
Einstein’s derivation of Brownian transition density

Particle starts at 0 ∈ R3 and is pushed around by tiny molecular
bombardments.

f (t , x)dx = P(Xt ∈ dx) = lim
h→0

h−3P(Xt ∈ a box of side length h around x).

p(s, x , t , y)dy = P(Xt ∈ dy | Xs = x).

f (t + τ, x) =

∫
f (x − y , t)p(x − y , t , x , t + τ)dy .

homogeneity in space and time p(s, x , t , y) = p(t − s, y − x).
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f (t + τ, x) =

∫
(f (t , x)− y · ∇f (t , x) +

1
2

y · D2f (t , x)y + · · · )p(τ, y)dy

= f (t , x)

∫
p(τ, y)dy −

3∑
i=1

∂f
∂xi

(t , x)

∫
yip(τ, y)dy

+
1
2

3∑
i,j=1

∂2f
∂xi∂xj

(t , x)

∫
yiyjp(τ, y)dy + · · · .

∫
p(τ, y)dy = 1.

symmetry
∫

yip(τ, y)dy = 0 and
∫

yiyjp(τ, y)dy = 0 i 6= j .
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Influence of molecular bombardment in any two nonoverlapping
intervals of time is independent
Variance should grow linearly, like the sum of independent random
variables

Var(X1 + · · ·+ XN) ' CN

∫
y2

i p(τ, y)dy = Dτ.

Letting τ → 0 get heat equation

∂f
∂t

=
1
2

D∆f .

With the obvious initial condition f (x , 0) = δ0 this has the well known
solution

f (t , x) =
e−

|x|2
2Dt

(2πDt)3/2 .
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Markov processes
A process Xt , t ≥ 0 is called a Markov process if for any function g and
any t ≥ s,

E [g(Xt) | Xu, 0 ≤ u ≤ s] = E [g(Xt) | Xs].

Process determined by initial distr P(X0 ∈ A) and the transition probs

p(s, x , t , A) = P(Xt ∈ A | Xs = x) s < t

P(Xt1 ∈ A1, . . . , Xtn ∈ An)

=

∫
An−1

· · ·
∫

A1

∫
P(X0 ∈ dx0)p(0, x0, t1, dx1) · · ·p(tn−1, xn−1, tn, An)

Chapman-Kolmogorov equations

p(s, x , t , A) =

∫
p(s, x , u, dy)p(u, y , t , A) for s ≤ u ≤ t .

Example. Brownian motion p(s, x , t , dy) = 1√
2π(t−s)

e−
(y−x)2

2(t−s) dy
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Gaussian measures

Definition
Let (E , E , µ) be σ-finite, separable.
There exists a Gaussian family {X (f )}f∈L2(E ,E,µ) satisfying

1 f 7→ X (f ) is linear
2 E [X (f )] = 0, E [|X (f )|2] = ‖f‖2

L2(E ,E,µ)

We can write X (A) = X (1A), A ∈ E to get a random measure

Example: Brownian motion
Xt − Xs = X ([s, t)) is a Gaussian measure
intensity µ = Lebesgue measure

X (f ) =

∫
fdB (1)
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Gaussian measures
Definition
Let (E , E , µ) be σ-finite, separable.
There exists a Gaussian family {X (f )}f∈L2(E ,E,µ) satisfying

1 f 7→ X (f ) is linear
2 E [X (f )] = 0, E [|X (f )|2] = ‖f‖2

L2(E ,E,µ)

We can write X (A) = X (1A), A ∈ E to get a random measure

Proof.
Let {en}n=1,2,3... be an orthonormal basis of L2(E , E , µ) and Xn,
n = 1, 2, . . . be iid N (0, 1).

X (f ) =
∞∑

n=1

〈f , en〉Xn
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Functions of finite variation

f : R+ → R right continuous

∆ = 0 = t0 < t1 < · · · < tn = t subdivision of [0, t ]

|∆| = supi |ti+1 − ti | = mesh size

f is of finite variation if for each t < ∞,
‖f‖TV ,[0,t] = sup∆

∑
i |f (ti+1)− f (ti)| < ∞

Proposition
1 A function of finite variation is the difference of two monotone

increasing functions
2 µ([0, t ]) = f (t) provides a 1-1 correspondence between measures

on R+ and functions of finite variation
3

∫∞
0 g(t)df (t) =

∫
gdµ is the Riemann-Stieltjes integral

4 A function of finite variation is differentiable almost everywhere
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Quadratic variation

Definition
A stochastic process Xt , t ≥ 0 has finite quadratic variation
if there exists a finite process 〈X , X 〉t , t ≥ 0s.t. for each t < ∞ and
each sequence {∆n}n=1,2,... of subdivisions of [0, t ] with |∆n| → 0,

lim
n→∞

∑
i

|Xti+1 − Xti |
2 prob

= 〈X , X 〉t

The process 〈X , X 〉t , t ≥ 0 is non-decreasing.
It is called the quadratic variation of X .

Recall limn→∞ Xn
prob
= X if P(|Xn − X | ≥ ε) → 0 for each ε > 0
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Quadratic variation
Theorem
Let X be a Gaussian measure with intensity µ on (E , E) Let A ∈ E with
µ(A) < ∞ Let {An

k}n=1,2,... be finite partitions of A such that
supk µ(An

k ) → 0 as n →∞ Then

lim
n→∞

∑
k

|X (An
k )|2 = µ(A)

in L2(Ω,F , P)

Proof.
{X (An

K )}k independent N (0, |µ(An
k )|) so

E [|
∑

k X 2(An
K )− µ(An

k )|2] =
∑

k E [|X 2(An
K )− µ(An

k )|2]
= 2

∑
k |µ(An

k )|2 ≤ 2µ(A) supk µ(An
k )
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Quadratic variation

Theorem
Let X be a Gaussian measure with intensity µ on (E , E) Let A ∈ E with
µ(A) < ∞
Let {An

k}n=1,2,... be finite partitions of A such that supk µ(An
k ) → 0 as

n →∞
Then

lim
n→∞

∑
k

|X (An
k )|2 = µ(A)

in L2(Ω,F , P)

Brownian motion
Brownian motion is Gaussian measure with intensity dt

〈B, B〉t = t (2)
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Quadratic variation

Note that if Xn
prob→ X one can always choose a (non-random)

subsequence such that Xn
prob→ X

So one can choose partitions so that

lim
n→∞

∑
i

|Xti+1 − Xti |
2 a.s.

= 〈X , X 〉t

For Brownian motion it turns out that any sequence ∆n ⊂ ∆n+1 gives
a.s. convergence
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Proposition
With probability one Brownian motion Bt , t ≥ 0 is not of finite variation
in any interval

Proof.
Let f be any continuous function on [0, t ]∑

i

|fti+1 − fti |
2 ≤ max

i
|fti+1 − fti |

∑
i

|fti+1 − fti |

Since maxi |fti+1 − fti | → 0, if

〈f , f 〉t = lim
∑

i

|fti+1 − fti |
2 > 0

then
lim

∑
i

|fti+1 − fti | = ‖f‖TV ,[0,t] = ∞

and if ‖f‖TV ,[0,t] < ∞ then 〈f , f 〉t = 0
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Proposition
With probability one Brownian motion Bt , t ≥ 0 is not locally Hölder of
order α for any α > 1/2

Proof.
Let f be any continuous function on [0, t ] s.t. for some 0 ≤ a < b ≤ t
and some α > 1/2, for all a ≤ s, t ≤ b,

|ft − fs| ≤ k |t − s|α

Then ∑
i

|fti+1 − fti |
2 ≤ k2(b − a) max

i
|ti+1 − ti |2α−1

() Stochastic Calculus January 17, 2007 13 / 21



Theorem. (Paley, Wiener, Zygmund 33)
Brownian motion is nowhere differentiable with probability one

Proof. (Dvoretsky, Erdös, Kakutani 61)
Suppose that B(t) was differentiable at a point s ∈ [0, 1].

Then ∃ε > 0 and an integer ` ≥ 1 such that

|B(t)− B(s)| ≤ `(t − s) for 0 < t − s < ε.

Choose an integer n > ` large enough so that

s ≤ i
n

<
i + 1

n
<

i + 2
n

<
i + 3

n
< s + ε where i = bnsc+ 1.

Then

|B(
j
n

)− B(
j − 1

n
)| < 7`

n
for j = i + 1, i + 2, i + 3.
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Proof.
Therefore the event that B(t) is differentiable at some point is
contained in the set

B =
⋃
`≥1

⋃
m≥1

⋂
n≥m

⋃
0≤i≤n+1

⋂
i≤j≤i+3

{
|B(

j
n

)− B(
j − 1

n
)| < 7`

n

}
.

We show P(B) = 0 as follows.

P

 ⋂
n≥m

⋃
0≤i≤n+1

⋂
i≤j≤i+3

{
|B(

j
n

)− B(
j − 1

n
)| < 7`

n

}
≤ lim inf

n→∞
P

 ⋃
0≤i≤n+1

⋂
i≤j≤i+3

{
|B(

j
n

)− B(
j − 1

n
)| < 7`

n

}
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Proof.

P

 ⋂
n≥m

⋃
0≤i≤n+1

⋂
i≤j≤i+3

{
|B(

j
n

)− B(
j − 1

n
)| < 7`

n

}
≤ lim inf

n→∞
P

 ⋃
0≤i≤n+1

⋂
i≤j≤i+3

{
|B(

j
n

)− B(
j − 1

n
)| < 7`

n

}
≤ lim inf

n→∞

n+1∑
i=1

P

 ⋂
i≤j≤i+3

{
|B(

j
n

)− B(
j − 1

n
)| < 7`

n

}
≤ lim inf

n→∞
n

[
P

(
|B(

1
n

)| < 7`

n

)]3

= lim inf
n→∞

n
[
P

(
|B(1)| < 7`√

n

)]3

= lim inf
n→∞

n
[

7`√
n

]3

= 0
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Theorem Brownian motion is not Hölder of order 1/2

this follows from

Modulus of continuity (P.Levy)
With probability one,

lim sup
ε→0

sup
0≤s<t≤1

t−s<ε

|Bt − Bs|√
2ε log ε−1

= 1

Lemma
x

x2 + 1
e−

x2
2 ≤

∫ ∞

x
e−

y2

2 dy ≤ x−1e−
x2
2 x > 0∫ ∞

x
e−

y2

2 dy ≤ x−1
∫ ∞

x
ye−

y2

2 dy = x−1e−
x2
2

Proof.

x−2
∫ ∞

x
e−

y2

2 dy ≥
∫ ∞

x
y−2e−

y2

2 dy = x−1e−
x2
2 −

∫ ∞

x
e−

y2
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Proof of lim supε→0 sup 0≤s<t≤1
t−s<ε

|Bt−Bs|√
2ε log ε−1

≥ 1

let δ > 0, An = {max1≤k≤2n |B k
2n
− B k−1

2n
| ≤ (1− δ)h(2−n)},

h(t) =
√

2t log t−1

P(An) ≤ (1− 2
∫

(1−δ)
√

2 log 2n

e−y2/2
√

2π
dy)2n

independent increments

≤ e−Cn−1/22n(1−(1−δ)2)
by lemma

so
∑∞

n=1 P(An) < ∞. By the Borel-Cantelli lemma, almost every ω is in
at most finitely many An.i.e.

lim sup
ε→0

sup
0≤s<t≤1
t−t−s<ε

|Bt − Bs|√
2ε log ε−1

≥ 1− δ

now let δ ↓ 0

Note: This proves that Brownian motion is not Hölder of order α ≥ 1/2
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Proof of lim supε→0 sup 0≤s<t≤1
t−s<ε

|Bt−Bs|√
2ε log ε−1

≤ 1

let δ > 0 and choose ε > 0 so that (1 + ε)2(1− δ) > 1 + δ
let

Bn = {max
i,j∈K

|Bj/2n − Bi/2n |
h(k/2n)

≥ 1 + ε}

K = {0 ≤ i < j < 2n, 0 < k = j − i ≤ 2nδ}

P(Bn) ≤
∑

K

2√
2π

∫ ∞

(1+ε)
√

log(k−12n)
e−

y2

2 dy

≤ C
∑

K

[log(k−12n)]−1/2e−(1+ε)2 log(k−12n) lemma

≤ C2−n(1−δ)(1−ε)2 ∑
K

[log(k−12n)]−1/2 k−1 ≥ 2−nδ
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Bn = {max
i,j∈K

|Bj/2n − Bi/2n |
h(k/2n)

≥ 1 + ε}

K = {0 ≤ i < j < 2n, 0 < k = j − i ≤ 2nδ}

P(Bn) ≤ C2−n(1−δ)(1−ε)2 ∑
K

[log(k−12n)]−1/2

≤ Cn−1/22n((1+δ)−(1−δ)(1+ε)2) |K | ≤ 2n(1+δ), log(k−12n) ≥ log 2n(1−δ)

summable so with probability one there is an N s.t. for n > N, for

i , j ∈ K ,
|Bj/2n − Bi/2n | < (1 + ε)h(k/2n)
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Let γ > 0. Pick N large so that
∑∞

m=n+1 h(2−m) ≤ γh(2−(n+1)(1−δ)),
n ≥ N
Suppose that t = i2−n + 2−n1 + 2−n2 + · · · with N ≤ n < n1 < n2 < · · ·
and i ∈ K ,

|Bt − Bi/2n | ≤ (1 + ε)
∞∑

m=n+1

h(2−m) ≤ (1 + ε)γh(2−(n+1)(1−δ))

now suppose we have 0 ≤ s < t ≤ 1 and the special n so that

2−(n+1)(1−δ) ≤ t − s < 2−n(1−δ)

has n ≥ N then we can write

|Bt − Bs| ≤ |Bi/2n − Bs|+ |Bj/2n − Bi/2n |+ |Bt − Bj/2n |

≤ 2(1 + ε)γh(2−(n+1)(1−δ)) + (1 + ε)h((j − i)2−n)

≤ (2(1 + ε)γ + 1 + ε)h(t − s) if t − s small enough

let δ ↓ 0 and then γ ↓ 0
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