Martingale representation theorem

Q = CJ0, T], Fr = smallest o-field with respect to which Bs are all
measurable, s < T, P the Wiener measure , B; = Brownian motion

M; square integrable martingale with respect to F;
Then there exists o(t,w) which is
@ progressively measurable
© square integrable
Q 5(]0,00)) x F mble
such that .
My = Mo+ /0 o(5)dBs
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Lemma
A = set of all linear combinations of random variables of the form

elo haB=3 Ji PPat e 12(]0, T])

Ais dense in L?(Q, Fr, P)

Proof
Suppose g € L?(Q, Fr, P) is orthogonal to all such functions

We want to show that g =0

By an easy choice of simple functions h we find that for any
)\1,...,)\[76 Rand t1,...,tn€ [0, T],

EP[geM By, +"'+>\nBtn] =0

Ihs real analytic in A\ and hence has an analytic extension to A € C”

v
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Since EF[ge* Bit T Bu] is analytic and vanishes on the real axis, it is
zero everywhere. In particular

EP[ge’(y1 Bt1+"'+}’nBtn)] -0

Suppose ¢ € C3°(R")

3 = @) 772 [ ox)e Vo

Fourier inversion:

o(x) = 2r) "2 | dly)eay

EPl0(By - Bu)] = (27) "2 | G(y)EP e+ Buldy —

Hence g is orthogonal to fns of form ¢(By, ..., Bt,) where ¢ € C3°(R")
Densein L?(Q, Fr,P) = g=0
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Lemma
F € L2(Q, Fr, P) There exists a unique f(t,w) which is
@ progressively measurable
© square integrable
©Q B([0,0)) x F measurable
such that .
F(w) = E[F] +/0 fdB.

Proof of Uniqueness

suppose
.

.
F:E[F]+/ f1dB:E[F]+/ f,dB
0 0

T T
N /(fg—f1)dB:0 N / El(h—f)2ldt=0 = f=F
0 0

v
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Proof of existence
First we prove it if F is of the form F = elo hdB—3 J5 *ds
Defining F; = elo 19B=3 Iy °9s gives

dF = hFdB,  Fo=1,

S0 .
Fi=1 +/ FshadB.
0

Plugging in t = T gives the result.

If Fis a linear combination of such functions the result follows by
linearity
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Proof of existence for F € L?(Q, Fr, P)
F, e L2(Q,,7-'T, P) with F, — F and

T
0

E[F,] — E[F], so wlog E[F,] = E[F] =0

.
E[(Fn— Fn)?] = /0 E[(f, — fn)?]dt — 0 as n,m— oo

= f, Cauchy in L2([0, T] x Q, dx x dP).

Let f be the limit. Taking limits we have

.
F = E[F] + / fdB.
0

v
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Proof of the martingale representation theorem
By previous lemma, for each t we have o¢(s, w) such that

t
M, = E[M] + /0 o1(s)dBs

Let tr > t

MH = E[Ml‘z ’fh]

t t
/0 0 (5)dBs /0 o1 (5)0Bs

Uniqueness = oy, = oy,
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Quadratic variation of X; = fo

o Jio(s)0Bs—22 [ o%(s)ds =martingale

Af,’“ st——ft’“ o?(s)ds

E[e ‘ ]:t,'] =0

liy1 lit1
E[Z(t,tis1) | Fi] =0,  Z(titar) = ( / o(s)dBs)2 — / o2(s)ds

i i

lit1
EUZ( tan)}2 = 4( [ o2(s)a)? | 7] = 0

lit1
E[(Z Z(ti,t141))?] < 4E[(Z(/ o%(s)ds)?] — 0

i

)
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Levy’s Theorem

Let X; be a process adapted to a filtration F; which
@ has continuous sample paths
© is a martingale
© has quadratic variation t

Then X; is a Brownian motion
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Proof of Levy’s theorem
Enough to show that for each A,

E[el)\ (Xt—Xs) ’f ] _ 675)\20 s)

Call My = e+2¥t t — s J (t—s)

2!1
My — Ms=> "My — M,_,
j=1

2[1
= iAMy_ (X — Xy_,) —
j=1

L
2

)‘2M§j[(th - th_1 )2 -

(= §-1)]

EIMy_ (Xy — Xi_,) | Fsl = E[E[My_, (Xy — Xy ) | Fy_ ]| Tl

= E[My_ E[(Xy = Xy_,) | Fy_,][ Fs] =0
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Proof of Levy’s theorem
Fix m. Let £€™ = max{z : 57 < &}
2n
lim > Men[(Xy — X, )? = (4 — 1)1 = 0

n—oo £

J=1
So we only have to show
2[1

lim > [Mem — Mg](Xy — X;_,)* =0
=1

n—oo £

Would follow from

2”
. 2
lim E 1 (Xem = Xg))(Xy — X;,_,)" =0
j:

Left hand side = tlim, ..o Maxy<j<on |X§]m — Xyl =0as.
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Note the same proof gives
[t6 formula for semimartingales

Let M} Yooy Mf’ be martingales with respect to a filtration 7, t > 0,
Al,..., A? adapted processes of bounded variation, X; = xo + At + M;
where xo € Fp, and f(t,x) € C'2. Then

f(t,X;) = oxo)+/ — sXs)ds+Z/ (8, Xs)dAL + dM]

d
+> /tW(s Xs)d(M, M)

Multidimensional Levy’s theorem

Let M} e Mf’ be continuous martingales with respect to a filtration
Fi, t >0, with ' '

(M', M) = ot
Then M},..., M? is a Brownian motion in R?

v
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Time change

Let Y; be a stochastic integral

t t
Yt:/ gds+/ fdB
0 0

where f and g are adapted square integrable processes
Let ¢; > 0 be another adapted process and define

t
Bt = / csds.
0

Then g; is adapted and strictly increasing. We call o its inverse. We

can check that
/ Ts+ / 9 4B

for some Brownian motion B. In particular, if we are given a stochastic
integral fot fdB we can choose 2 = ¢ as the rate of our time change
and the resulting Y, is a Brownian motion
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Time change

Theorem
Let B; be Brownian motion and F; its canonical o-field

Suppose that M; is a square integrable martingale with respect to F;
Let .
M; = My +/ f(s)dBs
0
be its representation in terms of Brownian motion. Suppose that 2 > 0
(i.e. its quadratic variation is strictly increasing)

Let ¢ = f2 and define a; as above

Then M,, is a Brownian motion
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Example. Stochastic growth model

adX = rXdt + oV XdB

Solution is X; = rr + B(7t) where 7{ = X;
Because if
dY = rdt + cdB

then by time change
Xt =Y,

satisfies
dX = rr'dt + ov/7'dB
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