≤ ε for all n ≥ N2.
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Hölder continuity
f is locally Hölder of order α if for every L < ∞

sup
0≤s<t≤L

|f (t)− f (s)|
|t − s|α

< ∞

Theorem
Let Xt , t ≥ 0 be a stochastic process for which ∃γ, C, δ > 0,

E [|Xt − Xs|γ ] ≤ C|t − s|1+δ

Then Xt is a.s. locally Hölder continuous of order α < δ/γ

Example: Brownian motion is Hölder α < 1/2

E [|Bt − Bs|2p] =
∫

x2p e
− x2

2(t−s)√
2π(t−s)

dx = Cp|t − s|p
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