
Definition: Progressively measurable
σ(s, ω) is called progressively measurable if

1 i. σ(s, ω) is B[0,∞)×F measurable;
2 ii. For all t ≥ 0, the map [0, t ]× Ω → R given by σ(s, ω) is
B[0, t ]×Ft measurable.

B[0, t ] denotes the Borel σ-algebra on [0, t ].
Informally, σ(s, ω) is nonanticipating= uses information about ω
contained in Fs.

Definition: Simple Functions
σ(s, ω) is called simple if there exists a partition 0 ≤ s0 < s1 < · · · of
[0,∞) and bounded random variables σj(ω) ∈ Fsj such that
σ(s, ω) = σj(ω) for sj ≤ s < sj+1.
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Definition: Stochastic Integral for Simple Functions
Given such a σ(s, ω) = σj(ω) for sj ≤ s < sj+1, σj(ω) ∈ Fsj define

∫ t

0
σ(s, ω)dB(s) =

J(t)−1∑
j=0

σj(ω)(B(sj+1)−B(sj))+σJ(t)(ω)(B(t)−B(sJ(t)))

where sJ(t) < t ≤ sJ(t)+1.

Basic properties

1
∫ t

0(c1σ1 + c2σ2)dB = c1
∫ t

0 σ1dB + c2
∫ t

0 σ2dB.

2
∫ t

0 σdB is a continuous martingale

Proof.
Since σj ∈ Fsj , if u ≥ sj , E [σj(B(sj+1)− B(sj)) | Fu] = σj(B(u)− B(sj))
and if u < sj , E [σj(B(sj+1)− B(sj)) | Fu] =
E [E [σj(B(sj+1)− B(sj)) | Fsj ] | Fu] = 0.
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Basic properties

3 E [(
∫ t

0 σ(s, ω)dB(s))2] = E [
∫ t

0 σ2(s, ω)ds]

Proof.∫ t
0 σdB =

∑
j σj(B(sj+1 ∧ t)− B(sj))

E [(
∫ t

0 σdB)2] =
∑

i,j E [σiσj(B(si+1 ∧ t)− B(si))(B(sj+1 ∧ t)− B(sj))]

i < j : E [E [σiσj(B(si+1 ∧ t)− B(si))(B(sj+1 ∧ t)− B(sj)) | Fsj ]] = 0

i = j : E [σ2
j (B(sj+1 ∧ t)− B(sj))

2] =

E [E [σ2
j (B(sj+1 ∧ t)− B(sj))

2 | Fsj ] = E [σ2
j ](sj+1 ∧ t − sj)

E [(
∫ t

0 σdB)2] =
∑

j E [σ2
j (B(sj+1 ∧ t)− B(sj))

2] = E [
∫ t

0 σ2ds]
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Basic properties

4 Z (t) = exp{
∫ t

0 σdB − 1
2

∫ t
0 σ2ds} is a continuous martingale

Proof.

Suppose t ≥ u ≥ J(t). Then E [e
∫ t

0 σdB − 1
2

∫ t
0 σ2ds | Fu] can be

written

e
PJ(t)−1

j=0 σj (B(sj+1)−B(sj ))− 1
2 σ2

j (sj+1−sj )E [eσJ(t)(B(t)−B(sJ(t))− 1
2 σ2

J(t)(t−sJ(t)) | Fu].

The expectation is just 1 , so we have that E [Z (t) | Fu] = Z (u)
whenever t ≥ u ≥ J(t). It follows by repeated conditioning that
E [Z (t) | Fu] = Z (u) for any u ≤ t .
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P = set of progressively measurable functions

Lemma
For each t .0, P = Closure in L2([0, t ]× Ω, dt × dP) of simple functions

Proof

Suppose σ ∈ P and E [
∫ t

0 σ2(s, ω)ds] < ∞
we need to find a sequence σn of simple functions s.t.

E [

∫ t

0
(σ(s, ω)− σn(s, ω))2ds] → 0.

We can assume that σ is bounded For if σN = σ for |σ| ≤ N and 0
otherwise then σN → σ and |σN − σ|2 ≤ 4|σ|2 so by the dominated
convergence theorem E [

∫ t
0(σ − σN)2ds] → 0.
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Proof.
Furthermore we can assume that σ is continuous in s
for if σ is bounded then σh = h−1 ∫ t

t−h σds are continuous progressively
measurable and converge to σ as h → 0. By the bounded convergence
theorem

E [

∫ t

0
(σ − σh)

2ds] → 0

For σ continuous bounded and progressively measurable let

σn(s, ω) = σ(
bnsc

n
, ω)

These are progressively measurable, bounded and simple functions
converging to σ and again by the bounded convergence theorem,

E [

∫ t

0
(σ − σn)

2ds] → 0
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Theorem (Definition of the Itô Integral)
Let σ(s, ω) be progressively measurable and for each t ≥ 0,
E [

∫ t
0 σ2ds] < ∞. Let σn be simple functions with E [

∫ t
0(σn − σ)2ds] → 0

and set

Xn(t , ω) =

∫ t

0
σn(s, ω)dB(s).

Then
X (t , ω) = lim

n→∞
Xn(t , ω)

exists uniformly in probability, i.e. for each T > 0 and ε > 0,

lim
n→∞

P( sup
0≤t≤T

|XN(t , ω)− X (t , ω)| ≥ ε) = 0.

Furthermore the limit is independent of the choice of approximating
sequence σn → σ. The limit X (t , ω) is the Itô integral

X (t) =

∫ t

0
σ(s)dB(s)
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Proof.

Xn(t)− Xm(t) =
∫ t

0(σn − σm)dB is a continuous martingale so by
Doob’s inequality

P( sup
0≤t≤T

|Xn(t)− Xm(t)| ≥ ε) ≤ ε−2E [(Xn − Xm)2(T )]

= ε−2E [

∫ T

0
(σn − σm)2ds]

So Xn − Xm is uniformly Cauchy in probability and therefore there
exists a progressively measurable X with

P( sup
0≤t≤T

|X (t , ω)− Xn(t , ω)| ≥ ε)
n→∞→ 0 ε > 0

If σ′n
L2
→ σ and X ′

n =
∫ t

0 σ′ndB, P(sup0≤t≤T |Xn − X ′
n| ≥ ε) → 0 so that Xn

and X ′
n have the same limit.
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Basic properties of the Itô Integral
1

∫ t
0(c1σ1 + c2σ2)dB = c1

∫ t
0 σ1dB + c2

∫ t
0 σ2dB.

2
∫ t

0 σdB is a continuous martingale.
3 E [(

∫ t
0 σ(s, ω)dB(s))2] = E [

∫ t
0 σ2(s, ω)ds].

4 If |σ| ≤ C then Z (t) = exp{
∫ t

0 σdB − 1
2

∫ t
0 σ2ds} is a continuous

martingale

proof
1 By construction
2 Continuity follows from the construction. To prove the limit is a

martingale we have E [Xn(t) | Fs] = Xn(s) and Xn → X in L2,
therefore in L1 as well. The L1 limit of a martingale is a martingale.

3 X 2
n (t)−

∫ t
0 σ2

n(s)ds is a martingale L1
→ X 2(t)−

∫ t
0 σ2(s)ds

4 Zn(t) = exp{
∫ t

0 σndB − 1
2

∫ t
0 σ2

nds} is a martingale so it suffices to
show that Zn(t), n = 1, 2, . . . is a uniformly integrable family.
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Proof.

to show that Zn(t) = exp{
∫ t

0 σndB − 1
2

∫ t
0 σ2

nds}, n = 1, 2, . . . is a
uniformly integrable family, it is enough to show that there is some
fixed C < ∞ for which E [(ZN(t))2] ≤ C.

E [(ZN(t))2] = E [exp{2
∫ t

0
σndB −

∫ t

0
σ2

nds}]

≤ eCtE [exp{2
∫ t

0
σndB − 4

2

∫ t

0
σ2

nds}]

= eCt
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A stochastic integral is an expression of the form

X (t , ω) =

∫ t

0
σ(s, ω)dB(s) +

∫ t

0
b(s, ω)ds + X0

where σ and b are progressively measurable with
E [

∫ t
0 σ2(s, ω)ds] < ∞ and

∫ t
0 |b(s, ω)|ds < ∞ for all t ≥ 0, and X0 ∈ F0

is the starting point

The stochastic differential

dX = σdB + bdt

is shorthand for the same thing

For example the integral formula
∫ t

0 B(s)dB(s) = 1
2(B2(t)− t) can be

written in differential notation as

dB2 = 2BdB + dt
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What happens if B2(t) is replaced by a more general function f (B(t)) ?

Itô’s Lemma
Let f (x) be twice continuously differentiable. Then

df (B) = f ′(B)dB +
1
2

f ′′(B)dt

Proof
First of all we can assume without loss of generality that f , f ′ and f ′′

are all uniformly bounded , for if we can establish the lemma in the
uniformly bounded case, we can approximate f by fn so that all the
corresponding derivatives are bounded and converge to those of f
uniformly on compact sets.

() Stochastic Calculus February 16, 2007 12 / 23



Let s = t0 < t1 < t2 < · · · < tn = t . We have

f (B(t))− f (B(s)) =
n−1∑
j=0

[f (B(tj+1))− f (B(tj))]

=
n−1∑
j=0

f ′(B(tj))(B(tj+1)− B(tj))

ξj ∈ [tj , tj+1] +
n−1∑
j=0

1
2

f ′′(B(ξj))(B(tj+1)− B(tj))2,

Let the width of the partition go to zero. By definition of the stochastic
integral

n−1∑
j=0

f ′(B(tj))(B(tj+1)− B(tj)) →
∫ t

s
f ′dB.

() Stochastic Calculus February 16, 2007 13 / 23



As in the computation of the quadratic variation,

E
[(∑n−1

j=0 f ′′(B(ξj))
[
(B(tj+1)− B(tj))2 − (tj+1 − tj)

])2
]

=
∑n−1

j=0 E
[(

f ′′(B(ξj))
)2 [

(B(tj+1)− B(tj))2 − (tj+1 − tj)
]2

]
+ o(1) → 0

Hence
n−1∑
j=0

f ′′(B(tj))(B(tj+1)− B(tj))2 L2
−→

∫ t

s
f ′′(B(u))du

So we have proved that

f (B(t)− f (B(s)) =

∫ t

s
f ′(B(u))dB(u) +

1
2

∫ t

s
f ′′(B(u))du

which is Itô’s formula.
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1 In differential notation Itô’s formula reads

df (B) = f ′(B)dB +
1
2

f ′′(B)dt .

The Taylor series is df (B) =
∑∞

n=1
1
n! f

(n)(B)(dB)n. In normal
calculus we would have (dB)n = 0 if n ≥ 2, but because of the
finite quadratic variation of Brownian paths we have (dB)2 = dt ,
while still (dB)n = 0 if n ≥ 3.

2 If the function f depends on t as well as B(t), the formula is

df (t , B(t)) =
∂f
∂t

(t , B(t))dt +
∂f
∂x

(t , B(t))dB(t) +
1
2

∂2f
∂x2 (t , B(t))dt .

The proof is about the same as the special case above.
3 If B(t) is a d-dimensional Brownian motion and f (t , x) is a function

on [0,∞)× Rd which has one continuous derivative in t and two
continuous derivatives in x , then the formula reads

df (t , B(t)) =
∂f
∂t

(t , B(t))dt +∇f ((t , B(t)) · dB(t) +
1
2
∆f (t , B(t))dt .
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Local time
f continuous function on R+

Lt(x) =

∫ t

0
δx(f (s))ds = lim

ε↓0
(2ε)−1|{0 ≤ s ≤ t : |f (s)− x | ≤ ε}|

∫ t

0
1A(f (s))ds =

∫
A

Lt(x)dx

f ∈ C1 Lt(x) =
∑

si∈[0,t]:f (si )=x |f ′(si)|−1 discontinuous in t
Itô ’s lemma applied to |Bt − x | gives

Tanaka’s formula for Brownian Local Time

Lt(x) = |Bt − x | − |B0 − x | −
∫ t

0
sgn(Bs − x)dBs

In particular, Lt(x) continuous in t a.s.
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But |x | not differentiable, so no fair!!!

Proof.

f ′′ε (x) = (2ε)−11[−ε,ε]

Itô

(2ε)−1|{0 ≤ s ≤ t : |Bs| ≤ ε}| = fε(Bt)− fε(B0)−
∫ t

0
f ′ε(Bs)dBs

ε ↓ 0

Lt(x) = |Bt − x | − |B0 − x | −
∫ t

0
sgn(Bs − x)dBs

Note: To be honest, we have to do a little bit more convolution to make
f ′′ continuous.
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Feynman-Kac formula

V a nice function (say bounded). u ∈ C1,2 solves

∂u
∂t = 1

2
∂2u
∂x2 + Vu, u(0, x) = u0(x)∫

u(x) exp{−x2/2t}dx < ∞. Then

u(t , x) = Ex

[
e

R t
0 V (B(s))dsu0(B(t))

]
Proof.

For 0 ≤ s ≤ t let Z (s) = u(t − s, B(s))e
R s

0 V (B(u))du. By Îto’s lemma

Z (t)− Z (0) =

∫ t

0

{
−∂u

∂s
+

1
2

∂2u
∂x2 + Vu

}
e

R s
0 V (B(u))duds = 0

+

∫ t

0

∂u
∂x

(t − s, B(s))e
R s

0 V (B(u))duds = martingale

so Ex [Z (t)] = Ex [Z (0)]
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1 In d > 1 if u ∈ C1,2 solves
∂u
∂t

=
1
2
∆u + Vu, u(0, x) = u0(x)

then
u(t , x) = Ex

[
e

R t
0 V (B(s))dsu0(B(t))

]
where B(t) is d-dimensional Brownian motion

2 If V = V (t , x)

u(t , x) = Ex

[
e

R t
0 V (t−s,B(s))dsu0(B(t))

]
3 Historical remark. Feynman’s thesis was that solution u of it

Schrödinger equation ∂u
∂t = i[1

2
∂2u
∂x2 + Vu] should have

representation

u(x , t) = ”

∫
”ei

R t
0 V (fs)ds− i

2

R t
0 |f

′|2dsu0(ft)

where ”
∫

” is supposed to be average over functions starting at x .
Kac pointed out that it is rigorous if i 7→ 1
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Arcsin law

ξ(t) = 1
t

∫ t
0 1[0,∞)(B(s))ds = the fraction of time that Brownian motion

is positive up to time t

P(ξ(t) ≤ a) =


0 a < 0;
2
π arcsin

√
a 0 ≤ a ≤ 1;

1 a > 1.

Simple explanation why distribution of ξ(t) indep of t

ξ(t) =

∫ 1

0
1[0,∞)(B(ts))ds =

∫ 1

0
1[0,∞)(

1√
t
B(ts))ds =

∫ 1

0
1[0,∞)(B̃(s))ds

ξ(t) d
= ξ(1)
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Proof
By Feynman-Kac if we can find a nice solution of

∂u
∂t

=
1
2

∂2u
∂x2 − u1[0,∞) u(0, x) = 1

Then
u(t , x) = Ex [e−

R t
0 1[0,∞)(B(s))ds]

and

u(t , 0) =

∫ 1

0
e−atdP(ξ ≤ a)

α > 0, φα(x) = α
∫∞

0 u(t , x)e−αtdt−→− 1
2φ′′α + (α + 1[0,∞))φα = α

φα(x) =

{
α

α+1 + Aex
√

2(α+1) + Be−x
√

2(α+1), x ≥ 0,

1 + Cex
√

2α + De−x
√

2α, x ≥ 0.

u ≤ 1 ⇒ φα ≤ 1 ⇒ A = D = 0
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Proof.
φα(0−) = φα(0+), φ′α(0−) = φ′α(0+)

⇒ B = α1/2

(1+α)(
√

α+
√

α+1)
, C = 1

(1+α)1/2(
√

α+
√

α+1)1/2

φα(0) =

√
α

α + 1
=

∫ ∞

0
E [e−tξαe−αt ]dt

By Fubini’s theorem this reads E
[

α
α+ξ

]
=

√
α

α+1or

∫ 1

0

1
1 + γa

dP(ξ ≤ a) =
1√

1 + γ

Looking up a table of transforms we find

dP(ξ ≤ a) =
2
π

1√
a(1− a)

da 0 ≤ a ≤ 1

which is the density of the arcsin distribution
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Stochastic differential equations

σ(x , t), b(x , t) mble

Definition
A stochastic process Xt is a solution of a stochastic differential
equation

dXt = b(Xt , t)dt + σ(Xt , t)dBt , X0 = x0

on [0, T ] if Xt is progressively measurable with respect to Ft ,∫ T
0 |b(Xt , t)|dt < ∞,

∫ T
0 |σ(Xt , t)|2dt < ∞ a.s. and

Xt = x0 +

∫ t

0
b(Xs, s)ds +

∫ T

0
σ(Xs, s)dBs 0 ≤ t ≤ T

The main point is that σ(ω, t) = σ(Xt , t), b(ω, t) = b(Xt , t)
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Ornstein-Uhlenbeck Process
Xt , t ≥ 0 is the solution of the Langevin equation

dXt = −αXtdt + σdBt

To solve it

deαtXt = αeαtXtdt + eαt(−αXtdt + σdBt) = σeαtdBt

so

Xt = X0e−αt + σ

∫ t

0
e−α(t−s)dBs

If X0 ∼ N (m, V ) indep of Bt , t ≥ 0 ⇒ Xt Gaussian process

m(t) = E [Xt ] = me−αt

c(s, t) = Cov(Xs, Xt) = [V +
σ2

2α
(e2α min(t ,s) − 1)]e−α(t+s)

m = 0, V = σ2

2α ⇒ Xt stationary Gaussian c(s, t) = σ2

2αe−α(t−s)

Yt =
∫ t

0 Xsds ”Physical” Brownian motion
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Geometric Brownian motion

dSt = µStdt + σStdBt µ = drift σ = volatility

By Ito’s formula

St = S0e(µ−σ2
2 )t+σBt
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Bessel process (d = 2)

Let Bt = (B1
t , B2

t ) be 2d Brownian motion starting at 0,

rt = |Bt | =
√

(B1
t )2 + (B2

t )2.

By Ito’s lemma,

drt =
B1

|B|
dB1 +

B2

|B|
dB2 +

1
2

1
|B|

dt .

As it stands this is not a stochastic differential equation.
Let Yt be the solution of

dY =
B1

|B|
dB1 +

B2

|B|
dB2, Y0 = 0.

Let f (x) be a smooth function and use Ito’s lemma to show that

f (t , Yt)− f (0, Y0)−
1
2

∫ t

0
(∂t f + ∂2

x f )(s, Ys)ds

is a martingale
In particular eλYt−λ2t/2 is a martingale
So Yt is a Brownian motion.
Therefore we can write

dXt = dYt +
1
rt

dt

which is a stochastic differential equation for the new Brownian motion
Yt
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