PROBLEMS (due Jan 25)

1. Let $B(t), 0 \le t \le 1$ be Brownian motion. Show that

$$X(t) = B(1-t) - B(1)$$

is also Brownian motion.

- 2. (a) Let B_t, t ≥ 0 be Brownian motion, f₁ and f₂ functions on [0,1] and let X_i = ∫₀¹ f_i(t)B_tdt. Find the distribution of X = (X₁, X₂).
 (b) Compute the Fourier series of Brownian motion on [0,1], i.e. if a_n = ∫₀¹ e^{2πint}B_tdt compute all finite dimensional distributions of the sequence a_n.
- 3. If f is differentiable and non-random, define $X_t = \int_0^t f dB = f(t)B(t) f(0)B(0) \int_0^t f'(t)B(t)dt$. Prove that X_t is continuous.
- 4. Let B(t), $t \ge 0$ be Brownian motion. Show that the density f(t) of B(t) satisfies the heat equation,

$$\frac{\partial f}{\partial t} = \frac{1}{2} \frac{\partial^2 f}{\partial x^2}.$$

- 5. Let $B_n(t)$ be the polygonalization of Brownian motion defined in the proof of continuity. Let $Y_n(t) = \frac{d}{dt}B_n(t)$
 - (a) Show that $Y_n(t)$ has no limit as $n \to \infty$.
 - (b) Compute the mean $m_n(t) = E[Y_n(t)]$ and covariance $\rho_n(t-s) = E[Y_n(t)Y_n(s)]$.
 - (c) Compute the spectral density μ_n defined by $\rho_n(t) = \int_{-\infty}^{\infty} e^{it\lambda} d\mu_n(\lambda)$ and find the limit $\mu = \lim_{n \to \infty} \mu_n$.
 - (d) Explain why the mythical $Y = \lim_{n \to \infty} Y_n$ is known as white noise.
- 6. A process X_t is said to be stochastically continuous at t_0 if for any $\epsilon > 0$

$$\lim_{t \to t_0} P(|X_t - X_{t_0}| > \epsilon) = 0.$$

Construct a process which is stochastically continuous at every point, but has discontinuities with probability one.

7. Let $B_t, t \ge 0$ be Brownian motion. For each n, let $t_i = i/n, i = 0, ..., n$. Prove that for any p > 0, there is a C_p such that

$$\lim_{n \to \infty} n^{\frac{p}{2} - 1} \sum_{i=0}^{n} |B_{t_{i+1}} - B_{t_i}|^p = C_p$$

in probability.