Stochastic Calculus

Lecture 1 : Brownian motion

Stochastic processes

A *stochastic process* is an indexed set of random variables

$$X_t, t \in T$$

i.e. measurable maps from a probability space (Ω, \mathcal{F}, P) to a state space (E, \mathcal{E}) T = time

In this course $T = \mathbb{R}_+$ or \mathbb{R} (continuous time)

But you could have $T = \mathbb{N}_+$ or \mathbb{N} (discrete time), or other things

In this course $E = \mathbb{R}$ or \mathbb{R}^d $\mathcal{E} = \mathcal{B}(\mathbb{R}^d)$ = Borel σ -field = smallest σ -field containing open sets

Fix $\omega \in \Omega$. $X_t(\omega)$ is a function of $t \in \mathbb{R}_+$. So X_t is a random function.

In this course we will be studying random continuous functions

Real random variables

A probability space (Ω, \mathcal{F}, P) consists of a set Ω , on which there is a σ -field \mathcal{F}

- if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
- if $A_i \in \mathcal{F}$, i = 1, 2, 3, ..., then $\cup_{i=1}^{\infty} A_i \in \mathcal{F}$

and a probability measure

•
$$\mathsf{0} = \mathsf{P}(\emptyset) \leq \mathsf{P}(\mathsf{A}) \leq \mathsf{P}(\Omega) = \mathsf{1}, \, \mathsf{A} \in \mathcal{F}$$

• if $A_i \in \mathcal{F}$, i = 1, 2, 3, ... are disjoint, $A_i \cap A_j = \emptyset$, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

A (real-valued) random variable is a measurable map

$$X:(\Omega,\mathcal{F},P)\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$$

Distribution function $F(x) = P(X \le x)$ Measure $\mu(A) = P(X \in A)$ Characteristic function $\varphi(t) = E[e^{itX}] = \int e^{itx} dF(x)$

Random variables in \mathbb{R}^n

n random variables X_1, \ldots, X_n = random *n*-vector $X = (X_1, \ldots, X_n)$ = random element of \mathbb{R}^n

Distribution function

$$F(x_1,\ldots,x_n)=P(X_1\leq x_1,\ldots,X_n\leq x_n)$$

Measure $\mu(A) = P(X \in A)$

Characteristic function $\varphi(t_1, \ldots, t_n) = E[e^{it \cdot X}].$

Distribution of a stochastic process

Analogously: Discrete time stochastic process $X_1, X_2, ...$ is a random sequence or a random element of $\prod_{i=1}^{\infty} \mathbb{R}$

Continuous time stochastic process X_t , $t \ge 0$ is a random function or a random element of $\Omega = \prod_{t \ge 0} \mathbb{R}$

Family of finite dim. distr.'s, one for each $t_1 < \cdots < t_n$,

$$F_{t_1,...,t_n}(x_1,...,x_n) = P(X_{t_1} \le x_1,...,X_{t_n} \le x_n)$$
(1)

Consistency: $F_{t_1,...,\hat{t}_i,...,t_n}(x_1,...,\hat{x}_i,...,x_n) = F_{t_1,...,t_n}(x_1,...,\infty,...,x_n)$ \mathcal{F} generated by *cylinder sets* $E = \{X_{t_1},...,X_{t_n} \in A\}, A \in \mathcal{B}(\mathbb{R}^n)$ Kolmogorov Extension Theorem

Let $\{F_{t_1,...,t_n}\}_{t_1,...,t_n \in \mathbb{R}^n, n=1,2,...}$ be a consistent family of finite dimensional distributions. There is a unique probability measure P on (Ω, \mathcal{F}) satisfying (1).

Gaussian processes

 $X \sim \mathcal{N}(m, \sigma^2)$ if X is Gaussian with mean *m* and variance σ^2 $F(x) = \int_{-\infty}^{x} f(y) dy$, density $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}} \varphi(t) = e^{itm - \frac{1}{2}\sigma^2 t^2}$ $X = (X_1, \dots, X_n) \sim \mathcal{N}(m, C)$ if it has *n*-dimensional density

$$\frac{1}{\sqrt{2\pi \det C}} e^{-\frac{1}{2}(x-m)^T C^{-1}(x-m)}$$

A process is Gaussian if all finite dimensional distributions are Gaussian

Proposition

If (X_1, X_2) is Gaussian, then they are independent if and only if they are orthogonal, i.e. $C_{12} = C_{21} = E[(X_1 - m_1)(X_2 - m_2)] = 0$.

Brownian motion

Brownian motion B_t , $t \ge 0$ is a Gaussian process with independent, stationary increments $B_{t+h} - B_t$

Independent increments: $B_{t_4} - B_{t_3}$, $B_{t_2} - B_{t_1}$ independent if $0 \le t_1 \le t_2 \le t_3 \le t_4$

Stationary: $B_{t+h} - B_t \stackrel{dist}{=} B_{s+h} - B_s$ $B_{t+h} - B_t \sim \mathcal{N}(0, h)$

$$P(B_{t_1} \le x_1, \dots, B_{t_n} \le x_n) = \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} \frac{e^{-\frac{y_1^2}{2t_1}}}{\sqrt{2\pi t_1}} \frac{e^{-\frac{(y_2 - y_1)^2}{2(t_2 - t_1)}}}{\sqrt{2\pi (t_2 - t_1)}} \cdots \frac{e^{-\frac{(y_n - y_{n-1})^2}{2(t_n - t_{n-1})}}}{\sqrt{2\pi (t_n - t_{n-1})}} dy_1 \cdots dy_n$$

Basic properties of Brownian motion

Mean: $m_t = E[B_t] = 0$

Covariance: If s < t,

 $E[B_tB_s] = E[(B_t - B_s)B_s] + E[B_s^2] = E[B_t - B_s]E[B_s] + s = s$

 B_t is Gaussian process with

$$m_t = 0$$
 $C_{s,t} = E[B_t B_s] = \min(s, t)$

Proposition

Let B_t , $t \ge 0$ be a Brownian motion.

- For any $s \ge 0$, $\tilde{B}_t = B_{t+s} B_s$, $t \ge 0$ is a Brownian motion independent of B_u , $u \le s$
- **2** $-B_t$, $t \ge 0$ is a Brownian motion
- So For any a, $aB_{a^{-2}t}$, $t \ge 0$ is a Brownian motion
- $tB_{1/t}$, $t \ge 0$ is a Brownian motion.

Continuity of Brownian motion

We will construct Brownian motion directly on $\Omega = C([0, 1])$, with its Borel σ -field, under the sup norm $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$.

Lemma

If X is
$$\mathcal{N}(0, 1)$$
 then $P(|X| \ge a) \le e^{-a^2/2}$.

Proof.

We use the exponential Tchebyshev's inequality: For $\lambda > 0$,

$$P(|X| \ge a) \le E[e^{\lambda X}]/e^{\lambda a} = e^{-\lambda a + \lambda^2/2}$$

Choose $\lambda = a$.

Continuity of Brownian motion: Haar functions

Definition

Haar basis of $L^2[0,1]$

$$\mathcal{H}_{n,j}(x) = 2^{\frac{n+1}{2}} \left\{ \mathbf{1}_{[\frac{2j}{2^{n+1}}, \frac{2j+1}{2^{n+1}})} - \mathbf{1}_{[\frac{2j+1}{2^{n+1}}, \frac{2j+2}{2^{n+1}})} \right\}$$

Integrals are Schauder functions $S_{n,j}(x) = \int_0^x \mathcal{H}_{n,j}(y) dy$ Tent of height $2^{-\frac{n+1}{2}}$ between $\frac{2j}{2^{n+1}}$ and $\frac{2j+2}{2^{n+1}}$.

Definition

 $B_{n}(t) = polygonal approx. on the points 0, 1/2^{n}, 2/2^{n}, \dots, 1$ $B_{n+1}(\frac{2j+1}{2^{m+1}}) - B_{n}(\frac{2j+1}{2^{m+1}}) = B_{n+1}(\frac{2j+1}{2^{m+1}}) - \frac{B_{n+1}(\frac{2j+2}{2^{m+1}}) + B_{n+1}(\frac{2j}{2^{m+1}})}{2}$

$$B_{n+1}(t) - B_n(t) = \sum_{j=0}^{2^n-1} \xi_{j,n} S_{j,n}(x) \qquad \xi_{j,m} \text{ indep } \mathcal{N}(0,1)$$

Continuity of Brownian motion

Theorem

Brownian motion has continuous sample paths

Proof.

Polygonal approx. $B_n(t, \omega)$ is continuous for each ω Enough to show: $B_n(\omega)$ converges uniformly a.s. i.e. $B(t) = \sum_{m=0}^{\infty} B_{m+1}(t) - B_m(t) + B_0(t)$ converges uniformly $B_n(t) - B(t) = \sum_{m=n}^{\infty} B_{m+1}(t) - B_m(t)$ $\sup_{0 \le t \le 1} |B_n(t) - B(t)| \le \sum_{m=n}^{\infty} \sup_{0 \le t \le 1} |B_{m+1}(t) - B_m(t)|$ Need: $\forall \epsilon > 0$, $\exists N(\omega) < \infty$ a.s., such that for all $n \ge N(\omega)$,

$$\sum_{m=n}^{\infty} \sup_{0\leq t\leq 1} |B_{m+1}(t) - B_m(t)| \leq \epsilon.$$

Continuity of Brownian motion: Proof continued

Proof.

$$\sup_{0 \le t \le 1} |B_{m+1}(t) - B_m(t)| = 2^{-\frac{m+1}{2}} \max_{0 \le j \le 2^m - 1} |\xi_{j,m}|.$$

$$egin{aligned} & \mathcal{P}(2^{-rac{m+1}{2}}\max_{0\leq j\leq 2^m-1}|\xi_{j,m}|\geq 2^{-rac{m}{4}}) &\leq & 2^m\mathcal{P}(2^{-rac{m+1}{2}}|\xi_{0,m}|\geq 2^{-rac{m}{4}}) \ &\leq & 2^me^{-2^{m/2}} \end{aligned}$$

$$\sum_{n=1}^{\infty} P(\sum_{m=n}^{\infty} 2^{-\frac{m+1}{2}} \max_{0 \le j \le 2^{m-1}} |\xi_{j,m}| \ge \sum_{m=n}^{\infty} 2^{-m/4})$$
$$\le \sum_{n=1}^{\infty} \sum_{m=n}^{\infty} 2^{m} e^{-2^{m/2}} < \infty$$

Continuity of Brownian motion: Proof continued

Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then almost every ω is in at most finitely many A_n .

Proof.

It follows that $\exists N_1(\omega)$ s.t. for $n \ge N_1(\omega)$

$$\sum_{m=n}^{\infty} 2^{-\frac{m+1}{2}} \max_{0 \le j \le 2^{m}-1} |\xi_{j,m}| \le \sum_{m=n}^{\infty} 2^{-m/4}$$

 $\forall \epsilon, r.h.s. \leq \epsilon \text{ for all } n \geq N_2.$

Hölder continuity

f is locally Hölder of order α if for every $L < \infty$

$$\sup_{0 \le s < t \le L} \frac{|f(t) - f(s)|}{|t - s|^{\alpha}} < \infty$$

Theorem

Let X_t , $t \ge 0$ be a stochastic process for which $\exists \gamma, C, \delta > 0$,

$$E[|X_t - X_s|^{\gamma}] \leq C|t - s|^{1+\delta}$$

Then X_t is a.s. locally Hölder continuous of order $\alpha < \delta/\gamma$

Example: Brownian motion is Hölder $\alpha < 1/2$

$$E[|B_t - B_s|^{2p}] = \int x^{2p} \frac{e^{-rac{x^2}{2(t-s)}}}{\sqrt{2\pi(t-s)}} dx = C_p |t-s|^p$$