Definition: Progressively measurable
o(s,w) is called progressively measurable if
Q i. o(s,w) is B0, ) x F measurable;

@ ii. Forall t > 0, the map [0, {] x Q — R given by o(s,w) is
B[0, f] x F; measurable.

BJ0, t] denotes the Borel o-algebra on [0, f].
Informally, o (s, w) is nonanticipating= uses information about w
contained in Fs.

Definition: Simple Functions

o(s,w) is called simple if there exists a partition 0 < sp < sy < --- of
[0, c0) and bounded random variables o;(w) € F; such that
o(s,w) = oj(w) for s; < s < 8j44.

February 16,2007  1/23



Definition: Stochastic Integral for Simple Functions
Given such a o(s,w) = 0j(w) for s; < s < §j44, 0j(w) € Fs, define

J(t)—1

t
/0 (s,w)dB(s Z oj(w)(B(Sj+1) B(Sj))+<7J(t)(W)(B(t)_B(SJ(i)))
j=0

where sy <t < Syt)41-

Basic properties
1 f(;(C101 aF 020'2)0'3 = Cq fotO'1 adB + ¢ f()tO'QdB.

2 fg odB is a continuous martingale

Proof.

Since o; € Fs;, if u > sj, E[0j(B(sj11) — B(s))) | Ful = 0j(B(u) — B(s)))

and if u < s;, E[oj(B(sj+1) — B(s))) | Fu] =
E[E[oj(B(sj11) — B(s))) | F5]| Fu] = 0.
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Basic properties

3 E[(Jy o(s,w)dB(s))?] = E[Jy o*(s,w)ds]
Proof.
JoodB = Y;0i(B(sj1 A 1) - B(S))

E[(JyodB)?] = X, Elojoj(B(sit1 A t) — B(s;))(B(Sj+1 A 1) — B(s)))]
i <j:E[E[oioj(B(sit1 A t) = B(s))(B(sj+1 A t) — B(sj)) | Fsl] =0

i =jt E[o2(B(s101 A 1) — B(s)))?] =
EIE0?(B(sj1 A 1) — B($))? | Fo] = Elo?l(sj01 A 1)

El(J3 00B)%] = ) Elo?(B(S41 A 1) — B(5)))?] = E[ 3 020s]
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Basic properties
4 Z(t) = exp{fg ocdB -} Ota2ds} is a continuous martingale
Proof.

Suppose t > u > J(t). Then E[e i 0dB — 1 [ o2ds | F,] can be
written

e ai(Blsi)=B()=30F (i1 =5) g (B -Blsun) =25y (1=5u0) | £,1.

The expectation is just 1, so we have that E[Z(t) | F,] = Z(u)
whenever t > u > J(t). It follows by repeated conditioning that
E[Z(t) | Fu] = Z(u) forany u < t. O
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P = set of progressively measurable functions

Lemma
For each t.0, P = Closure in L?([0, t] x Q, dt x dP) of simple functions

Proof

Suppose ¢ € P and E[f 2(s,w)ds] < oo
we need to find a sequence o, of simple functions s.t.

t
£ /0 (0(8,w) — on(s, w))2ds] — 0.

We can assume that o is bounded For if oy = o for |o| < N and 0

otherwise then oy — o and |oy — o|? < 4|0 |? so by the dominated
convergence theorem E[fot(cr — on)?ds] — 0.
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Proof.
Furthermore we can assume that ¢ is continuous in s

for if o is bounded then o, = h™! ftih ods are continuous progressively
measurable and converge to o as h — 0. By the bounded convergence
theorem

t
£ / (0 — on)2ds] — 0
0
For o continuous bounded and progressively measurable let
on(s,) = o(L2 )

These are progressively measurable, bounded and simple functions
converging to o and again by the bounded convergence theorem,

t
£ /O (0 — on)2ds] — 0

]
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Theorem (Definition of the 1t6 Integral)

Let o(s,w) be progressively measurable and for each t > 0,
E[ [ 02ds] < cc. Let o, be simple functions with E[ [ (o — o)2ds] — 0
and set

t
Xo(t,w) = /0 (S, w)dB(S).

Then
X(t,w) = nlim Xn(t,w)

exists uniformly in probability, i.e. for each T > 0 and € > 0,

lim P( sup |Xn(t,w)— X(t,w)| >¢€)=0.

N—=0o0  ‘o<t<T

Furthermore the limit is independent of the choice of approximating
sequence o, — o. The limit X(¢,w) is the It integral

t
X(t) = / o(s)dB(s)
0
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Proof.

Xn(1) fo — om)dB is a continuous martingale so by
Doobs mequahty

P(sup | Xn(t) = Xm(t)] > €) < € 2E[(Xn — Xm)*(T)]

0<t<T
= _2E[/ — Um dS]

So X, — X is uniformly Cauchy in probability and therefore there
exists a progressively measurable X with

P( sup [X(t,w)— Xn(t,w)| =€) "=°0 €>0
0<t<T

If o £ 5 and X! = [ o%.dB, P(SUPy- ;1 | Xn — X.| > €) — 0 so that X,
n n—Jo%n 0<t<T n

and X}, have the same limit.
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Basic properties of the It6 Integral
Q [l(cio1 + ca02)dB = ¢y [{51dB + ¢s [} 520B.
Q /! odBis a continuous martingale
Q E[(f; o(s,w)dB(s))?] = E[[; o3(s, w)ds]

Q If|o] < Cthen Z(t) = exp{f0 cdB — } 0 ! +2ds} is a continuous
martingale

proof

@ By construction

©Q Continuity follows from the construction. To prove the limit is a
martingale we have E[X,(t) | Fs] = Xn(s) and X, — X in L2,
therefore in L' as well. The L' limit of a martingale is a martingale.

Q X2(t) — [i o3(s)ds is a martingale 5 X2( t) — Juo?(s)ds

Q Z,(t) = exp{fo ondB — 5 fot o2ds} is a martingale so it suffices to
show that Z,(t), n=1,2,... is a uniformly integrable family.
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Proof.

to show that Z,(t) = exp{fot ondB — %fot o2ds},n=1,2,...isa
uniformly integrable family, it is enough to show that there is some
fixed C < oo for which E[(Zn(1))?] < C.

t t
E[(Zv()2] = Elexp{2 /O ondlB — /0 o2ds)]

t t
< eCtE[exp{Z/ ondB—g/ o2ds}]
0 0

_ gCt
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A stochastic integral is an expression of the form

t
X(t,w):/ o (s, w)dB(s) /b3wds+Xo
0

where a and b are progresswely measurable with
E[f SwdS]<ooandf0|bSw)|dS<oof0ra||t>O and Xy € Fy
is the starting point

The stochastic differential
dX = odB + bdt

is shorthand for the same thing

For example the integral formula fo s)dB(s) = 3(B?(t) — t) can be
written in differential notation as

dB? = 2BdB + dt
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What happens if B(t) is replaced by a more general function f(B(t)) ?

[t6’s Lemma
Let f(x) be twice continuously differentiable. Then

df(B) = f'(B)dB + %f”(B)dt

Proof

First of all we can assume without loss of generality that f, f and "
are all uniformly bounded , for if we can establish the lemma in the
uniformly bounded case, we can approximate f by f, so that all the
corresponding derivatives are bounded and converge to those of f
uniformly on compact sets.
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Lets=fh <t <b<---<t, =t We have

n—1
f(B(1)) - (B(s)) = > [f(B(t+1)) — f(B(t))]

j=0

n—1
= Y _F(B(t))(B(ti+1) — B(t))

j=0

€ [t tin] +Z;f” (E)(B(11) - B)Y?,

Let the width of the partition go to zero. By definition of the stochastic
integral

n—1
S (B (B(11) — B(H) — / f'aB.
j=0
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As in the computation of the quadratic variation,

3 [(Z,-”-‘J "(B(&)) [(B(t+1) = B(§)) = (t41 — r,)})z]
= Zf:‘(; E [(f//(B(gj)))2 [(B(tis1) — B(£))2 — (1 — tj)ﬂ Lo(1)—0

Hence
n—1

t
S~ (B (B(ti1) — B()? /f”(B(U))dU

j=0
So we have proved that

f(B(t) — f(B / f(B(u))dB(u / (B

which is It6’s formula.
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@ In differential notation 1td’s formula reads
df(B) = f(B)dB + %f”(B)dt.

The Taylor series is df(B) = "o, Lf("(B)(dB)". In normal
calculus we would have (dB)" = 0 if n > 2, but because of the
finite quadratic variation of Brownian paths we have (dB)? = dt,
while still (dB)" =0 if n > 3.
© If the function f depends on t as well as B(t), the formula is
of of 1 0%f

af(t, B(1)) = 5 (t. B(t))at + = (t, BH)dB(t) + 5 5 (1. B(t) .

The proof is about the same as the special case above.
© If B(t) is a d-dimensional Brownian motion and f(t, x) is a function
on [0, 00) x RY which has one continuous derivative in t and two
continuous derivatives in x, then the formula reads
of

a(t, B(1)) = 5 (t, B(t))dt + (¢, B(t)) - dB(t) + %Af(t, B(1))d.
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Local time
f continuous function on R

Li(x) = /Otéx(f(s))ds =lim(2e) '[{0 < s < t:[(s) ~ x| < €}

/Ot 1,(f(s))ds = /ALt(x)dx

fe C' LX) = Ygecpo.qs)=x |f'(8i)| 7" discontinuous in t
[t ’s lemma applied to |B; — x| gives

Tanaka’s formula for Brownian Local Time

t
Li(x) = ]Bt—x\—|Bo—x]—/0 sen(Bs — x)dBs

In particular, L;(x) continuous in t a.s.
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But | x| not differentiable, so no fair!!!
Proof.
fell(x) = (26)_1 1 [—e.€]

t6
t
(26)7 {0 < s < t:|Bs| <€} = £(B;) — £.(By) — / f!(Bs)dBs
0
€l 0

t
Li(x) = 1B~ x| = 1By = x| = [ sen(Bs — x)lBs

Note: To be honest, we have to do a little bit more convolution to make
f continuous. O

v
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Feynman-Kac formula
V a nice function (say bounded). u € C'? solves

W — 1%y vy, u(0,x) = up(x)
[ u(x)exp{—x2/2t}dx < cc. Then

u(t, x) = Ex [efo' V(B())ds o (B(t))

Proof.
For0 < s < tlet Z(s) = u(t — s, B(s))elo V(BW)d By jto’s lemma

U 10%u 15 V(B(u))du
Z(t)—Z(0) = + W eh ds =0
2 ox2
/ (t—s, B(s))efo EEEgrs = martingale

S0 Ex Ziti! = EX|Z§0“
February 16, 2007
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©Q Ind>1ifue C'?solves
ou 1
5 = §Au+ Vu, u(0,x) = up(x)
then .
where B(t) is d-dimensional Brownian motion
Q IfV=V(tx)

u(t, x) = Ey [6fo V(t=58ds (1))
© Historical remark. Feynman'’s thesis was that solution u of it

Schrodinger equation % = i[%% + W] should have
representation

u(x,t)y=" / e'ho V(fs)ds_éﬁ;lf/'zdsuo(ft)

where " [ is supposed to be average over functions starting at x.
Kac pointed out that it is rigorous if j — 1
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Arcsin law
() = 1Tf(f1[(),c>o)(B(s))ds = the fraction of time that Brownian motion
is positive up to time ¢

a<o;
arcsiny/a 0<a<t,;
a>1i.

P(s(t) < a) =

— 3/ O

Simple explanation why distribution of () indep of t

1 1 1 .
é(t) = /0 150,00/ (B(ts))dls = /0 1[0,00)(%3(1‘3))%: /O 10,00/ (B())ds

SOELG)
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Proof
By Feynman-Kac if we can find a nice solution of

ou 10%u
5t — 25,2 Uloeo) u(0,x) = 1
Then t
u(t, x) = Ex[e~ Jo 0.0 (B(8))a5]
and

u(t,0) = /O " e atap(c < a)

a >0, ¢a(X) = a f;° u(t,x)e"dt— — 3¢ + (a +1jg 00))ba = @

( ) % + AeX\/Z(a+1) + BefX«/Z(a+1) x>0
- X — (6% b — b
¢ 1+ CeXV2a 4 pg—xVaa x> 0.

U<1=¢,<1=A=D=0
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Proof.
$a(0-) = ¢a(0+), ¢, (0-) = ¢,(04)

al/?

_ 1
(1+a)(va+va+1)’ - (1+a)2(vVa+va+1)1/2

$a(0) = \/: / E[e ®ae dt

By Fubini’s theorem this reads E [a%g} = \/a5g0r

LR 1
dP(¢ < a) =
/01—1—73 E=q 1+

Looking up a table of transforms we find

= B =

dP(gga):g;da 0<ac<i
my/a(l —a)
which is the density of the arcsin distribution O
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Stochastic differential equations

a(x,t), b(x,t) mble

Definition
A stochastic process X; is a solution of a stochastic differential
equation

aX; = b(Xt, t)dt == U(Xt, t)dBt, Xo = Xo
on [0, T] if X; is progressively measurable with respect to F;,
T 1b(Xe, t)|dt < 00, [ |o(Xt, t)[Pdt < o0 a.s. and

t T
Xt:xo+/ b(Xs,s)ds+/ o(Xe,8)dBs 0<t<T
0 0

The main point is that o(w, t) = (X, t), b(w, t) = b(X}, t)
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Ornstein-Uhlenbeck Process
X, t > 0 is the solution of the Langevin equation
adX; = —aXidt + cdB;
To solve it
de“' X; = ae®! Xidt + e*!(—aXidt + 0dB;) = ce*'dB;
SO

t
Xi = Xoe '+ / e~ =9)gB;
0

If Xo ~N(m, V) indep of B;, t > 0 = X; Gaussian process
m(t) = E[X;] = me™!

o2

c(s, t) = Cov(Xs, Xt) = [V + %

(eZa min(t,s) 1)]efa(t+s)
m=0,V= % = X; stationary Gaussian c(s, t) = %e*a(’*s)
Y = fot Xsds "Physical” Brownian motion
February 16,2007  24/23



Geometric Brownian motion

dS; = uSidt + 0 S;dB; w = drift o = volatility

By Ito’s formula
2
S; = Spelh—F)t+oB
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Bessel process (d = 2)
Let B; = (B}, B?) be 2d Brownian motion starting at 0,

re=|Bt| = +/(B})? + (Bf)2.

By Ito’s lemma,

B B? 11

dri = —=dB' + —dB? + - —-dt.

B B 2|B|
As it stands this is not a stochastic differential equation.
Let Y; be the solution of

B B?

dY = —dB'+ —dB?  Yy=0.

B B

Let f(x) be a smooth function and use Ito’s lemma to show that

1 t
f(t,Y0) = 10.Yo) = 5 [ (0f + 0Ef)(s. Ye)os

is a martingale
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