PROBLEMS (due Feb 29)

- 1. Let $\tau_x = \inf\{t \ge 0 : B_t \ge x\}$. Prove that τ_x is equal in distribution to $x^2(\sup_{0\le s\le 1} B_s)^{-2}$.
- 2. Let B_t^1 and B_t^2 be independent Brownian motions. Find the one dimensional marginal distribution of $\frac{B_t^1}{|B_t^2|}$ (the one dimensional marginal distribution of X_t means $F(t) = P(X_t \le x), t \ge 0$).
- 3. Let $B_t = (B_t^1, B_t^2)$ be a two dimensional Brownian motion starting at (0,0). Let τ be the first time that B_t hits the line $\{(x,y) : y = a\}$. Compute the distribution of B_{τ} (Hint: Use problems 1 and 2.)
- 4. Let $\tau_{\pm x} = \inf\{t \ge 0 : |B_t| = x\}$. Compute the Laplace transform of $\tau_{\pm x}$.
- 5. Let G be a nice subset of the lattice \mathbf{Z}^d and ∂G be its boundary. Let f be a function defined on the boundary. Let X_n be a symmetric nearest neighbour random walk on the lattice starting at $x \in G$ and let τ_G be the first time that the walk hits the boundary of G. Show that the solution of the discrete Dirichlet problem

$$\Delta u = 0 \quad \text{in } G, \qquad u = f \quad \text{on } \partial G$$

is given by $u(x) = E_x[f(X_{\tau_G})]$. The lattice Laplacian $\Delta u(x)$ is given by $\sum_{y \sim x} u(y) - u(x)$ where $y \sim x$ means y is a neighbour of x. (Note that the wording of the problem is purposefully vague and part of the problem is to make words like "subset", "nice" and "boundary" precise here.)

6. Let \mathcal{O} be an orthogonal transformation of $L^2[0,\infty)$. Let $\mathbf{1}_{[0,t]}$ be the indicator function of $0 \leq s \leq t$. Define

$$\tilde{B}(t) = \int_0^\infty \left(\mathcal{O}\mathbf{1}_{[0,t]} \right)(s) dB(s).$$

Show that $B \mapsto \tilde{B}$ is a measure preserving transformation of the space of Brownian paths.

7. Let $B_t, t \ge 0$ be a d-dimensional Brownian motion. Show that the one dimensional marginal densities $f(t,x) = \lim_{\epsilon \to 0} \frac{P(|B_t-x| \le \epsilon)}{Volumeof\{|x| \le \epsilon\}}$ satisfies the heat equation $\partial_t f = \frac{1}{2} \sum_{i=1}^d \frac{\partial^2 f}{\partial x_i^2}$. Find the equation satisfied by the one dimensional marginals of the Bessel process $r_t = |B_t|$.