
Martingale representation theorem
Ω = C[0, T ], FT = smallest σ-field with respect to which Bs are all
measurable, s ≤ T , P the Wiener measure , Bt = Brownian motion
Mt square integrable martingale with respect to Ft

Then there exists σ(t , ω) which is
1 progressively measurable
2 square integrable
3 B([0,∞))×F mble

such that

Mt = M0 +

∫ t

0
σ(s)dBs
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Lemma
A = set of all linear combinations of random variables of the form

e
R T

0 hdB− 1
2

R T
0 h2dt , h ∈ L2([0, T ])

A is dense in L2(Ω,FT , P)

Proof
Suppose g ∈ L2(Ω,FT , P) is orthogonal to all such functions

We want to show that g = 0

By an easy choice of simple functions h we find that for any
λ1, . . . , λn ∈ R and t1, . . . , tn ∈ [0, T ],

EP [geλ1Bt1+···+λnBtn ] = 0

lhs real analytic in λ and hence has an analytic extension to λ ∈ Cn
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Since EP [geλ1Bt1+···+λnBtn ] is analytic and vanishes on the real axis, it is
zero everywhere. In particular

EP [gei(y1Bt1+···+ynBtn )] = 0

Suppose φ ∈ C∞
0 (Rn)

φ̂(y) = (2π)−n/2
∫

Rn
φ(x)e−ix ·ydx

Fourier inversion:

φ(x) = (2π)−n/2
∫

Rn
φ̂(y)eix ·ydy

EP [gφ(Bt1 , . . . , Btn)] = (2π)−n/2
∫

Rn
φ̂(y)EP [eiy1Bt1+···+ynBtn )]dy = 0

Hence g is orthogonal to fns of form φ(Bt1 , . . . , Btn) where φ ∈ C∞
0 (Rn)

Dense in L2(Ω,FT , P) ⇒ g = 0
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Lemma
F ∈ L2(Ω,FT , P) There exists a unique f (t , ω) which is

1 progressively measurable
2 square integrable
3 B([0,∞))×F measurable

such that

F (ω) = E [F ] +

∫ T

0
fdB.

Proof of Uniqueness
suppose

F = E [F ] +

∫ T

0
f1dB = E [F ] +

∫ T

0
f2dB

⇒
∫ T

0
(f2 − f1)dB = 0 ⇒

∫ T

0
E [(f2 − f1)2]dt = 0 ⇒ f2 = f1
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Proof of existence

First we prove it if F is of the form F = e
R T

0 hdB− 1
2

R T
0 h2ds

Defining Ft = e
R t

0 hdB− 1
2

R t
0 h2ds gives

dF = hFdB, F0 = 1,

so

Ft = 1 +

∫ t

0
FshdB.

Plugging in t = T gives the result.

If F is a linear combination of such functions the result follows by
linearity
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Proof of existence for F ∈ L2(Ω,FT , P)

Fn ∈ L2(Ω,FT , P) with Fn → F and

Fn = E [Fn] +

∫ T

0
fndB.

E [Fn] → E [F ], so wlog E [Fn] = E [F ] = 0

E [(Fn − Fm)2] =

∫ T

0
E [(fn − fm)2]dt → 0 as n, m →∞

⇒ fn Cauchy in L2([0, T ]× Ω, dx × dP).

Let f be the limit. Taking limits we have

F = E [F ] +

∫ T

0
fdB.
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Proof of the martingale representation theorem
By previous lemma, for each t we have σt(s, ω) such that

Mt = E [Mt ] +

∫ t

0
σt(s)dBs

Let t2 > t1

Mt1 = E [Mt2 | Ft1 ]∫ t1

0
σt2(s)dBs =

∫ t1

0
σt1(s)dBs

Uniqueness ⇒ σt1 = σt2
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Quadratic variation of Xt =
∫ t

0 σ(s)dBs

eλ
R t

0 σ(s)dBs−λ2
2

R t
0 σ2(s)ds =martingale

E [eλ
R ti+1

ti
σ(s)dBs−λ2

2

R ti+1
ti

σ2(s)ds | Fti ] = 0

E [Z (ti , ti+1) | Fti ] = 0, Z (ti , ti+1) = (

∫ ti+1

ti
σ(s)dBs)

2−
∫ ti+1

ti
σ2(s)ds

E [{Z (ti , ti+1)}2 − 4(

∫ ti+1

ti
σ2(s)ds)2 | Fti ] = 0

E [(
∑

i

Z (ti , ti+1))
2] ≤ 4E [(

∑
i

(

∫ ti+1

ti
σ2(s)ds)2] → 0

〈Xt , Xt〉 =

∫ t

0
σ2(s, ω)ds
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Levy’s Theorem
Let Xt be a process adapted to a filtration Ft which

1 has continuous sample paths
2 is a martingale
3 has quadratic variation t

Then Xt is a Brownian motion
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Proof of Levy’s theorem
Enough to show that for each λ,

E [eiλ(Xt−Xs) | Fs] = e−
1
2 λ2(t−s)

Call Mt = eiλXt+
1
2 λ2t , tj = s + j

2n (t − s)

Mt −Ms =
2n∑

j=1

Mtj −Mtj−1

=
2n∑

j=1

iλMtj−1(Xtj − Xtj−1)−
1
2
λ2Mξj [(Xtj − Xtj−1)

2 − (tj − tj−1)]

E [Mtj−1(Xtj − Xtj−1) | Fs] = E [E [Mtj−1(Xtj − Xtj−1) | Ftj−1 ] | Fs]

= E [Mtj−1E [(Xtj − Xtj−1) | Ftj−1 ] | Fs] = 0
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Proof of Levy’s theorem

Fix m. Let ξm = max{ i
2m : i

2m ≤ ξ}

lim
n→∞

2n∑
j=1

Mξm
j
[(Xtj − Xtj−1)

2 − (tj − tj−1)] = 0

So we only have to show

lim
n→∞

2n∑
j=1

[Mξm
j
−Mξj ](Xtj − Xtj−1)

2 = 0

Would follow from

lim
n→∞

2n∑
j=1

(Xξm
j
− Xξj )(Xtj − Xtj−1)

2 = 0

Left hand side = t limn→∞ max1≤j≤2n |Xξm
j
− Xξj | = 0 a.s.
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Note the same proof gives

Itô formula for semimartingales

Let M1
t , . . . , Md

t be martingales with respect to a filtration Ft , t ≥ 0,
A1

t , . . . , Ad
t adapted processes of bounded variation, Xt = x0 + At + Mt

where x0 ∈ F0, and f (t , x) ∈ C1,2. Then

f (t , Xt) = f (0, X0) +

∫ t

0

∂f
∂t

(s, Xs)ds +
d∑

i=1

∫ t

0

∂f
∂xi

(s, Xs)dAi
s + dM i

s

+
d∑

i,j=1

∫ t

0

∂2f
∂xi∂xj

(s, Xs)d〈M i , M j〉s

Multidimensional Levy’s theorem

Let M1
t , . . . , Md

t be continuous martingales with respect to a filtration
Ft , t ≥ 0, with

〈M i , M j〉t = δij t

Then M1
t , . . . , Md

t is a Brownian motion in Rd
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Time change
Let Yt be a stochastic integral

Yt =

∫ t

0
gds +

∫ t

0
fdB

where f and g are adapted square integrable processes
Let ct > 0 be another adapted process and define

βt =

∫ t

0
csds.

Then βt is adapted and strictly increasing. We call αt its inverse. We
can check that

Yαt =

∫ t

0

f
c

ds +

∫ t

0

g√
c

dB̃

for some Brownian motion B̃. In particular, if we are given a stochastic
integral

∫ t
0 fdB we can choose f 2 = c as the rate of our time change

and the resulting Yαt is a Brownian motion
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Time change

Theorem
Let Bt be Brownian motion and Ft its canonical σ-field

Suppose that Mt is a square integrable martingale with respect to Ft

Let

Mt = M0 +

∫ t

0
f (s)dBs

be its representation in terms of Brownian motion. Suppose that f 2 > 0
(i.e. its quadratic variation is strictly increasing)

Let c = f 2 and define αt as above

Then Mαt is a Brownian motion
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Example. Stochastic growth model

dX = rXdt + σ
√

XdB

Solution is Xt = rτt + B(τt) where τ ′t = Xt
Because if

dY = rdt + σdB

then by time change
Xt = Yτt

satisfies
dX = rτ ′dt + σ

√
τ ′dB
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Here’s a funny trick to solve

dX = σ
√

XdB

Let φ = φ(t) be deterministic and look at

Y (t) = e−X(t)φ(T−t)

dY = (φ̇ +
σ2

2
φ2)Ydt − φYσ

√
XdB

So if φ̇ = −σ2

2 φ2, φ(0) = λ then

E [e−λX(T )] = e−X(0)φ(T )

Called Duality
Great if it works.
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Example. Cox-Ingersol-Ross model
The interest rate r(t) is assumed to satisfy the equation

dr(t) = (α− βr(t))dt + σ
√

r(t)dB(t).

Note that the Lipschitz condition is not satisfied, but
existence/uniqueness holds by the stronger theorem we did not prove

If d = 4α/σ2 is a positive integer, then we can find a solution as
follows: Let B1(t), B2(t), . . . , Bd(t) be d independent Brownian motions

and let X1(t), X2(t), . . . , Xd(t) be the solutions of the Langevin
equations

dXi = −αXidt + σdBi , i = 1, . . . , d .

In other words, X1(t), X2(t), . . . , Xd(t) are d independent
Ornstein-Uhlenbeck processes
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Example. Cox-Ingersol-Ross model

r(t) = X 2
1 (t) + · · ·+ X 2

d (t), X1(t), X2(t), . . . , Xd(t) indep O-U.

dr(t) = (α− βr(t))dt + σ
√

r(t)

{
d∑

i=1

Xi(t)√
r(t)

dBi(t)

}
.

dB̃(t) =
d∑

i=1

Xi(t)√
r(t)

dBi(t)

B̃(t) is a martingale with quadratic variation

dB̃dB̃ =
d∑

i,j=1

Xi(t)Xj(t)
r(t)

dBi(t)dBj(t) =
d∑

i=1

X 2
i (t)
r(t)

dt = dt

⇒ B̃(t) Brownian motion

dr(t) = (α− βr(t))dt + σ
√

r(t)dB̃(t)
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The type of solutions dealt with in the existence/uniqueness theorem
are strong solutions

This means that you are given the Brownian motion B(t) and asked to
come up with a solution X (t) of the stochastic differential equation
dX = bdt + σdB.

A weak solution is when you just find some Brownian motion B̃(t) for
which you can solve the equation dX = bdt + σdB̃.

Example. Cox-Ingersol-Ross.

If d = 1 then B̃(t) = B1(t) so we have a strong solution

But if d = 2, 3, . . . then all we have is a weak solution, because given a
Brownian motion B(t) it is not at all clear how to find B1(t), . . . , Bd(t)
for which dB(t) =

∑d
i=1

Xi (t)√
r(t)

dBi(t).
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Diffusion process as probability measure on C([0,∞))

Brownian motion=collection of rv’s Bt , t ≥ 0 on (Ω,F , P)
or

Brownian motion=probability measure P on C([0,∞))

If A is a (measurable) subset of continuous functions, then P(A) is just
the probability that a Brownian path falls in that subset

Same for any diffusion.If X (t) is the solution of the stochastic
differential equation dX (t) = b(t , X (t))dt + σ(t , X (t))dB(t), X (0) = x
then we can let Pa,b

x denote the probability measure on the space of
continuous functions with

Pa,b
x (A) = Prob(X (·) ∈ A) a = σσT

Question:What is the relation of Pa,b
x for different x , a, b?
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1 If x1 6= x2 then Pa,b
x1 ⊥ Pa,b

x2 .
2 The quadratic variation

lim
n→∞

b2nTc∑
i=0

|X (
i + 1
2n )− X (

i
2n )|2 =

∫ T

0
a(t , X (t))dt a.s. Pa,b

x

Hence if a1 6= a2, Pa1,b
x ⊥ Pa2,b

x
3 To see what happens if we change b, let dXi(t) = bidt + σdB(t),

i = 1, 2

P(X1(t1) ∈ dx1, . . . , X1(tn) ∈ dxn)

P(X2(t1) ∈ dx1, . . . , X2(tn) ∈ dxn)

= e
−

Pn−1
i=0

(xi+1−xi−b1(ti+1−ti ))
2−(xi+1−xi−b2(ti+1−ti ))

2

2σ2(ti+1−ti ) dx1 · · ·dxn

= eZ dx1 · · ·dxn
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P(X1(t1) ∈ dx1, . . . , X1(tn) ∈ dxn)

P(X2(t1) ∈ dx1, . . . , X2(tn) ∈ dxn)
= eZ dx1 · · ·dxn

Z = −
n−1∑
i=0

(xi+1 − xi − b1(ti+1 − ti))2 − (xi+1 − xi − b2(ti+1 − ti))2

2σ2(ti+1 − ti)

= −
n−1∑
i=0

σ−1(b2 − b1)σ
−1(xi+1 − xi − b2(ti+1 − ti))

−1
2

n−1∑
i=0

(σ−1(b2 − b1))
2(ti+1 − ti)

n→∞−→ −
∫ t

0
σ−1(b2 − b1)dB(s)− 1

2

∫ t

0
(σ−1(b2 − b1))

2ds
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Cameron-Martin-Girsanov formula

For each x the measure Pa,b
x is absolutely continuous on Ft with

respect to the measure Pa,0
x and

dPa,b
x

dPa,0
x

∣∣∣
Ft

= exp
{∫ t

0
a−1(Xs)b(Xs)dXs −

1
2

∫ t

0
b(Xs)a−1(Xs)b(Xs)ds

}

Proof
We want to show is if we define a measure

Q(A) =

∫
A

exp
{∫ t

0
a−1bdXs −

1
2

∫ t

0
a−1b2ds

}
dPa,0

x0

then Q is a diffusion with parameters a and b in other words, for each
λ,

exp{λ(Xt − X0 −
∫

bds)− λ2

2

∫ t

0
ads}

is a martingale with respect to Q
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Proof.

Yt =

∫ t

0
(λ + a−1b)dXs =

∫ t

0
(λ + a−1b)σdBs.

eYt−Y0− 1
2

R t
0 a(λ+a−1b)2ds = martingale w.r.t. Pa,0

x0

eλ(Xt−X0−
R t

0 bds)−λ2
2

R t
0 ads+

R t
0 a−1bdXs− 1

2

R t
0 a−1b2ds = martingale w.r.t. Pa,0

x0

eλ(Xt−X0−
R t

0 bds)−λ2
2

R t
0 ads = martingale w.r.t. Q

dQ = e
R t

0 a−1bdXs− 1
2

R t
0 a−1b2dsdPa,0

x0
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”Solution” of one dimensional stochastic differential equations
Suppose you want to solve the one dimensional stochastic differential
equation

dX (t) = σ(t , X (t))dB(t) + b(t , X (t))dt

By Cameron-Martin-Girsanov, you could instead solve

dZ (t) = σ(t , Z (t))dB(t)

and then change to an equivalent measure which will correspond to
the solution of X (t)
Define t(τ) by

τ(t) =

∫ t

0
σ2(u, Y (u))du

B(τ) = Z (t(τ))

is a Brownian motion and Z (t) = B(τ(t)).
Only works in d = 1
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Brownian motion as the limit of random walks
X1, X2, . . . iid Bernoulli P(Xi = 1) = P(Xi = −1) = 1/2

Sn = X1 + · · ·+ Xn

Bn(t) = 1√
n Sbtnc Takes steps ± 1√

n at times 1
n , 2

n , . . .

Or B̄n(t) = polygonalized version. Almost the same but continuous

Bn(t)
n→∞−→ Brownian motion B(t)

What does it mean for stochastic processes to converge?

dist(Bn(t1), . . . , Bn(tk )) → dist(B(t1), . . . , B(tk )) k = 1, 2, 3, . . .

Convergenence of finite dimesional distributions
Immediate from (multidimensional) central limit theorem
Same for B̄n(t)
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Pn = measure on C[0, T ] corresponding to B̄n(t), 0 ≤ t ≤ T

Invariance principle (Donsker’s Theorem)

Pn ⇒ P

Much stronger than convergence of finite dimensional distributions

Examples
1

dist( max
0≤m≤n

1√
n

Sm) → dist( sup
0≤t≤1

B(t))

2

dist(n−1− k
2

n∑
m=1

Sk
m) → dist(

∫ 1

0
Bk (t)dt)
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Brownian motion with variance σ2 and drift b as the limit of
random walks
Xn(t) jumps 1√

nσ + 1
n b or − 1√

nσ + 1
n b with probabilities 1/2 at times

1
n , 2

n , . . .
Xn(t)− b

bntc
n

= σBn(t)

Xn(t) → σB(t) + bt

General local diffusivity σ2(t , x) and drift b(t , x)

Xn(t) jumps

1√
nσ( i

n , Xn(
i
n )) + 1

n b( i
n , Xn(

i
n )) or − 1√

nσ( i
n , Xn(

i
n )) + 1

n b( i
n , Xn(

i
n ))

with probabilities 1/2 at times i
n , i = 1, 2, . . . Xn(t) → X (t)

dX (t) = σ(t , X (t))dB(t) + b(t , X (t))dt

But how to prove it?
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Here’s another proof that random walks converge to Brownian
motions, which does generalize
Recall Bn(t) = 1√

n Sbtnc where Sn = X1 + · · ·+ Xn

Let f ∈ C2

f (Bn(t)) =
1
n

btnc−1∑
i=0

Lnf (Bn(
i
n

) = Martingale

Lnf (x) =
1
2

n(f (x + n−1/2)− 2f (x) + f (x − n−1/2))

Lnf (x) → 1
2

f ′′(x)

1
n

btnc−1∑
i=0

Lnf (Bn(
i
n

) → 1
2

∫ t

0
f ′′(B(s))ds

f (B(t))− 1
2

∫ t

0
f ′′(B(s))ds = martingale ⇒ B(t) Brownian motion

() Stochastic Calculus March 30, 2007 29 / 1



Really one needs to show that Pn are precompact as a set of
probability measures. It is similar to the proof that Brownian motion is
continuous, but you just use the martingale formulation directly. The
details are long, but the final result is

Theorem
Suppose that

1 n
∫
|y−x |≤1(yi − xi)(yj − xj)p1/n(x , dy) → aij(x) uniformly on

compact sets
2 n

∫
|y−x |≤1(yi − xi)p1/n(x , dy) → bi(x) uniformly on compact sets

3 np1/n(x , B(x , ε)C) → 0 uniformly on compact sets, for each ε > 0
where a(x) and b(x) are continuous. Suppose that we have weak
uniqueness for the stochastic differential equation

dX = σ(X )dB + b(X )dt

and let P denote the measure on C[0, T ] corresponding to X (t),
0 ≤ t ≤ T . Then Pn ⇒ P
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