Existence and Uniqueness Theorem

o :RY %[0, T] — R b:RY x [0, T] — R? be Borel measurable,
JA < oo,

lo(x, Bl + [b(x, ) <A1+ |x])  xeR%, 0<t<T
and Lipschitz;
|o(x, 1) — oy, )l + [b(x, t) — by, t)| < Alx — y|.

Xo € R? indep of By, E[|x[?] < oo.
Then there exists a unique solution X; on [0, T] to

dX; = b(X;, t)dt + o( Xz, t)dB;, Xo = Xo

and E[ [ | Xi[2f] < co.

Uniqueness means that if X, and X? are two solutions then
PX] =X?,0<t<T)=1
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Proof of Uniqueness
Suppose X;' and X? are solutions

t t
Xi=xt = [0 9) = 0. s)ds+ [ (a(xd.5) — o(X2.5))aB:

+x0 — x@

t
EIIX; — X22] < 4E]] /0 (b

+4E]] / o(X.s)

Xs,8) — b(XZ, 5))ds?]

o(X§,5))dBs|?] +4E[Ixg — X51]

£l / (b(X 2 5))dsf?] < A2 / E[IX! - X22]ds

E| / (X!, 8) - o(XZ, 5)) 2ds]

- / (0(X!, ) - o(X2, 5))ds]?

IA

A2 /0 EllX! — X2]ds

]
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Gall ¢(t) = E[|X} — X?P]

t
¢m§8MA¢wWH4dm

(1) = /Otgb(s)ds
(67810 (1)) = (/(t) — 8A2®(1))e ! < 4¢(0)e~ "
e #to (1) < 4¢(0)
6(1) < 8A2D(1) + 49(0) < 86°41(0)
E[1X; — X2 < 86®1E[|x! — x2[3]

Foreach0 <t < T, X/ = X2 a.s. so X! = X2 for all rational t € [0, T]
a.s. By continuity this implies that X, = X2 for all t € [0, T] a.s.
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Proof of Existence
Xo(t) = Xo
t t
X(t) =0+ [ o(8, Xo1(9))lB(s) + | b5, Xo1(s)ds
0 0
E[ sup_|Xn(t) = Xp—1(1)?]
0<t<T
.
Doob's inequality < 4E[/ o (s, Xn_1(8)) — o(8, Xn_2(8))||?ds]
0

;s
T TE| /0 1B(S, Xn_1(5)) — (S, Xn_2(s))|20l]

:
<c /0 E[|Xo_1(S) = Xo_a()[2]ds

< CTE[ sup [Xn_1(t) — Xn_o(1)[?]
0<t<T

v
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Proof.
E[ sup |Xn(t) — Xp—1(8)[?] < CTE[ sup [Xp—1(t) — Xn_2(t)[]
0<t<T

0<t<T

E[ sup |Xn(t) —Xn_1(l‘)]2] < (CT)"
0<t<T nl

P(Oiltip [ Xn(t) = Xn-1()] > l) <22”E[0§1:5T|Xn( ) — Xn—1(1)[°]

summable

Borel — Cantelli = P( sup |Xn(t) — Xp—1(t)| > l i.o.)=0.
0<t<T

Hence for almost every w, Xa(t) = Xo(t) + 3720 (Xj1(t) — Xi(1))
converges uniformly on [0, T] to a limit X(t) which solves the required
stochastic integral equation O]
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Lipschitz condition is not necessary

Theorem
Letd =1 and

|b(t, x) — b(t, y)|
’U(tv X) — U(t’y)|

Then there exists a solution of dX; = b(t, X;)dt + o(t, X;)dB; and it is
unique

Clx -yl

<
< Clx—yl|* a>1/2

But you do need some regularity

o(x) = sgn(x) and dX = o(B)dB Not a stochastic differential equation
But X is a Brownian motion dB = ¢(B)dX is a stochastic differential
equation

But also d(—B) = o(—B)dX so no uniqueness
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Markov property

X: can be obtained by solving the stochastic differential equation up to
time s < t and then solving in [s, f] with initial condition X

By uniqueness this gives the same answer

Define the transition probability

p(s, x,t,A) = P(X;™ € A)

where X is the solution starting at x at time s
From the construction we have
P(XX" € A | Fs) = p(s, X, t, A)

which is the Markov property
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Diffusions

A diffusion is a Markov process with transition probabilities
p(s, x, t, dy) satisfying, for each § > 0as h — 0,

i. 1 p(t,x,t+ h,dy) — 0 = continuous paths
h Jiy—xi>s
i [ - xptx.t+hdy) - b(tx)
h Jiy—xi<s
1
. ’_,' (yl_Xl)(.y]_xj)p(t7xnt+hady)_>alj(tax)
ly—x|<é
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Formal derivation of the backward equation
p(s, x,t,A) = /p(s,x,8+ h,dy)p(s + h,y,t, A)

0= / p(s. x5+ h.ay){p(s + h.y.t.A) — p(s.x.t. A)}

d
op(s, x,t, A op(s,x,t, A
/p(s,x, s+ h, dy){h% +> (- xf)%
i=1 !

d
1 22p(s, x, t, A)
+§I;(yl_xl)(yj_xj) 8X/8X/ +}

8p(sxtA) 8p(sxtA 8psxtA)
Zb . Qza’/

OX;OX;
ij=1 =7
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Real derivation
f(x) smooth

0
—5gU="Lsu 0<s<t u(tx)="F(x)

Ito’s formula: u(s, X(s)) martingale up to time ¢

u(s, x) = Esx[u(s, X(s))] = Esx[u(t, X(t))] = /f(z)p(s,x, t,dz)

Let f,(z) smooth functions tending to §(y — z)

u(s,x) =p(s,x,t,y) if —%U:Lsu 0<s<t u(tx)=dx—-y)

v
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Existence result from PDE

Suppose that a(t, x) and b(t, x) are bounded and that there are o > 0,
v € (0,1], C < oo such that for all s,t > 0, x, y € RY,

i. ¢Ta(t, x)€ > alé]?, ¢eRY,
i. la(s, x) — a(t, y)|| + |b(s, x) — b(t,y)| < C(|x — y|" + |t — s[").

Then the backward equation has a solution and furthermore
pls.x.tA) = [ pls.x.t.y)y
A

with p(s, x, t,y) > 0 jointly continuous in s, x, t, y. Furthermore,
p(s, x, t,y) is the unique weak solution of the forward equation,i.e.

/fty (s,x,t,y)dy — (s, x) = //{8u+£}fuy (s,x,u,y)dydu
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The solution X;, t > 0 of dX; = b(X;)dt + o(X;)dB; with Xy = x is a
Markov process with infinitesimal generator

22 8X8Xj zb, a=oo".

ij=1 i=1

[t6’s formula

f(t,X) = £(0,X0)+ / t{asf(s,Xs)Jr,Cf(s,Xs)}ds

+/ Zo,,sxs sXs)dB/

ij=1
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Example. Brownian motion d = 1

1
- 20x2
op(s,x. t,y) 10°p(s,x,ty)
Forward 57 =5 ay2 , t>s
p(s,x,8,y) =0(y — x)
2
Backward op(s, x,t,y) _10°p(s,x,t,y) S

0s 2 0x? ’

p(t,x,t,y) = 0(y — x)
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Example. Ornstein-Uhlenbeck Process
_2 & 0
“ 20 “ox

op(s, x, t,y) o®d®p(s,x,t.y) 0
Forward T =5 ay? +ay(ayp(s,x, ty), t>s

p(S,X,S,y) :5(y—X)

2 92
Backward _M — 0_8 p(s, x,t,y) _axap(S,X, ty)

0s 2 Ox? ox ’

S <1

p(t,X, tay) :(S(y—x)
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Under the previous conditions, the following are equivalent
Q 3B, t>0,dX; = b(t, Xt)dt = (T(t, Xt)dBt
© For each \ € R,

Z\(t) = MXi— J3 b(s.Xs)ds}—1 [ AT a(s,Xs)Ads

is a martingale with respect to F;
© For all smooth f(t, x),

t
(2, X)) — /0 {05 + L} (s, Xs)ds

is @ martingale with respect to F;
Q For all smooth f(x),

f(X;) — /O t Lf(Xs)ds

is a martingale with respect to 7;
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dX; = o( X, t)dW; + b( X, t)dt, Xo=x
au(T — t, Xt) = {_Oal; + Lu} (T —t, Xp)dt + o( X, t)Vu(Xe, t)dB;.
u(T —t, X;) = martingale

thl_Lu, t>0 u(0,x)="Ff(x) =

Ex[f(X7)] = u(T, x)

Black-Scholes
Price at time t of European call option , maturity T , strike price K

V(t,S;) = e "TVE g [(St — K)4]
dS; = rSidt + 0 S;dB; Geometric Brownian motion

r = riskless interest rate , o = stock volatility
March 21, 2007

16/23



V(t,St) = e "T-DE 5 [(St — K)4]

Edl(St— K)y] = / (v — K)o p(T — t,x, y)dy

v _ LoV 7223v
ot Sas_z Sas2+

S =Sy elh="5% )H'("Bt

)( ))

+(r+
_ e (T-Dkop ( % 1 2)(T_t)>

|
V(t,S) = s,q><°g

VT —t
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Strong Markov Property

Let 7 be a stopping time

t
f(Xt) —/ Lf(Xy)du = martingale
0

t
E[f(Xt+r) —/0 Lf(Xysr)du | Fris]
S
= f(Xsqr) — / Lf(Xy+r)du optional stopping
0

= X; = X4, t > 0 s a solution of

dX; = b(t+7,X)dt + o(t+7,X)dB;  t>0
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Generalized Dirichlet problem.
Let D be a domain in R, i.e. a bounded connected open set with a
smooth boundary 0D

Suppose
{Lu -0 inD,

u=f on 0D

—2 Z 8x,6xj Z 8x,

ij=1 =
Let X; be the solution of the stochastic differential equation

dX; = o(X:)dW; + b(X))dt,  Xo = x.

Let 7 be the exit time from the region D
Then X is the exit point on the boundary 0D

u(x) = Ex[f(X)]
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To show it we cannot use the same conditioning argument as with
Brownian motion because we don’t have the symmetry anymore

lto’s formula:
u(Xinr) = martingale
Optional stopping

Ex[f(X7)] = Ex[u(X:)] = u(x)
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Poisson equation

Suppose
Lu=f inD,
u=0 onoD

where f is some given function defined in D
Ito’s formula:
tAT
u(Xinr) — / f(Xs)ds = martingale
0
Optional stopping: Ex[u(X;) — u(Xo) — [; f(Xs)ds] =

u(x) = EX[/OT f(Xs)ds]
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Diffusions on manifolds a little tricky to define

Example. Brownian motion on the circle

If (X1, X2) is a point on the unit circle then the tangent at that point is
(—Xz, X1). Therefore it would seem to make sense that the solution of

dX; = —XodB
dXo = X;dB

would be a Brownian motion on the circle. However we have
d(XF (1) + X5(1)) = 2(XF(t) + XZ(t))at

so it is not staying on the circle. The true Brownian motion on the
circle,
(Y1(1), Ya(t)) = (cos(Bt), sin(Bt))
instead satisfies
dY; = —1Yidt — Y,dB
dY, = —3 Yodt + Y1dB




Martingale representation theorem

Q = CJ0, T], Fr = smallest o-field with respect to which Bs are all
measurable, s < T, P the Wiener measure , B; = Brownian motion

M; square integrable martingale with respect to F;
Then there exists o(t,w) which is

@ progressively measurable

© square integrable

Q 5(]0,00)) x F mble
such that

t
0
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