Brownian motion in R?
Q B:=(B],...,BY), Bl independent Brownian motions

: ] _y=x?
Q B; Markov with P(Bre A| Bs = x) = [, TrgEE® o dy

© B has stationary independent mean zero increments with
E[|B; — Bsf’] = d(t — s)

12t .
Q e'B—2IM"Tis a martingale for any A

Note that 1 does not depend on the basis: If B/, .. ., Bt2 independent
and O is orthogonal, then the coordinates of OB; are independent
Brownian motions  in fact

Theorem
Suppose Xi, Xz independent and 30 # N7 /2 such that

Xi1c0s8 + Xosindg, —Xi sinf + X, cos 6 independent

Then X, Xo are Gaussians (Maxwell)
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Dirichlet problem

Given a bounded open subset G c R? and a continuous function
f: 0G — R find a continuous function v : G — R such that

Au=0 inG
ulgg = f
d o2
def o“u .5 1
Au = —— =2dlimr - _ —_—_—— udS — u(x
2 5z ~ 29 ], (\8S<r,x)| ———— )>

Lemma

u harmonic in G < u satisfies the mean value property: for all
sufficiently small r > 0,

.
S — udS = u(x
10S(r, X)| Jas(r,x) ()

v
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Lemma
u harmonic in G < u satisfies the mean value property: for all

sufficiently small r > 0,
1

— uadS = u(x
980 )| Jsien, ()

Proof.
Green’s identity [ vAudx = [z uAvdx + [,5 V3% — uds dS

log r—log | x| d=2
G={6<x<r} {|X|grf’,gz‘sd
Sea—za d>2
letd | O O
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B; d-dimensional Brownian motion starting at x € G

76 =inf{t>0 : B(t) ¢ G}
u(x) = Ex[f(B(7g))]

"Theorem” If 9G "nice” then u solves the Dirichlet problem J

Ef(B(r))] = /8 _()malx.dy). me(xT) = PBlra) €T). T 0@

Example. G = B(x,r), =ng(x,lN) = %, rc S(x,r)

Brownian motion is invariant under rotations
. mg(X, ) is invariant under rotations
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Proposition

G bounded open C RY, f bounded measurable on dG. Then
u(x) = Ex[f(B(7g))] is harmonic in G.

Proof.
B=B(x,r)c G 8 < TG

Strong Markov property:  u(B(7s)) = Ex[f(B(1g)) | Frs]

u(x) = Ef(B(re)] = EdlExlf(B(ra)) | Fl]
— E[u(B(rs))
— / u(y)rs(x. dy)
0S
1

= — u(y)ds
0S| Jas ¥)

So u satisfies the mean value property in G. O

4
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ac oG
To complete the proof that u solves the Dirichlet problem we need

lim Ex[f(B(rg))] = f(a) It is not always true!
x—a, xe@G

Proposition

If IimXHg Px[7g > €] = 0, Ve > 0 then for any bdd mble function
S

f: 0G — R which is continuous at a, Iimng Ex[f(B(1g))] = f(a)

Proof.
Need: limy_,; xeg Px (|B(1g) — x| < d) =1
Px(|B(rg) — x| <d8) > Px(sup |B(t)— x| <9, 76 <e)
0<t<e

> Py(sup |B(t) — x| < &) — Px(rg <€)

- 0<it<e
— 1 as x—axe@Gthen €0
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Proposition

ac dGisregularif P3(cg=0)=1 og=inf{t>0 : B(t) £ G}
aregular < limy_,, xcg Ex[f(B:s)] = f(a) Vf bdd mble, cont at a

Proof of =

Enough to prove Px(og < €) lower semi-continuous in x
Then lim SUpx_a Py(og <€) > Pa(og <e)=1and og > 7
But [ p(0,x,4d,y)Py(3s € (0,e — ¢), B(s) ¢ G) continuous
and 1 Px(cg<e)asd |0

Examples

@ If G is a smooth manifold near a then ais regular by LIL

@ If 3 cone C of height h > 0 and vertex at a such that
C — {a} c G then ais a regular (exterior cone condition)

©Q d < 2always,d > 3 Jcounterexamples
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Application to recurrence/transience of Brownian
motion

0 =R
G={yeR?:6<|y|<R} f= vl
1 |y|=29

log R—log | x| d=2

_ i _ . ) = Hdlogzéd
u(x) = Ex[1(B(re))] = Px(rs < ) {'gfd e gn

Theorem In d > 2, Brownian motion does not visit a point J
Proof.
log R —log |x|
PX(TO < ’TR) = I|m PX(T(S < ’TH) = Ill() W =

O]
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Theorem In d = 2, Brownian motion is recurrent, ie. comes
arbitrarily close to any point arbitrarily many times

Proof.

Pu(rs < mr) = lim (29A ZloglXl _ 4

Px(ms < o0) Rico lOgR —logd

= lim
Rtoo

Theorem In d > 3, Brownian motion wanders off to infinity

Proof.

. 2-d_pRe—d 2—d |
Pelrs < 00) = limpyoe =iy = (B1)" 7 if x> 8
_ by
Px(hit |y| = & after time t) = [ WP},(T(; <oo)dy —»0ast— oo
Px(liminfi_ |B(t)| > ) =1

07 oo liminfi_ |B(t)| = o0 a.s.
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[ B(s)dB(s)

Based on experience with Riemann integrals

127t] -1

/Bs)dB s)= lim Z Bt”)( f+1)— (Zin)>

for some choice of ¢ € [, Z51]. Lets try two choices, the right and left
endpoints.
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[27t] -1

L= 8 D (el - 8c)

127¢] 1 .
A= lim Z B/+1 < j;n1)—8(21n>.
Ri— L=t
|27 -1
Ri+Li=lim > (32(/2n ) - B /)y = B2(1).
j=0
= (Lt RI-[R— L) = 2B~ 1) R= (B +1)

The choice of t!" matters! This is why Riemann told you to only
integrate functions of bounded variation.
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Which one is correct?

JaBdB = 1(B(t) — t) or 3(B(t) + 1) ?

Or something else??

eg. midpoint rule gives [; BdB = 1 B2(t) which looks reasonable
Not really a mathematical question. A question

Of all choices two have some special properties:

L: = [1 B(s)dB(s) = 1(B3(t) — t) is a martingale : It6 integral

Midpoint rule fot B(s) o dB(s) = %Bz(t) looks like ordinary calculus :
Stratonovich integral

We will always use the It6 integral and think of Stratonovich as a
simple transformation of it which is sometimes useful in applications

(eg. Math finance: 1t6, Math biology: Sometimes Stratonovich)
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Definition: Progressively measurable
o(s,w) is called progressively measurable if
Q i. o(s,w) is B0, ) x F measurable;

@ ii. Forall t > 0, the map [0, {] x Q — R given by o(s,w) is
B[0, f] x F; measurable.

BJ0, t] denotes the Borel o-algebra on [0, f].
Informally, o (s, w) is nonanticipating= uses information about w
contained in Fs.

Definition: Simple Functions

o(s,w) is called simple if there exists a partition 0 < sp < sy < --- of
[0, c0) and bounded random variables o;(w) € F; such that
o(s,w) = oj(w) for s; < s < 8j44.
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Definition: Stochastic Integral for Simple Functions
Given such a o(s,w) = oj(w) for s; < s < sj,4, 0j(w) € F, define
J(t)—1

t
/0 o(s,w)dB(s) = oj(w)(B(Sj1)—B(S))) + oy (w)(B()—B(Syt)))
J

~

Il
o

where sy <t < Syt)+1-

Basic properties
Q [l(cio1 + ca02)dB = ¢y [{51dB + ¢, [ 520B.
Q J!odBis a continuous martingale
Q E[(f; o(s,w)dB(s))?] = E[f 2(s,w)ds].
Q Z(t)= exp{fO cdB -} 0 o?ds) is a continuous martingale.
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Lemma
Suppose that o is progressively measurable and that for each t > 0,

E[/OtUQ(s,w)ds] < 00.

Then there is a sequence o, of simple progressively measurable
functions such that

t
£ /0 (0(5,w) — on(s,w))2ds] — 0.

Proof
We can assume that o is bounded For if oy = o for || < Nand 0

otherwise then oy — o and |oy — o|? < 4|0 |? so by the dominated
convergence theorem E[fot(a — op)?ds] — 0.
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Proof.
Furthermore we can assume that ¢ is continuous in s

for if o is bounded then o, = h™! ftih ods are continuous progressively
measurable and converge to o as h — 0. By the bounded convergence
theorem

t
£ / (0 — on)2ds] — 0
0
For o continuous bounded and progressively measurable let
on(s,) = o(L2 )

These are progressively measurable, bounded and simple functions
converging to o and again by the bounded convergence theorem,

t
£ /O (0 — on)2ds] — 0

]
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Theorem (Definition of the 1t6 Integral)

Let o(s,w) be progressively measurable and for each t > 0,
E[ [, 02ds] < cc. Let o, be simple functions with E[ [ (o — o)2ds] — 0
and set

t
Xolt,w) = /0 (S, w)dB(S).

Then
X(t,w) = nlim Xn(t,w)

exists uniformly in probability, i.e. for each T > 0 and € > 0,

lim P( sup |Xn(t,w)— X(t,w)| >¢€)=0.

n—=o0  “o<t<T

Furthermore the limit is independent of the choice of approximating
sequence o, — o. The limit X(¢,w) is the It integral

t
X(t) = / o(s)dB(s)
0
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Proof.
Xn(1) fo — om)dB is a continuous martingale so by
Doobs mequahty

P(sup_|Xn(t) = Xm(t)] > €) < € 2E[(Xn — Xm)*(T)]

0<t<T
= __ZEE[]/ — OVn (15]

So X, — X is uniformly Cauchy in probability and therefore there
exists a progressively measurable X with

P( sup [X(t,w)— Xn(t,w)| =€) "=°0 €>0
0<t<T

If o £ 5 and X! = [1o%.dB, P(SUPy- ;1 | Xn — X.| > €) — 0 s0 that X,
n n—Jo%n 0<t<T n

and X}, have the same limit.

v
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Basic properties of the It6 Integral
Q [l(cio1 + ca02)dB = ¢y [{51dB + ¢s [} 520B.
Q /! odBis a continuous martingale
Q E[(f; o(s,w)dB(s))?] = E[[; o3(s, w)ds]

Q If|o] < Cthen Z(t) = exp{f0 cdB — } 0 ! +2ds} is a continuous
martingale

proof

@ By construction

©Q Continuity follows from the construction. To prove the limit is a
martingale we have E[X,(t) | Fs] = Xn(s) and X, — X in L2,
therefore in L' as well. The L' limit of a martingale is a martingale.

Q X2(t) — [i o3(s)ds is a martingale 5 X2( t) — Juo?(s)ds

Q Z,(t) = exp{fo ondB — 5 fot o2ds} is a martingale so it suffices to
show that Z,(t), n=1,2,... is a uniformly integrable family.
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Proof.

to show that Z,(t) = exp{fot ondB — %fot o2ds},n=1,2,...isa
uniformly integrable family, it is enough to show that there is some
fixed C < oo for which E[(Zn(1))?] < C.

t t
E[(Zv()2] = Elexp{2 /O ondlB — /0 o2ds)]

t t
< eCtE[exp{Z/ ondB—g/ o2ds}]
0 0

_ gCt
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A stochastic integral is an expression of the form

t
X(t,w):/ o (s, w)dB(s) /b3wds+Xo
0

where a and b are progresswely measurable with
E[f SwdS]<ooandf0|bSw)|dS<oof0ra||t>O and Xy € Fy
is the starting point

The stochastic differential
dX = odB + bdt

is shorthand for the same thing

For example the integral formula fo s)dB(s) = 3(B?(t) — t) can be
written in differential notation as

dB? = 2BdB + dt
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What happens if B(t) is replaced by a more general function f(B(t)) ?

[t6’s Lemma
Let f(x) be twice continuously differentiable. Then

df(B) = f'(B)dB + %f”(B)dt

Proof

First of all we can assume without loss of generality that f, f and "
are all uniformly bounded, for if we can establish the lemma in the
uniformly bounded case, we can approximate f by f, so that all the
corresponding derivatives are bounded and converge to those of f
uniformly on compact sets.
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lets=fh <t <b<---<t, =t We have

n—1

f(B(t)) — f(B(s)) = > [f(B(ti1)) — F(B(Y))]
j=0
n—1
= S F(B())(B(t1) - B(Y)

j=0

n—1
n Z %f”(B(z}-))(B(l}‘+1) — B(5))?

+Zo(gﬁ B(5))?) -

Let the width of the partition go to zero. By definition of the stochastic
integral

n—1
™ F(B(§))(B(t11) - qe/ww
j=0
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By the same argument as for the computation of the quadratic
variation,

2
n—1
(Z A7(B)) [(B1) — BE)Y — (41 t,-)}) 0.
j=0

Hence Y70 5"(B(4))(B(ti41) — — 3 [1f"(B(u))du in L2. The
same argument shows that the Iast term goes to zero in L2. So we
have proved that

F(B(1) / F(B(u))dB(u) + / (B

which is 1t6’s formula.
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@ In differential notation 1td’s formula reads
df(B) = f(B)dB + %f”(B)dt.

The Taylor series is df(B) = "o, Lf("(B)(dB)". In normal
calculus we would have (dB)" = 0 if n > 2, but because of the
finite quadratic variation of Brownian paths we have (dB)? = dt,
while still (dB)" =0 if n > 3.
© If the function f depends on t as well as B(t), the formula is
of of 1 0%f

af(t, B(1)) = 5 (t. B(t))at + = (t, BH)dB(t) + 5 5 (1. B(t) .

The proof is about the same as the special case above.
© If B(t) is a d-dimensional Brownian motion and f(t, x) is a function
on [0, 00) x RY which has one continuous derivative in t and two
continuous derivatives in x, then the formula reads
of

a(t, B(1)) = 5 (t, B(t))dt + (¢, B(t)) - dB(t) + %Af(t, B(1))d.
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