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1. A physical introduction

1.1. KPZ/Stochastic Burgers/Scaling exponent. The Kardar-Parisi-Zhang (KPZ)
equation is,

∂th = −λ(∂xh)2 + ν∂2
xh+

√
Dξ (1)

where ξ denotes space-time white noise which is the distribution valued Gaussian field
with correlation function

〈ξ(t, x), ξ(s, y)〉 = δ(t− s)δ(x− y). (2)

It is an equation for a randomly evolving height function h ∈ R which depends on position
x ∈ R and time t ∈ R+. λ, ν and D are physical constants.

The equation was introduced by Kardar, Parisi and Zhang in 1986 [80], and quickly
became the default model for random interface growth in physics. Mathematically, the
non-linearity was too large to handle by existing methods of stochastic partial differential
equations. So there is a very serious problem of well-posedness.

Formally, it is equivalent to the stochastic Burgers equation

∂tu = −λ∂xu2 + ν∂2
xu+

√
D∂xξ. (3)

which, if things were nice, would be satisfied by u = ∂xh.
An analogous equation can be written in higher dimensions,

∂th = −λ|∇h|2 + ν∆h+
√
Dξ (4)

with x ∈ Rd. One can also attempt to generalize the non-linearity

∂th = F (∇h) + ν∆h+
√
Dξ (5)

It appears that with space-time white noise forcing, only (1) yields a non-trivial field. We
will restrict ourselves here to the one space dimension with the quadratic non-linearity (1).
Even in this 1 + 1 dimensional situation we are still in the very difficult case of a field
theory with broken time reversible invariance.

The stochastic Burgers equation (3) is a toy model for turbulence. A dynamical renor-
malization group analysis was performed on it in 1977, by Forster, Nelson and Stephen
[60] (see also [80], [118]), predicting a dynamical scaling exponent

z = 3/2. (6)

For the solution h of the KPZ equation this means that one expects non-trivial fluctuation
behaviour under the rescaling

hε(t, x) = ε1/2h(ε−zt, ε−1x). (7)

We will discuss this much more precisely later in the notes.
Now we move to the physical derivation of the process and the physical predictions.

Note that this entire introduction is not intended to be rigorous, but just to sketch the
physical background. From a mathematical point of view, one is of course interested in
proving existence and uniqueness for the equation. On the other hand, we will see that the
solutions can be written in terms of a classically well-posed stochastic partial differential
equation. So the main issue for these notes will be on the actual behaviour of solutions,
the scaling exponents, and the large scale fluctuation behaviour which is conjectured to be
universal within what is called the KPZ universality class. For this reason we will spend
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in Section 1 a great deal of time discussing the physical picture. The mathematics begins
in Section 2.

1.2. Physical derivation. h grows by random deposition as well as diffusion. The change
in time has three contributions: (1) Slope dependent, or lateral growth, (2) Relaxation,
(3) Random forcing. The equation then reads

∂th = −λF (∂xh) + ν∂2
xh+

√
Dξ (8)

The ∂2
xh term (2) represents the simplest possible form of relaxation/smoothing/diffusion.

ν is the diffusivity, or viscosity. The random forcing (3) is assumed to be roughly indepen-
dent at different positions and different times. The simplest model is Gaussian space-time
white noise, which has mean zero and space-time correlations

〈ξ(t, x), ξ(s, y)〉 := E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y). (9)
√
D represents the strength of the noise. Traditionally it has a square root so that D is

the mean square, or variance. The key term (1), the deterministic part of the growth, is
assumed to be a function only of the slope, and to be a symmetric function. Here is a
picture of what we mean by lateral growth

From the picture, the natural choice for F might be (1 + |∂xh|2)−1/2, however this leads to
a seemingly intractable equation. In fact what is done is to take a general F and expand

F (s) = F (0) + F ′(0)s+ 1
2
F ′′(0)s2 + · · · (10)

The first term can be removed from the equation by a time shift. The second should vanish
because of the symmetry, but can anyway be removed from the equation by a constant
velocity shift of coordinates. Thus the quadratic term is the first nontrivial contribution,
and it is the only one kept. We arrive at the KPZ equation,

∂th = −λ(∂xh)2 + ν∂2
xh+

√
Dξ. (11)

There is something wrong with this derivation. The problem is that |∂xh|2 is not small.
As we will see in 1.6, it is huge. So one needs to subtract a huge term reflecting the small
scale fluctuations. Amazingly, through such a naive derivation, one finds a non-trivial field
(see [84], [69], [12] for introductions.)

1.3. Scaling. We can restrict attention to the special choice λ = ν = 1
2
, D = 1, because

if h satisfies

∂th = −1
2
(∂xh)2 + 1

2
∂2
xh+ ξ (12)

then we can write

hε(t, x) = εbh(ε−zt, ε−1x) (13)
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and we have ∂th = εz−b∂thε, ∂xh = ε1−b∂xhε and ∂2
xh = ε2−b∂2

xhε. More interesting is how
the white noise rescales,

ξ(t, x)
dist
= ε

z+1
2 ξ(εzt, ε1x), (14)

where the equality is in the sense that the two random fields have the same distribution.
This leads to

∂thε = −1
2
ε2−z−b(∂xhε)

2 + 1
2
ε2−z∂2

xhε + εb−
1
2
z+ 1

2 ξ. (15)

Clearly we can now choose λ = 1
2
ε2−z−b, ν = 1

2
ε2−z,

√
D = εb−

1
2
z+ 1

2 to get (1) from (12).
When comparing discrete models to KPZ, one has to identify the appropriate λ, ν and D
(see [111] for a discussion.)

1.4. Formal invariance of Brownian motion. Linearizing (11) one obtains the Langevin
equation,

∂th = ν∂2
xh+

√
Dξ (16)

whose solution is the infinite dimensional Ornstein-Uhlenbeck process,

h(t, x) =

∫
R
pν(t, x− y)h(0, y)dy +

√
D

∫ t

0

∫
R
pν(t− s, x− y)ξ(s, y)dyds (17)

where

pν(t, x) =
1√

4πνt
e−x

2/4νt. (18)

Two sided Brownian motion B(x), x ∈ R normalized to have

E[(B(y)−B(x))2] = (2ν)−1D|y − x| (19)

can be checked to be invariant for this process.
Remarkably, the two-sided Brownian motion is almost invariant for (11) as well. The

only sticky point is that the two sided Brownian motion B(x) will have a global height shift
as time proceeds. In particular, what is true is that the probability measure corresponding
to the distributional derivative of the Brownian motion B′(x) (which is another white
noise) is invariant for the stochastic Burgers equation (3) [15]. Or at the level of KPZ, the
measure corresponding to B(x)+N , where N is given by Lebesgue measure, is invariant for
(11). Note, however, that the latter is not a probability measure (it is “non-normalizable”).
What we mean is that the product measure of white noise and Lebesgue measure on R is
invariant for the process (h′(x), h(0)) [63]. Remember that when we say Brownian motion
is almost invariant, we mean that if h0(x) is a two sided Brownian motion, then, for fixed
t, h(t, x) is another two sided Brownian motion in x (plus a height shift). It is not the
same Brownian motion. It is a new Brownian motion correlated with the first one in an
extremely non-trivial way that is not understood (except the asymptotic correlations are
known [55].)

At a completely formal level the invariance argument proceeds as follows. We work at
the level of the stochastic Burgers equation on a large circle [−L,L) with L = −L. Set
λ = ν = 1

2
, D = 1. As we pointed out, the Langevin equation ∂tu = 1

2
∂2
xu+ ∂xξ preserves

white noise. So consider the Burgers flow ∂tu = 1
2
∂x(u

2). u lives in a space of rough
functions R which we could take to be H−1/2−δ for any δ > 0. Let f be a nice function on
R. We hope to show that under the Burgers flow

∂t

∫
f(u(t))e−

σ2

2

∫
u2 = 0 (20)
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where the integral is over R with respect to white noise with E[u(t, x)u(s, y)] = σ2δ(t −

s)δ(x− y) which we write formally as e−
σ2

2

∫
u2 . Differentiating we obtain

∂t

∫
f(u(t))e−

σ2

2

∫
u2 =

∫
〈δf
δu
, ∂tu〉e−

σ2

2

∫
u2 (21)

where δf
δu

is the functional (Frechet) derivative, and 〈f, g〉 =
∫ L
−L fgdx, to differentiate it

from the function space integral. Now by the Burgers equation∫
〈δf
δu
, ∂tu〉e−

σ2

2

∫
u2 = 1

2

∫
〈δf
δu
, ∂x(u

2)〉e−
σ2

2

∫
u2 . (22)

Integrating by parts,

1
2

∫
〈δf
δu
, ∂x(u

2)〉e−
σ2

2

∫
u2 = −1

2

∫
f〈 δ
δu
∂x(u

2)e−
σ2

2

∫
u2〉. (23)

But

〈 δ
δu
∂x(u

2)e−
σ2

2

∫
u2〉 = 〈(2∂xu− σ2u∂x(u

2))〉e−
σ2

2

∫
u2 . (24)

The last term vanishes because u∂x(u
2)x = ∂x

1
3
(u3) and because of periodic boundary

conditions any exact derivative integrates to zero: 〈∂xf〉 =
∫ L
−L ∂xf = 0. This gives

∂t
∫
f(u(t))e−

σ2

2

∫
u2 = 0. So the Burgers part of the flow formally preserves white noise

with any variance parameter σ2. The constraint σ = 1 is set by the Langevin part.
Taking L → ∞ gives the result on R. Since the standard white noise with σ2 = 1

is invariant for the Burgers flow ∂tu = 1
2
∂x(u

2) as well as the Langevin dynamics ∂tu =
1
2
∂2
xu+ ∂xξ it is invariant for the combined dynamics ∂tu = 1

2
∂x(u

2) + 1
2
∂2
xu+ ∂xξ.

In this way, one concludes formally that white noise is invariant for the stochastic Burgers
equation.

While the invariance is true, the above argument is not even correct at the physical
level. The main problem is that the Burgers flow ∂tu = 1

2
∂x(u

2) is ill-defined (except for
convex initial data) because there are no characteristics telling us how to fill in rarefaction
fans. If one interprets the Burgers’ flow as the usual entropy solutions, i.e. as the limit as
ν ↓ 0 of ∂tu

ν = uν∂xu
ν + ν∂2

xu
ν , then one has the Lax-Oleinik variational formula for the

solution, u = ∂xh with

h(t, x) = sup
y∈R

{
−(x− y)2

2t
+ h(0, y)

}
. (25)

Starting from h(0, x) a two-sided Brownian motion, one obtains a collection of ‘N-waves’,
i.e. the indefinite space integral of a bunch of Dirac masses of various sizes, minus a linear
function. The statistics are known exactly [62] (see also [17], [90] for more general classes of
solvable initial data). At any rate, the result starting with a Brownian motion is definitely
not a new Brownian motion, though the formal argument tells you it should be.

A correct argument for the invariance is presented in Section 2.11 where it is proved by
showing that KPZ is the weakly asymmetric limit of the height function of simple exclusion,
which has symmetric random walks as its almost invariant measure. Alternatively, it could
be obtained from the intermediate scaling limit of the special directed polymer model with
log-Gamma distribution, which turns out to have product invariant measures for its free
energy [109].
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In general, one expects that for any initial data, no matter how smooth, the solution
becomes locally Brownian at any positive time, with the same local diffusivity. (For proofs
in various special cases, see [103], [39],[67], [96].)

1.5. Dynamic scaling exponent. We search for a scaling

hε(t, x) = εbh(ε−zt, ε−1x) (26)

under which we can hope to see something non-trivial as ε → 0, i.e. on large space and
time scales.

Either by taking a derivative, or subtracting constants independent of x, we can ignore
global height shifts. Fixing t = 0, the fact that the solution is locally Brownian forces us
to take

b = 1/2 (27)

to see anything non-trivial. The equation becomes

∂thε = −1
2
ε2−z−b(∂xhε)

2 + 1
2
ε2−z∂2

xhε + εb−
1
2
z+ 1

2 ξ. (28)

To avoid divergence of the nonlinear term we are then forced to take

z = 3/2. (29)

In this way one arrives at the dynamic scaling exponent 3/2.
All the universal fluctuation behaviour is observed under this scaling

hε(t, x) = ε1/2h(ε−3/2t, ε−1x). (30)

1.6. Renormalization of the nonlinear term. Once we know that Brownian motion is
an invariant measure for the KPZ equation except for the height shift, i.e. in equilibrium
h(x) = h(t, x) is a two-sided Brownian motion in x, we realize the equation has a big
problem. The term (∂xh)2 cannot possibly make sense. Recall the basic quadratic variation
computation for Brownian motion that for a real interval [a, b], then, almost surely,

lim
n→∞

b2nbc∑
i=b2nac

|h( i+1
2n

)− h( i
2n

)|2 = (b− a). (31)

The problem is not just because we started in equilibrium. The prediction is that starting
with any, arbitrarily nice, initial data, for any time t > 0, the solution will be locally
Brownian, i.e. (31) will hold.

We see that the non-linear term needs a kind of infinite renormalization. So it would be
more honest to write the equation as1

∂th = −[1
2
(∂xh)2 −∞] + 1

2
∂2
xh+ ξ. (32)

We have here a problem of scales in the derivation of the process. The nonlinear term
is really being computed on a larger scale and is not supposed to be seeing the small scale
fluctuations.

1Before the mathematically inclined reader falls into despair, we should say that we will be completely
precise about what we mean by all this later. At this point we are simply providing physical background
to the problem.
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1.7. Cutoff KPZ models. What a stochastic partial differential equation is supposed to
mean is that if we introduce some sort of cutoff, so that the equation makes classical sense,
as we remove it we find an unambiguous limit, which is our solution. For example, in KPZ
(1) we could smooth out the noise a little, with some sort of mollifier, to get ξε. If ξε(t, x)
were now a smooth function of space and time, we could simply solve

∂thε = −1
2
(∂xhε)

2 + 1
2
∂2
xhε + ξε (33)

for each realization of the noise separately. Then we try to take a limit as ε → 0 to get
our solution. Alternatively, we could discretize the equation, for example in space, so that
we have

∂th( i
n
) = −Q(h( i+1

n
), h( i

n
), h( i−1

n
), h( i−2

n
)) + n2(h( i+1

n
)− 2h( i

n
) + h( i−1

n
)) + n1/2dB i

n

(34)

where Q(h( i+1
n

), h( i
n
), h( i−1

n
), h( i−2

n
)) is some sort of discretization of 1

2
(∂xh)2. Another

possibility is that h could be some sort of Markov chain or Markov process which might
approximate h.

The last is in some sense the key point. The KPZ equation itself was built to model
such systems, so it is crucial that whatever sense we try to make of it, it does model them
correctly. Let us look at a few classic examples. All of them will be Markov processes on
integer valued height functions hi on a one dimensional lattice Z.

• Ballistic aggregation. At each site one has “arrivals” occuring as a Poisson
process with rate one. The arrivals at different sites are independent. When there
is an arrival, the update rule is

hi 7→ max{hi−1, hi + 1, hi+1}. (35)

The arrivals can be thought of as particles which attach to the interface at the
highest point at which there is either a particle to the right or left or below it.
• Eden model. We grow a finite connected subset A of Z2 by adding sites in the

exterior boundary (i.e. sites in the complement of A which have a nearest neighbour
in A). All such sites are added at rate one. To get a growing height function we
let hi = min{j : (i, j + k) 6∈ A for all k = 1, 2, . . .}.
• Restricted solid-on-solid/asymmetric exclusion. The height profile is re-

stricted to be a nearest neighbour random walk, i.e. hi+1 − hi ∈ {−1,+1}. Each
pair (i, i+ 1) has two independent Poisson clocks which ring at rate p and at rate
q. When the first clock rings, if the height differences there look like (1,−1) we
change it to (−1, 1). Otherwise we do nothing. When the second clock rings, if
the height differences there look like (−1, 1) we change it to (1,−1) and otherwise
we do nothing. The model can also be encoded in terms of particle configurations
on Z, with at most one particle per site: A height difference of +1 corresponds to
a particle, and a height difference of −1 corresponds to an empty site. The rule
in this context is that particles perform a continuous time simple random walk,
attempting to jump to the right at rate p and to the left at rate q. However, the
jump takes place only if there is no particle at the target site, otherwise the particle
keeps waiting where it is, and since we are in continuous time, we do not have to
worry about ties. The case p, q > 0 with p 6= q is called ASEP (Asymmetric Simple
Exclusion Process) and p = 0, q = 1 is called TASEP (Totally Asymmetric Simple
Exclusion Process).
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The KPZ equation was introduced to model such growth processes, especially the ballis-
tic aggregation (a nice introduction at this level is still [69].) In fact, to this day we know
almost nothing about the fluctuations of the Eden model or ballistic aggregation. But the
restricted solid on solid model/asymmetric exclusion process turns out to be solvable in a
sense. Along with another solvable discretization called PNG (polynuclear growth model)
[77], [76], [101] it has been the basis of the recent breakthroughs.

One reason (though not the only one) that asymmetric exclusion can be analyzed is
that with appropriate boundary conditions its invariant measures are well understood.
For example, if we put it on an infinite lattice, and have the flips happen as independent
Poisson processes, the invariant measures are two sided random walks, which are discrete
versions of Brownian motion.

For a discretization like (34), one has to be very careful with the choice of Q if one wants
to have a nice invariant measure. For example, the very special discretization

Q(hi+1, hi, hi−1, hi−2)) = (hi+1 − hi−2)(hi+1 − hi − hi−1 + hi−2) (36)

works, in the sense that it preserves a random walk with Gaussian increments. This
discretization was discovered by N.J.Zabusky [94] in the context of the Kortweg deVries
equation (KdV) which bears many similarities to KPZ.

It is expected that if these cutoff versions of KPZ are not chosen carefully, they may not
approximate KPZ. There could be no convergence, or convergence to a different answer.
There are very few models in which we can prove any sort of convergence. They will be
described in Section 2.11. For (36) we do not know the convergence, though it is expected
to be correct (after subtraction of an appropriate diverging constant). For the invariant
measures also, we only know them for a few special models. But the relation between
having an explicit invariant measure and the convergence is also murky. It is not being
used in what proofs we have in a way that is clear.

Another approach to understanding the KPZ equation is to introduce some sort of Wick
ordered version of the nonlinearity,

:(∂xh)2: (37)

which is supposed to reflect what happens to (∂xh)2 after the “∞” has been removed.
Attempts in this direction (e.g. [70]) have unfortunately led to solutions which we know
are non-physical because the scaling exponents are wrong [31]2.

Nevertheless, as we will see, there is a limiting object which in some sense satisfies the
KPZ equation. The object is very canonical and we have even been able to obtain exact
formulas for various quantities associated with it (see e.g. Theorem 1.3).

Perhaps a more straightforward approach would be to develop a theory for smoothed
out noises. Everything would make sense. The problem is that there is some magic in the
solution of KPZ and we would miss it this way. It is a classic mathematical situation in
which one has to work hard to make sense of a canonical limiting problem, but then has
an advantage of some exact solvability.

1.8. Hopf-Cole solutions. In the mid 90’s, L. Bertini and G. Giacomin [15], following
a suggestion of E. Presutti, proposed that the correct solutions of KPZ could be obtained

2The reason is that their Wick products are based on the Gaussian structure of the forcing white noise ξ.
The recent breakthrough work of Martin Hairer [67] uses the Gaussian structure of the Ornstein-Uhlenbeck
process obtained by linearizing the KPZ equation, which does lead to the physical solutions.
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as follows. The stochastic heat equation (with multiplicative noise) is

∂tz = 1
2
∂2
xz − zξ. (38)

It has to be interpreted in the Itô sense, in which case it is well posed and for (reasonable)
initial data z0(x) ≥ 0 with

∫
z0(x)dx > 0 we have, for later times t > 0, z(t, x) > 0 for all

x (see Theorem 2.11). Bertini and Giacomin proposed that

h(t, x) = − log z(t, x) (39)

is the correct solution of KPZ. There are multiple reasons to support this.

(1) If ξ were a nice function, then h would solve (1). This is just the classic Hopf-Cole
transformation.

(2) Let’s see what happens when ξ is a white noise. We start with the solution z(t, x)
of (38) and smooth it out a bit in space, then look for the equation it satisfies.
For the computation we will need to assume we are in equilibrium. Let Gκ(x) =

1√
2πκ2

exp{−x2/2κ2} and

zκ(t, x) = 〈Gx,κ, z(t)〉 =
∫
Gκ(x− y)z(t, y)dy. (40)

Define hκ(t, x) = − log zκ(t, x). Then by Itô’s formula,

∂thκ + 1
2
(∂xhκ)

2 − 1
2
∂2
xhκ − ξ =

{
z−1
κ 〈Gx,κz, ξ〉 − ξ

}
+ 1

2
z−2
κ 〈G2

x,κ, z
2〉. (41)

For the first term, we can compute E[(
∫ ∫

ϕ(t, x){z−1
κ 〈Gx,κz, ξ〉 − ξ}dxdt)2] for a

smooth function ϕ of compact support by Itô isometry to get∫ ∫
E[(
∫ ϕ(t,y)Gκ(y−x)dy∫

Gκ(y−y′)z(t,y′)dy′ z(t, x)− ϕ(t, x))2]dxdt, (42)

which vanishes as κ↘ 0 by the continuity of z(t, x).
We now compute the last term. Define Jκ(x) = 2κ

√
πG2

κ(x) so that Jκ, κ > 0 is
a new approximate identity. The last term is

1
4
κ−1π−1/2

∫
Jκ(x− y)e2(h(y)−h(x))dy (

∫
Gκ(x− y)eh(y)−h(x)dy)−2. (43)

Because we are in equilibrium the h(y)−h(x) are Brownian increments and we can
make what is essentially a quadratic variation computation to get

1
2
z−2
κ 〈G2

x,κ, z
2〉 ∼ 1

4
κ−1π−1/2. (44)

The precise constant 1
2
π−1/2 just comes from the L2 norm of the Gaussian smooth-

ing. We could smooth with something else and get another constant.
So

∂thκ = − 1
2
[(∂xhκ)

2 − 1
2
κ−1π−1/2] + 1

2
∂2
xhκ + ξ + o(1). (45)

This gives our first precise form of (32).
(3) Suppose that instead of smoothing out z as above, we smooth out the white noise

(in space),

ξκ(t, x) =
∫
Gκ(x− y)ξ(t, y)dy.

Since the operation is linear ξκ(t, x) is still Gaussian. It’s mean is still zero and it
has covariance

E[ξκ(t, x)ξκ(s, y)] = Cκ(x− y)δ(t− s)
where

Cκ(x− y) =

∫
Gκ(x− u)Gκ(y − u)du.
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In particular, we have again

Cκ(0) = 1
2
κ−1π−1/2. (46)

Let zκ(t, x) be the solution of the stochastic heat equation with the smoothed noise

∂tz
κ = ∂2

xz
κ − zκξκ, t > 0, x ∈ R. (47)

It is not difficult to show that zκ → z uniformly on compact sets, and because
z(t, x) > 0 for t > 0, we can define

hκ(t, x) = − log zκ(t, x). (48)

and hκ(t, x) converge to h(t, x) = − log z(t, x). By Itô’s formula, we have

∂th
κ = − 1

2
[(∂xh

κ)2 − Cκ(0)] + 1
2
∂2
xh

κ + ξκ. (49)

Compare to (45).
(4) The Hopf-Cole solution is the one obtained by approximating KPZ by the free

energy of directed random polymers in the intermediate disorder limit and by the
height function of asymmetric exclusion [15] (see Section 2.11) in the weakly asym-
metric limit. Such limits are expected to hold for a large class of systems with
appropriate adjustable parameters. However, general proofs are not available at
this time (see [66] for recent partial results).

(5) The Hopf-Cole solution has the conjectured scaling exponents. The first proof of
this was [11] where it was shown that for the Hopf-Cole solution in equilibrium, i.e.
starting from a two sided Brownian motion, there are 0 < C1 ≤ C2 <∞ such that

C1t
1/3 ≤

√
Var(h(t, 0)) ≤ C2t

1/3. (50)

In these notes, we will also see that for special initial data one can go farther and
obtain the conjectured asymptotic fluctuations: For the narrow wedge initial data
(i.e. Dirac delta initial data for the stochastic heat equation) the FGUE asymptotics
were obtained in [3, 108, 107]; for half-Brownian initial data (i.e. initial data
eB(x)1x>0 for the stochastic heat equation) the asymptotics were obtained in [42].

The evidence for the Hopf-Cole solutions is now overwhelming. Whatever the physicists
mean by KPZ, it is them. The problem of proving well-posedness for (1)-(3) is now seen to
be of a very different nature from a problem like well-posedness for the 3-d incompressible
Navier-Stokes equations. In the present case, we know that the solution is the Hopf-Cole
solution. The problem is to find an appropriate definition of (1)-(3) which fits that solution,
and to prove the corresponding uniqueness. As these notes were being produced, a solution
to exactly this interpretation of the well-posedness problem has been announced by Martin
Hairer [67]3.

Note that in higher dimensions one also has the formal Hopf-Cole formula linking

∂th = −1
2
|∇h|2 + 1

2
∆h+ ξ (51)

with
∂tz = 1

2
∆z − zξ (52)

via
h(t, x) = − log z(t, x). (53)

3Technically, the results of [67] are for KPZ on [0, 2π) with periodic boundary conditions, and extending
them to R remains an open problem.
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Unfortunately, it can be checked that (52) does not have function valued solutions except
in one dimension. So (53) does not make sense.

Discrete versions do hold. In particular, the partition functions of directed polymers in
d + 1 dimensions satisfy discrete versions of (52), and their logarithm (the free energy)
satisfies a discrete version of (51). We now describe them.

1.9. Directed polymers in a random environment. The random environment is a
collection ξ(i, j) of independent identically distributed real random variables placed on the
sites i, j of Z+×Zd. Given a realization ξ(i, j) of the environment, the energy of an n-step
nearest neighbour walk x = (x1, . . . , xn) is

Hn(x) =
n∑
i=1

ξ(i, xi).

Nearest neighbour walk just means a sequence of integers xi, i = 0, 1, . . . , n, with xi+1 an
adjacent lattice site to xi. The polymer measure on such walks starting at x at time 0 and
ending at y at time n is then defined by

Px,n,y(x) =
1

Z(x, n, y)
e−βHn(x) P (x),

where β > 0 is a parameter called the inverse temperature, P is the uniform probability
measure on such walks, and Z(x, n, y) is the partition function

Z(x, n, y) =
∑

x

e−βH
ω
n (x)P (x) (54)

This is called the point-to-point polymer. If we do not specify the end point, we call
it the point-to-line polymer, and we call the partition function Z(n). We will usually
suppress the dependence on ξ and β except where it may cause confusion, in which case
we write things like Zβ(n). For each realization of the environment we have a probability
measure on random walk paths that prefers to travel through areas of low energy. Since
the environment is random, we have a random probability measure on random walk paths.

They were introduced by [71] as a model of domain walls in Ising systems and arise as
competition interfaces in multi-species growth [68]. There is a war between entropy (the
number of such walks) and the energy. At β = 0 the polymer measure is of course just
simple random walk, hence the walk is entropy dominated and exhibits diffusive behaviour.
For β large, the polymer measure concentrates on special low energy paths which are no
longer diffusive. Entropy domination is called weak disorder, and energy domination is
called strong disorder. The precise separation between these two regimes is usually defined
mathematically in terms of the positivity of the limit of the martingale e−nλ(β)Z(n) for
the point-to-line partition function, as n→∞, where λ(β) = E[e−βω]. The weak disorder
regime consists of β for which

lim
n→∞

e−nλ(β)Zβ(n) > 0,

whereas if the limit is zero then β is said to be in the strong disorder regime. For d ≥ 3,
it was shown early on [73, 19] that weak disorder holds for small β. Later, Comets and
Yoshida [36] showed that in every dimension there is a critical value βc such that weak
disorder holds for 0 ≤ β < βc and strong disorder for β > βc. In addition, for d = 1 and
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2 they prove that βc = 0. Understanding the polymer behaviour in the strong disorder
regime is the main goal. The paths are superdiffusive with (point-to-line case)

|x(n)| ∼ nζ

for n large, with transversal fluctuation exponent ζ > 1/2. For d = 1 the long-standing
conjecture is ζ = 2/3. For a long time, there were only non-sharp upper and lower bounds
for special models [35, 89, 99, 121, 122]. Note that the picture is very different from simple
random walk where the polymer endpoint is roughly uniformly distributed on an interval
of size

√
n. For each realization of the random environment, the polymer is localized near

a point of distance about nζ from the starting point. This point of course depends on the
random environment. So the randomness in the polymer endpoint is basically a function
of the random environment, and not the randomness of the random walk paths. Carmona
and Hu [29] and Comets et al [33] showed that there is a constant c0 = c0(β) > 0 such
that for the point-to-line

lim
n→∞

sup
x∈Z

P ω
n,β(x(n) = x) ≥ c0.

has probability one, in stark contrast to the simple random walk case where the supre-
mum decays like n−1/2. This is the best sort of rigorous mathematical statement of the
localization that we have.

Strong disorder also can be seen in the large time behaviour of the partition function.
There is a strict inequality

ρ(β) := lim
n→∞

1
n
logZβ(n) = lim

n→∞
1
n
E logZβ(n) < lim

n→∞
1
n
logEZβ(n) := λ(β) (55)

between the quenched and annealed free energies (the second equality is by a subadditivity
argument and some concentration estimates, see for example [29, 33]). ≤ is obvious. The
fact that it is strict was proved in d = 1 by Comets et al [34] (see also [85]). From (55)
the leading term behavior of the log of the partition function is ρ(β)n.

The randomness is conjectured to appear through the random second order term

logZβ(n) ∼ ρ(β)n+ c(β)nχX (56)

where χ is the longitudinal fluctuation exponent and X represents asymptotic fluctuations
of order 1. ζ and χ are supposed to satisfy the KPZ relation,

χ = 2ζ − 1. (57)

Partial rigorous results were obtained recently by Chatterjee [32] (see also [6]).
In the following we will only be interested in d = 1. The conjecture is χ = 1/3 and

ζ = 2/3. Results on ζ = 2/3 have recently been obtained in special models [11],[109].
The connection to KPZ is made through the following discrete stochastic heat equation,
satisfied by the partition function

Z(x, j + 1, y) =
1

2
e−βξ(j+1,y) [Z(x, j, y + 1) + Z(x, j, y − 1)] . (58)

1.10. Fluctuation breakthroughs of 1999. Now we turn to several models which are
in some sense solvable and which are the source of all conjectures about the asymptotic
fluctuations. Although these are truly mathematical results, we do not describe the math-
ematical details, but use the results to inspire the physical picture for KPZ.

Last passage percolation: Let ξ(i, j), (i, j) ∈ Z2
+, be independent and identically dis-

tributed random variables. An up/right path π from (1, 1) to (M,N) is a sequence
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(1, 1) = (i1, j1), (i2, j2), . . . , (im, jm) = (M,N), m = M+N−1, such that either ir+1−ir = 1
and jr+1 = jr, or ir+1 = ir and jr+1 − jr = 1. Set

G(M,N) = max
π

∑
(i,j)∈π

ξ(i, j), (59)

where the maximum is taken over all up/right paths π from (1, 1) to (M,N).
One can see that last passage percolation is a kind of zero temperature β → ∞ limit

of the directed polymer in random environment, with G(N,M) replacing the free energy,
together with a 45◦ rotation of time and space. In fact it satisfies an equation,

G(M,N) = max(G(M − 1, N), G(M,N − 1)) + ξ(M,N) (60)

reminiscent of the Ballistic Aggregation model (35). This is another discrete version of the
KPZ equation (not in the sense that it scales to the KPZ equation–there is no adjustable
parameter–but in the sense that it is a discrete model with the same structure, and which is
in the KPZ universality class.) If we had been careful, we could easily have defined discrete
polymers in a way that the last passage percolation is exactly the zero temperature limit.

If ξ(i, j) have the geometric distribution,

P (ξ(i, j) = k) = (1− q)qk, k ∈ {0, 1, 2, . . .}

this last passage percolation model can be seen as a discrete version of the polynuclear
growth model (PNG) [84], [100]. Let h(x, t) ∈ N denote the height above x ∈ Z at time
t ∈ N. The model is defined by the discrete KPZ equation

h(x, t+ 1) = max(h(x− 1, t), h(x, t), h(x+ 1, t)) + ξ̃(x, t), (61)

where ξ(x, t) are independent random variables for t ∈ Z+ and x ∈ Z which vanish
whenever x − t is even, and have the geometric distribution when x − t is odd. The
connection between last passage percolation and this discrete PNG model is that if ξ(i, j) =

ξ̃(i− j, i+ j − 1), then

G(i, j) = h(i− j, i+ j − 1). (62)

In this case we have a first example of an exact formula. K. Johansson [76] discovered
that if M ≥ N ,

P (G(M,N) ≤ s) = det(I −KN)L2(s,∞)

where

KN(x, y) =
κN−1

κN

pN(x)pN−1(y)− pN−1(x)pN(y)

x− y
(w(x)w(y))1/2. (63)

w(x) =

(
M −N + x

x

)
pN(x) are the Meixner polynomials, i.e. the normalized orthogonal polynomials pn(x) =
κnx

n + . . . with respect to the measure w(x)dx.
By taking appropriate asymptotic limits of this formula one obtains

G(N,N) ∼ c1N + c2N
1/3ζ (64)

where ζ has the GUE Tracy-Widom distribution,

P (ζ ≤ s) = FGUE(s) = det(I −KAi)L2(s,∞) (65)
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where the Airy kernel

KAi(x, y) =

∫ 0

−∞
Ai(x− λ)Ai(y − λ)dλ. (66)

is the projection onto the negative eigenspace of the Airy operator

H = −∂2
x + x (67)

and det(I +A)L2(Ω,dµ) is the Fredholm determinant of the operator A with integral kernel
A(x, y) on L2(Ω, dµ) (i.e. Af(x) =

∫
Ω
A(x, y)f(y)dµ(y)) defined by the formula of H. von

Koch,

det(I + A) = 1 +
∞∑
n=1

1

n!

∫
Ωn

det(A(xi, xj))
n
i,j=1

n∏
i=1

dµ(xi) (68)

which was used by I. Fredholm to establish the criteria det(I + A) 6= 0 for solvability of
(I + A)f = g, and is now called the Fredholm expansion (see [13]). A must be compact,
though it need not be symmetric for this to make sense. The series on the right hand side
does converge whenever A is trace-class, i.e.

‖A‖1 = tr(|A|) <∞ (69)

where |A| =
√
A∗A, in which case, as expected,

det(I + A) =
∏
n

(1 + λn(A)) (70)

where λn(A) are the eigenvalues of A, counted with multiplicity [110].
The remarkable thing is that the fluctuations are the same as those of the largest

eigenvalue λmax
N of a matrix from the Gaussian unitary ensemble (GUE), i.e. a Herme-

tian N × N matrix aij = aji, i, j = 1, . . . , N such that for i < j, aij is distributed as

N (0,
√
N/2) + iN (0,

√
N/2) and on the diagonal i = j, aii is distributed as N (0,

√
N)

where N (a, b) means Gaussian (=normal) mean 0 and variance b. The aii and the real

and imaginary parts of the aij are all independent. The
√
N is an arbitrary normaliza-

tion which makes the analogy with growth models more transparent. Alternatively, the
probability measure on the space of Hermitian matrices is

Z−1
N e−

1
2N

TrA2
N∏
i=1

daii

N∏
i<j=1

dReaijdImaij. (71)

By the Wigner semicircle law, the spectrum has approximately a semicircle density on
[−2N, 2N ] and

λmax
N ∼ 2N +N1/3ζ (72)

where ζ has the same GUE Tracy-Widom distribution.
That the fluctuations of a random growth model are the same as those of the top

eigenvalue of a GUE matrix came as a surprise. New results came quickly on a number
of solvable models, and physicists predicted sweeping generalizations of the fluctuation
results to the KPZ universality class.

In the totally asymmetric case p = 0, q = 1 [76] (and much later in the asymmetric case
p > 0, p + q = 1 [116]) the fluctuations of asymmetric exclusion were also shown to be
asymptotically FGUE: Let q − p ∈ (0, 1] and start with h(0, x) = |x|, then

h( t
q−p , 0) ∼ t

2
− 2−1/3t1/3ζ (73)
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where ζ is GUE Tracy-Widom. Note that as usual what we mean by this expression is

really limt→∞ P
(h(

t
q−p ,0)− t

2
2−1/3t1/3

≥ −s
)

= FGUE(s).
In fact, the result mentioned above for geometric last passage percolation followed an

earlier result [7] for the longest increasing subsequence of a random permutation, which can
be thought of as a growth model in an analogous way. In this context J. Baik and E. Rains
studied the analogue of the point-to-line polymer, and discovered that the fluctuations were
also of size N1/3, but now governed asymptotically by the FGOE Tracy-Widom distribution
for the Gaussian Orthogonal Ensemble,

FGOE(s) = det(I − P0BsP0)L2(R) (74)

where

Bm(x, y) = Ai(x+ y +m) (75)

and Pa is the projection onto L2(a,∞) [54].
If we consider the largest eigenvalue λmax

N of a matrix from the Gaussian orthogonal
ensemble (GOE), i.e. the probability measure on the space of real symmetric matrices is

Z−1
N e−

1
2N

TrA2
N∏

i≤j=1

daij. (76)

As before we have

λmax
N ∼ 2N +N1/3ζ (77)

but now ζ has the FGOE distribution.
Adjusting boundary conditions so that they correspond to being flat on one side and

curved on the other, Baik and Rains obtain a family of distributions interpolating between
FGUE distribution and the FGOE distribution. Starting with equilibrium (Brownian like)
boundary conditions, they discover a new universal distribution which they call F0 (see
[10]).

Here we have only scratched the surface of the solvable models. For nice review articles
the reader is directed to [53], [56], [78], especially for the relation between last passage
percolation and the RSK (Robinson-Schensted-Knuth) correspondence. A very recent
article [41] discusses many such exact formulas in the context of the tropical version of
RSK (see also [21] for very general results about solvability in this context.)

All the one-point distributions were then generalized to many space points. The resulting
universal spatial fluctuation processes are called the Airy processes.

1.11. The Airy processes. These stochastic processes are defined through their finite
dimensional distributions, which are given by Fredholm determinants. Note that this is
quite different from being a determinental process. However, there is some connection. The
Airy processes are derived from exact formulas for TASEP and PNG which come from them
being parts of determinental processes. In particular, they are top lines of non-intersecting
line ensembles, whose determinental structure comes from the Karlin-McGregor formula.

The Airy2 process A2(x), x ∈ R. Given λ0, . . . , λn ∈ R and x0 < · · · < xn in R, the
finite dimensional distributions are given by

P (A2(x0) ≤ λ0, . . . ,A2(xn) ≤ λn) = det(I − f1/2Kextf
1/2)L2({x0,...,xn}×R), (78)

where we have counting measure on {x0, . . . , xn} and Lebesgue measure on R, f is defined
on {x0, . . . , xn} × R by f(xj, λ) = 1λ∈(λj ,∞), and the extended Airy kernel [102, 59, 87] is
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defined by

Kext(x, ξ;x
′, ξ′) =

{∫∞
0
ds e−s(x−x

′)Ai(ξ + s)Ai(ξ′ + s), if x ≥ x′∫ 0

−∞ ds e
−s(x−x′)Ai(ξ + s)Ai(ξ′ + s), if x < x′,

The Airy2 process is the dynamical version of FGUE in the following sense. The Dyson
Brownian motion is a stationary time dependent version of the ensemble which has the
GUE as its distribution at every time. The matrices evolve according to the Ornstein-
Uhlenbeck process given by the Langevin equation,

dA(x) = − 1
2N
A(x)dx+ dB(x) (79)

where Bii(x), i = 1, . . . , N , ReBij(x), ImBij, i < j = 1, . . . , N are independent Brownian
motions, the first with diffusion coefficient 1 and the latter two with diffusion coefficients
1/2. The largest eigenvalue λmax

N (x) of A(x) is now a function of x and

λmax
N (t) ∼ 2N +N1/3A2(x). (80)

A generalization has the sequence of x dependent eigenvalues converging to a non-intersecting
line ensemble called the Airy line ensemble [40]. It was originally derived from the PNG
model by M. Prähofer and H. Spohn [101] (see also [77]). There is also a variant of (78)
due to [102],

P (A2(x0) ≤ λ0, . . . ,A2(xn) ≤ λn)

= det
(
I −KAi + P̄λ0e

(x0−x1)HP̄λ1e
(x1−x2)H · · · P̄λne(xn−x0)HKAi

)
, (81)

P̄a = 1 − Pa is the projection onto L2(−∞, a]. Airy2 governs the asymptotic spatial
fluctuations in growth models starting from curved initial data and point-to-point random
polymers

The Airy1 process A1(x) is another stationary process, whose one-point distribution is
now FGOE. It is defined through its finite-dimensional distributions, given by a determi-
nantal formula: for λ1, . . . , λn ∈ R and x1 < · · · < xn in R,

P (A1(x1) ≤ λ1, . . . ,A1(xn) ≤ λn) = det(I − f1/2Kext
1 f1/2)L2({x1,...,xn}×R), (82)

where we have counting measure on {x1, . . . , xn} and Lebesgue measure on R, f is defined
on {x1, . . . , xn} × R by f(xj, λ) = 1λ∈(λj ,∞) and

Kext
1 (x, ξ;x′, ξ′) = − 1√

4π(x′ − x)
exp

(
− (ξ′ − ξ)2

4(x′ − x)

)
1x′>x (83)

+Ai(ξ + ξ′ + (x′ − x)2) exp

(
(x′ − x)(ξ + ξ′) +

2

3
(x′ − x)3

)
. (84)

The finite-dimensional distributions of the Airy1 process are also given by the following
formula: for λ1, . . . , λn ∈ R and x1 < · · · < xn in R,

P (A1(x1) ≤ λ1, . . . ,A1(xn) ≤ λn) (85)

= det
(
I −B0 + P̄λ1e

−(x1−x2)∆P̄λ2e
−(x2−x1)∆ · · · P̄λne−(xn−x1)∆B0

)
L2(R)

. (86)

Note however, that it is not true that the Airy1 process is the limit of the largest
eigenvalue process in the matrix valued diffusion for GOE [20] (and it is an open problem
what is.) Airy1 arises in growth models starting from flat initial data and point-to-line
random polymers [105],[23].
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The Airystat processAstat(x) is the equilibrium analogue of the Airy1 and Airy2 processes.
It has finite dimensional distributions [8]

P (Astat(x1) ≤ λ1, . . . ,Astat(xn) ≤ λn) =
n∑
k=1

∂

∂λk

(
gn(x, λ) det

(
I − f1/2K̂Aif

1/2
)
L2({x1,...,xn}×R)

)
(87)

where

K̂Ai((i, ξ), (j, ξ
′)) =


∫ ∞

0

dsAi(ξ + s+ x2
i )Ai(ξ′ + s+ x2

j)e
−s(xj−xi), if xi ≤ xj,

−
∫ 0

−∞
dsAi(ξ + s+ x2

i )Ai(ξ′ + s+ x2
j)e
−s(xj−xi), if xi > xj.

(88)
The function gn(x, λ) is defined by

gn(x, λ) = R+
n∑
i=1

n∑
j=1

∫ ∞
λi

du

∫ ∞
λj

du′Ψj(u
′)ρj,i(u

′, u)Φi(u), (89)

where
ρ := (I − f1/2K̂Aif

1/2)−1, ρj,i(u
′, u) := ρ((j, u′), (i, u)), (90)

and Φ((i, λ)) := Φi(λ), Ψ((j, λ)) = Ψj(λ). The functions R, Φ, and Ψ are defined by

R =λ1 + e−
2
3
x31

∫ ∞
λ1

du

∫ ∞
0

du′Ai(u+ u′ + x2
1)e−x1(u+u′),

Ψj(λ) = e
2
3
x3j+xjλ −

∫ ∞
0

duAi(u+ λ+ x2
j)e
−xju,

Φi(λ) = e−
2
3
x31

∫ ∞
0

du

∫ ∞
λ1

du′ e−u(x1−xi)e−x1u
′
Ai(λ+ x2

i + u)Ai(u′ + x2
1 + u)

+1[i≥2]
e−

2
3
x3i−xiλ√

4π(xi − x1)

∫ λ1−λ

−∞
du′ e

− (u′)2
4(xi−x1) −

∫ ∞
0

du′Ai(u′ + λ+ x2
i )e

xiu
′
.

(91)

for i, j = 1, 2, . . . , n. The marginal Astat(0) has the Baik-Rains distribution F0 [9], [55].
Unlike the previous two, the Airystat process is not stationary. In fact, because of the
invariance of Brownian motion, it is nothing but a two sided Brownian motion with a
height shift Astat(0). The complication, of course, is that the height shift and the Brownian
motion are highly dependent.

These are the three most basic Airy processes, but there are are three more obtained
from data which is, say curved to one side of the origin and flat on the other side (the
Airy2→1 process A2→1(x)), or curved on one side and Brownian on the other (the Airy2→BM
process A2→BM(x)), or flat on one side and Brownian on the other (the Airy1→BM process
A1→BM(x)). They look like one of the three basic ones far to one side, and the other far
to the other side, e.g. A2→1(x) → A2(x) as x → −∞ and A2→1(x) → A1(x) as x → ∞,
and the one dimensional distributions Fx(s) = P (A2→1(x) ≤ s) interpolates between
FGUE and FGOE. The other two look like Brownian motion with a non-trivial height shift
asymptotically in one direction, but this is not really Astat(x) because the height shift
there is very particular. Of course, because of the statistical x 7→ −x symmetry of KPZ,
or the stochastic heat equation, if one starts, say, with initial data curved on the right
hand side and flat one the left, one expects asymptotically to have spatial fluctuations
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A2→1(−x). The finite dimensional distributions of the mixed Airy processes are also given
by Fredholm determinants (those for Airy2→BM can be found in [72], for Airy2→1 in [24],
and for Airy1→BM in [25], in which it is the process A2→1,M,κSν with M = 1 and κ = 0, the
single slow particle simulating Bernoulli 1/2 to the right of the origin and flat to the left.)

1.12. Predicted fluctuations for the KPZ universality class. Extrapolating from
the exact results for TASEP and PNG, the conjectural picture that has developed is that
the universality class is divided into sub-universality classes which depend on the initial
data class, but not on other details of the particular models. Because of their self-similarity
properties, the three basic initial data are, at the level of continuum partition functions
(taking logarithms gives free energies or height functions): Dirac δ0, corresponding to
curved, or droplet type initial data; 0, corresponding to growth off a flat substrate; and
eB(x) where B(x) is a two sided Brownian motion, corresponding to growth in equilibrium.
Of course, in discrete models of various types one is dealing with discrete approximations
of such initial data. There are also three additional non-homogeneous sub-universality
classes corresponding to starting with one of the basic three on one side of the origin, and
another on the other side. The spatial fluctuations in these six basic classes of initial data
are supposed to be given asymptotically by the six known Airy processes.

We will state the conjectures in terms of the Hopf-Cole solution h(t, x) = − log z(t, x)
of KPZ where z(t, x) is the solution of the stochastic heat equation (38) with prescribed
initial data. This is because the initial data are most transparent in that context. All
the models in the universality class have an analogue of the height function for which the
conjectures are expected to hold.

1. Curved, corresponding to initial data z(0, x) = δ0, i.e. KPZ starting from narrow
wedge initial condition,

−21/3t−1/3(h(t, 21/3t2/3x)− 2−1/3t1/3x2 − t
24
− log

√
2πt)→ A2(x). (92)

More generally, it will hold for KPZ growth with curved initial data and point-to-point
directed random polymers, with new non-universal constants. The factors 21/3 represent a
the change from the standard choice of normalization in random matrices to the standard
choice in growth models. The non-universal constants can be computed in cases where the
flux function is known explicitly [111]. So far, this is only the case in models with explicit
invariant measures.

2. Flat, corresponding to initial data z(0, x) = 1, i.e. KPZ starting from h(0, x) = 0,

−21/3t−1/3(h(t, 21/3t2/3x)− t
24

)→ A1(x). (93)

More generally, it will hold for KPZ growth on asymptotically flat substrates, point-to-line
directed random polymers, etc.

3. Equilibrium, corresponding to z(0, x) = eB(x) where B(x) is a two-sided Brownian
motion,

−21/3t−1/3(h(t, 21/3t2/3x)− t
24

)→ Astat(x). (94)

There are completely analogous conjectures in the three transitional cases. Since we will
use it, we state the Airy2→BM case.

4. Half-Brownian, corresponding to initial data z(0, x) = 1x>0e
B(x), i.e. KPZ starting

from half-Brownian initial conditions,

−21/3t−1/3(h(t, 21/3t2/3x)− 2−1/3t1/3x2 − t
24

)→ A2→BM(x). (95)
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All the conjectures are known only in a few special solvable models with determinental
structure, even at the level of one-point distributions. Therefore it was a considerable
surprise when exact results involving Fredholm determinants became available for the
asymmetric exclusion process, which is not of this type.

1.13. Tracy-Widom formulas for ASEP. In a series of articles starting with [114,
115] C. Tracy and H. Widom developed exact contour integral formulas for the transition
probabilities of ASEP with a finite number of particles (ASEP is described in detail in
Section 2.14.) The formula for n particles is written in terms of an n-fold contour integral.
It was a great surprise that in the special case where one starts with all sites to the left
of the origin initially empty, and with Bernoulli product measure, density ρ to the right
of the origin, one obtains an exact formula for the one-point distribution of the height
function, involving a Fredholm determinant. The first formula was for the case ρ = 1,
i.e. with initial height function h(0, x) = |x|, called the corner growth model. The second
formula was for the case ρ < 1, called step Bernoulli. We state them together. Recall that
h(t, x), t ≥ 0, x ∈ Z is the height function for ASEP with local minima jumping to local
maxima at rate q and local maxima jumping to local minima at rate p.

Theorem 1.1. [116],[117] Let q > p with q + p = 1, γ = q − p, τ = p/q, α = (1 − ρ)/ρ.
For m = b1

2
(s+ x)c, t ≥ 0 and x ∈ Z

P (h(t, x) ≥ s) =

∫
Sτ+

dµ

µ

∞∏
k=0

(1− µτ k) det(I + µJµ)L2(Γη) (96)

where Sτ+ is a circle centered at zero of radius strictly between τ and 1, and where the
kernel of the determinant is given by

Jµ(η, η′) =

∫
Γζ

exp{Λ(ζ)− Λ(η′)}f(µ, ζ/η′)

η′(ζ − η)

g(η′)

g(ζ)
dζ (97)

where

f(µ, z) =
∞∑

k=−∞

τ k

1− τ kµ
zk

Λ(ζ) = −x log(1− ζ) +
tζ

1− ζ
+m log ζ

g(ζ) =
∞∏
n=0

(1 + τnαζ). (98)

The contours are as follows: η and η′ are on Γη, a circle symmetric about the real axis and
intersecting it at −α−1 + 2δ and 1− δ for δ small. And the ζ integral is on Γζ, a circle of
diameter [−α−1 + ς, 1 + ς]. One should choose ς so as to ensure that |ζ/η| ∈ (1, τ−1). This
choice of contour avoids the poles of g which are at −α−1τ−n for n ≥ 0. In the corner
growth case this last point is unnecessary as g(η′)/g(ζ) = 1.

Note that the formulas are very similar in structure, except that the step Bernoulli case

has the extra g(η′)
g(ζ)

.

It was known [15] that the Hopf-Cole solutions of KPZ could be obtained by diffusively
rescaling ASEP with q very close to p. Hence, results for KPZ could be lifted from ASEP
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results if one could do the appropriate asymptotics. All exact results for KPZ that are
known have been obtained in this fashion.

1.14. Exact results for KPZ. We now state some of the mathematical results we can
obtain for the KPZ equation. The first one did not use exact formulas, and only gives the
size of fluctuations in equilibrium.

Theorem 1.2 (Equilibrium. [11]). Let z(t, x) be the solution of the stochastic heat equation
(38) with initial data z(0, x) = eB(x). Let h(t, x) = − log z(t, x) be the corresponding
solution of KPZ. There are constants 0 < c1 < c2 <∞ such that

c1t
2/3 ≤ Var(h(t, 0)) ≤ c2t

2/3. (99)

The proof of Theorem 1.2 proceeds via formulas which relate the variance of the height
function to the variance of a second class particle in the exclusion processes. These are
then studied using coupling arguments. The main problem is to keep all the estimates
appropriately uniform in the weakly asymmetric limit when q and p are close. We will not
go into details here. The interested reader can consult [11] and references therein.

The following exact formula is obtained by studying the weakly asymmetric limit of the
Tracy-Widom formula for the corner growth model by steepest descent.

Theorem 1.3. [3], [108] Let z(t, x) be as in the previous theorem and let h(t, x) =
− log z(t, x) and define

Ft(s) = P (h(t, x) + x2

2t
+ log

√
2πt+ t

24
≥ −s). (100)

Ft(s) does not depend on x and is given by the crossover formula

Ft(s) =

∫
C

dµ

µ
e−µ det(I −Kσt,µ)L2(κ−1

t s,∞) (101)

where κt = 2−1/3t1/3, C is a contour positively oriented and going from +∞ + εi around
R+ to +∞− iε, and Kσ is an operator given by its integral kernel

Kσ(x, y) =

∫ ∞
−∞

σ(τ)Ai(x+ τ)Ai(y + τ)dτ, and σt,µ(τ) =
µ

µ− e−κtτ
. (102)

The last formula was derived independently and at the same time by the two groups
using the same method. [3] provided a complete proof. [108] derived the exact formula,
and provided numerical plots of the new distribution functions. In addition, they compute
the long-time correction to FGUE and provide extensive physical context. However, at
several key points in the argument, they proceed without mathematical justification. First
in the weakly asymmetric limit, where existing results of [15] did not apply in the needed
context. In fact, a logarithmic shift is necessary, as will be explained later in these notes.
[108] determine the needed size of the shift by matching first moments, but do not provide
further justification. In particular, they do not show that the resulting distributions are
non-degenerate. The second key point is that [108] deform contours during the asymptotic
analysis in order to end up with a nice formula (the limiting contours should be the nice
ones for the Airy functions). However, during the asymptotics, a diverging number of
residues builds up as poles pass through these contours. The resulting correction to the
formula should, in principle, be enormous. They are ignored in [108]. Seredipidously,
the sum of poles turns out to vanish. But we only knows this because these issues were
addressed rigorously, at the same time, in the complete proof of [3].
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Next we turn to the case of half Brownian initial data, as in (95). We can prove this in
the sense of one dimensional marginals, by taking the t → ∞ limit in another surprising
exact formula.

Theorem 1.4. [42] Let h(t, x) be the Hopf-Cole solution of KPZ starting from half-
Brownian initial data. Let

F edge
t,x (s) := P

(
h(t, 21/3t2/3x)− t

24

t1/3
≥ 2−1/3x2 − s

)
. (103)

Then

F edge
t,x (s) =

∫
C̃
e−µ̃

dµ̃

µ̃
det(I −Kedge

s )L2(Γ̃η).

The contour C̃ is given as

C̃ = {eiθ}π/2≤θ≤3π/2 ∪ {x± i}x>0

The contours Γ̃η, Γ̃ζ are given as

Γ̃η = {2−7/3 + ir : r ∈ (−∞,−1) ∪ (1,∞)} ∪ Γ̃dη (104)

Γ̃ζ = {−2−7/3 + ir : r ∈ (−∞,−1) ∪ (1,∞)} ∪ Γ̃dη, (105)

where Γ̃dζ is a dimple which goes to the right of xt−1/3 and joins with the rest of the contour,

and where Γ̃dη is the same contour just shifted to the right by distance 2−4/3. The kernel

Kedge
s acts on the function space L2(Γ̃η) through its kernel:

Kedge
s (η̃, η̃′) = (106)∫

Γ̃ζ

exp{− t
3

(ζ̃3 − η̃′3) + st1/3(ζ̃ − η̃′)}π21/3(−µ̃)−21/3(ζ̃−η̃′)

sin(π21/3(ζ̃ − η̃′))
Γ(21/3ζ̃ − 21/3xt−1/3)

Γ(21/3η̃′ − 21/3xt−1/3)

dζ̃

ζ̃ − η̃
where Γ(z) is the Gamma function.

In Section 2.16 we describe the steepest descent analysis necessary to obtain the previous
two results from the Tracy-Widom formulas. From the exact formulas an easy asymptotics
gives

Corollary 1.5. [3, 42] (92) and (95) hold in the sense of converges of one-dimensional
distributions.

In the first case, this resolves the basic conjecture for KPZ that for the narrow wedge
initial data, for each x, −21/3t−1/3(h(t, x) − x2/2t − t

24
− log

√
2πt) converges in distribu-

tion to FGUE, which is a refined statement that the KPZ equation is indeed in the KPZ
universality class.

In a remarkable concurrent development, the FGUE and FGOE fluctuations were observed
in experiments of nematic liquid crystals by K.A. Takeuchi and M. Sano [112, 113].

1.15. KPZ universality, or universality of KPZ?. All of the models described in this
section, as well as the KPZ equation, are believed to be members of the KPZ universality
class, in the sense that they should have the scaling exponent z = 3/2, and, at a more
refined level, the correct fluctuations (GUE/Airy2, GOE/Airy1, Baik-Rains/Brownian mo-
tion) at the scale (30) depending on the initial conditions (curved, flat, equilibrium). We
have sketched above what is proved for special cases.
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There is another, much more restrictive, type of universality, that of the KPZ equation
itself. As we will see, it arises when one takes a continuum limit of cutoff models, while
making at the same time a critical adjustment of the non-linearity. Not all models have
such an adjustable non-linearity. Asymmetric exclusion does, the parameter being q − p.
There is also a large class of generalized asymmetric exclusion models, which do [66]. All
directed polymers do, the parameter being β. LPP does not, and, as far as we can tell,
PNG does not. These limits are described in Section 2.11. The exact results for KPZ
then mean that we can obtain weak versions of some of the universality conjectures (see
Corollary 2.20). This is the advantage of the KPZ equation over other models in the
universality class.

1.16. KPZ fixed point. All the fluctuations, for all these models, are observed under the
rescaling,

hε(t, x) = (Rεh)(t, x) := ε1/2h(ε−3/2t, ε−1x) (107)

after subtraction of appropriately diverging quantities.
If we started with the standard KPZ, this would satisfy the KPZ with renormalized

coefficients,

∂thε = 1
2
(∂xhε)

2 + ε1/2 1
2
∂2
xhε + ε1/4ξ. (108)

Now we ask what happens as ε → 0. The limiting process should contain all the
fluctuation behaviour we have observed so far. It is the fixed point of the renormalization
(107). Presumably, it contains a lot of the integrable structure. So far, we do not know
much about it. The rest of this section consists of conjectures [43].

We define the KPZ fixed point h as the ε→ 0 limit of the properly centered process h̄ε.
Note that we do not know in general that such a limit exists4. We now give a conjectural
construction of the limiting object.

Let h(u, y; t, x) be the solution of (1) for times t > u started at time u with a delta
function at y, all using the same noise. To center, set h̄(u, y; t, x) = h(u, y; t, x) − t−u

24
−

log
√

2π(t− u) and define A1 by

h̄(u, y; t, x) = − (x−y)2

2(t−u)
+ A1(u, y; t, x).

After the rescaling (107),

Rεh̄(u, y; t, x) = − (x−y)2

2(t−u)
+ Aε(u, y; t, x)

where Aε = RεA1. The Rε acts on the two pairs of variables here. As ε→ 0, Aε(u, y; t, x)
converges to the Airy sheet A(u, y; t, x). In each spatial variable it is an Airy2 process. It
has several nice properties:

(1) Independent increments. A(u, y; t, x) is independent of A(u′, y; t′, x) if (u, t) ∩
(u′, t′) = ∅;

(2) Space and time stationarity. A(u, y; t, x)
dist
= A(u+h, y; t+h, x)

dist
= A(u, y+z; t, x+

z);

(3) Scaling. A(0, y; t, x)
dist
= t1/3A(0, t−2/3y; 1, t−2/3x);

4Partial results have been obtained for Poissonian last passage percolation [30]. There one can obtain the
necessary tightness, which means that such an object exists. What is missing is its uniqueness, and, more
generally the universality.
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(4) Semi-group property. For u < s < t,

A(u, y; t, x) = supz∈R
{ (x−y)2

2(t−u)
− (z−y)2

2(s−u)
− (x−z)2

2(t−s)

+A(u, y; s, z) +A(s, z; t, x)
}
. (109)

Using A(u, y; t, x) we construct the KPZ fixed point h(t, x). By the Hopf-Cole transfor-
mation and the linearity of the stochastic heat equation, the rescaled solution of (1) with
initial data h0 is

Rεh(t, x) = ε1/2 ln

∫
eε
−1/2{−

(x−y)2

2t
+Aε(0,y;t,x)+Rεh0(y)}dy. (110)

If we choose initial data h0
ε so that Rεh

0
ε converges to a fixed function f in the limit, we

can use Laplace’s method to evaluate h(t, x) = limε→0Rεh(t, x) = T0,tf(x) where

Tu,tf(x) := supy

{
− (x−y)2

2(t−u)
+A(u, y; t, x) + f(y)

}
. (111)

The operators Tu,t, 0 < u < t form a semi-group, i.e. Tu,t = Tu,sTs,t which is stationary

with independent increments and T0,t
dist
= R−1

t−2/3T0,1Rt−2/3 .
By the Markov property, the joint distribution of the marginal spatial process of h (for

initial data f) at a set of times t1 < t2 < · · · < tn is given by

(h(t1), . . . , h(tn))
dist
= (T0,t1f, . . . , Ttn−1,tn · · ·T0,t1f).

The process of randomly evolving functions can be thought of as a high dimensional ana-
logue of Brownian motion (with state space Brownian motions!), and the Tti,ti+1

as analo-
gous to the independent increments.

The solution of (1) corresponds to the free energy of a directed random polymer x(s),
u < s < t starting at y and ending at x, with quenched random energy

H(x(·)) =
∫ t
u
{|ẋ(s)|2 − ξ(s, x(s))}ds. (112)

Under the rescaling (7) this probability measure on paths converges to the polymer fixed
point; a continuous path πu,y;t,x(s), u ≤ s ≤ t from y to x which at discrete times u = s0 <
· · · sm−1 < t is given by the argmax over x0, . . . , xm−1 of

(Tu,s1δy)(x1) + (Ts1,s2δx1)(x2) + · · ·+ (Tsm−1,tδxm−1)(x). (113)

This is the analogue in the present context of the minimization of the action and the
polymer fixed point paths are analogous to characteristics in the randomly forced Burger’s
equation. One might hope to take the analogy farther and find a limit of the renormal-
izations of (112), and minimize it to find that path πu,y;t,x. However, the limit does not
appear to exist, so one has to be satisfied with the limiting paths themselves. The path
π0,y;t,x turns out to be Hölder continuous with exponent 1/3−, as compared to Brownian
motion where the Hölder exponent is 1/2−. As the mesh of times is made finer, a limit
E(π0,y;t,x) of (113) does exist, and through it we can write the time evolution of the KPZ
fixed point in terms of the polymer fixed point through the analogue of the Lax-Oleinik
variational formula,

h(t, x) = supy∈R{E(π0,y;t,x) + f(π0,y;x,t(0))}. (114)

The KPZ fixed point, Airy sheet, and polymer fixed point are universal and will arise
in random polymers, last passage percolation and growth models – anything in the KPZ
universality class. Just as for (1), at the microscopic scale, approximate versions of the
variational problem (111) hold, becoming exact as ε→ 0.
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2. A mathematical introduction

In the following sections we give a rigorous introduction to white noise and the stochastic
heat equation. This will give us a chance to introduce many of the key concepts in sto-
chastic pde (for alternate surveys see [97], [45].) Following that we sketch the proofs that
discrete models converge to the stochastic heat equation, and the corresponding limit of the
Tracy-Widom step Bernoulli formula, which then leads to the edge crossover distributions.
So we now switch from heuristics to rigorous mathematics.

2.1. White noise and stochastic integration in 1+1 dimensions. White noise ξ(t, x),
t ≥ 0, x ∈ R is the distribution valued Gaussian process with mean zero and covariance

E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y). (115)

More precisely, for any smooth function f of compact support we can write5∫
R+×R

f(t, x)ξ(t, x)dxdt, (116)

and the random variables {
∫
R+×R f(t, x)ξ(t, x)dxdt}f∈L2(R+×R) are jointly Gaussian with

mean zero and covariance

E[

∫
R+×R

f1(t, x)ξ(t, x)dxdt

∫
R+×R

f2(t, x)ξ(t, x)dxdt] =

∫
R+×R

f1(t, x)f2(t, x)dxdt. (117)

There are many ways to construct it. One way is to choose an orthonormal basis f1, f2, . . .
of L2(R+ × R), and independent Gaussian random variables Z1, Z2, . . ., each with mean
zero and variance one, and write

ξ(t, x) =
∞∑
n=1

Znfn(t, x). (118)

One can check the resulting object makes sense as an element of the negative Sobolev
space H−1−δ,loc(R+ × R) for δ > 0.

We assume that our white noise has been constructed on a probability space (Ω,F , P ).
This could be in the way described above, or some other way. We now start to construct
stochastic integrals. For non-random functions this is easy. We have done it in (116) for
smooth functions of compact support in R+ × R. If f ∈ L2(R+ × R) then we define∫

R+×R
f(t, x)ξ(t, x)dxdt (119)

by approximation. Indeed, there are smooth functions fn of compact support in R+ × R,
with ∫

R+×R
|fn(t, x)− f(t, x)|2dxdt→ 0. (120)

The fn are therefore Cauchy in L2(R+ × R). But by (117) we have

E[(

∫
R+×R

(fn(t, x)− fm(t, x))ξ(t, x)dxdt)2] =

∫
R+×R

|fn(t, x)− fm(t, x)|2dxdt (121)

5We will always use the natural notation
∫
fg when f is a smooth test function and g is a distribution.
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so
∫
R+×R fn(t, x)ξ(t, x)dxdt is a Cauchy sequence in L2(Ω,F , P ), and therefore has a limit.

Hence (119) exists as a limiting object in L2(Ω,F , P ) because of the completeness of that
space.

However, we will also need to integrate random functions, in particular functions which
depend on the white noise ξ. It is here that things become a little more complicated, and,
as in the one dimensional case, one has to make a choice of integral.

We now define the stochastic integral we need. Because we are dealing with a parabolic
type stochastic partial differential equation, the time and space directions are treated
differently. Our stochastic integral is basically the standard Itô integral, but only in the
time variable. As in the one dimensional case we start with the simplest integrators and
build the integral by approximation.

For smooth functions ϕ on R with compact support and t > 0 we can define∫
R+×R

1(0,t](s)ϕ(x)ξ(s, x)dxds. (122)

For each fixed ϕ, it is a Brownian motion in t, with variance
∫
ϕ2(x)dx, i.e.the Gaussian

process with mean zero and covariance from (117),

E[

∫
1(0,t1](s)ϕ(x)ξ(s, x)dxds

∫
1(0,t2](s)ϕ(x)ξ(s, x)dxds] = min(t1, t2)

∫
ϕ2(x)dx. (123)

Let F0 = ∅ and for each t > 0, define Ft to be the σ−field generated by{∫
1(0,s](u)ϕ(x)ξ(u, x)dxdu

}
, 0 ≤ s ≤ t, ϕ a smooth function of compact support on R.

Fs ⊆ Ft if s ≤ t, i.e. Ft is a filtration in F .
Let S be the set of functions of the form

f(t, x, ω) =
n∑
i=1

Xi(ω)1(ai,bi](t)ϕi(x) (124)

where Xi is a bounded random variable measurable with respect to Fai , 0 ≤ ai ≤ bi <∞
and ϕi are smooth function of compact support on R. For f ∈ S we define the stochastic
integral as ∫

R+×R
f(t, x)ξ(t, x)dxdt =

n∑
i=1

Xi

∫
R+×R

1(ai,bi](t)ϕi(x)ξ(t, x)dxdt. (125)

the important point is that the time increment sticks out into the future. For such inte-
grators one easily checks the linearity of the integral and the isometry

E

[(∫
R+×R

f(t, x)ξ(t, x)dxdt

)2
]

=

∫
R+×R

E[f 2(t, x)]dxdt. (126)

Let P denote the sub-σ−field of B(R+×R)×F generated by S. Let L2(R+×R×Ω,P)
be the linear subspace of f(t, x, ω) measurable with respect to P and square integrable.
These will be our integrators. Like all Itô integrals the key point is that they are in some
sense “non-anticipating”, i.e. f(t, x, ω) only depends on the information Ft up to time t.
We construct the stochastic integral for them through the isometry, by approximation, so
we need the following

Lemma 2.1. S is dense in L2(R+ × R× Ω,P).
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Proof. The proof is the same as the one dimensional case. If f ∈ L2(R+×R×Ω,P), then
fn = f1|f |≤n,t≤n are bounded, supported on t ≤ n and measurable with respect to P and
‖f − fn‖L2(R+×R×Ω,P) → 0 by the monotone convergence theorem. If f is bounded and
measurable with respect to P, and supported on t ≤ t0 <∞ then

fn(t, x, ω) =
∞∑
k=0

1
[
k

2n
,
k+1
2n

)
(s) 1

2n

∫ k
2n

k−1
2n

f(s, x, ω)ds (127)

are in S and ‖f − fn‖L2(R+×R×Ω,P) → 0 by the Lebesgue differentiation and bounded
convergence theorems. �

Consequently, if f ∈ L2(R+ × R × Ω,P) we can choose fn ∈ S with fn → f in[ (
L2(R+ × R× Ω,P). By the isometry (126),

In(ω) =

∫
R+×R

fn(t, x, ω)ξ(t, x, ω)dxdt

is a Cauchy sequence in L2(P ), i.e. limn,m→∞E[(In − Im)2] = 0. Hence there is a limit
point I ∈ L2(P ) which we call the stochastic integral

∫
R+×R f(t, x, ω)ξ(t, x, ω)dxdt. It is

linear in f and we have the Itô isometry (126).
For future use we state

Lemma 2.2 (Burkholder’s inequality). For p ≥ 2 there is a Cp <∞ such that

E[|
∫
R+×R

f(t, x, ω)ξ(t, x, ω)dxdt|p] ≤ CpE[|
∫
R+×R

f 2(t, x, ω)dxdt|p/2] (128)

Burkholder’s inequality also holds for discrete approximations of the stochastic integral.
In this context (which we will use) it goes back to Khinchine, and Marcinkiewicz-Zygmund,
whose version is for independent, mean zero random variables Xi, i = 1, 2, . . . with finite

pth moment, stating that E[|
∑n

i=1Xi|p] ≤ CpE[(
∑n

i=1X
2
i )
p/2

].
Sketch of proof of Lemma 2.2. Apply Itô’s lemma with the function |x|p to the martingale

Mt :=
∫ t

0

∫
fξdxds to obtain

E[|Mt|p] = p(p−1)
2

E

[∫ t

0

|Ms|p−2

∫
f 2(s, x)dxds

]
. (129)

Call M̄t,p = E[sup0≤s≤t |Mt|p]. By Doob’s maximal inequality,

M̄t,p ≤ ( p
p−1

)pE[|Mt|p]. (130)

Applying Hölder’s inequality to the right side of (129) we obtain, from (130),

M̄t,p ≤ cp(M̄t,p)
p−2
p E

[(∫ t

0

∫
f 2dxds

) p
2

] 2
p

, (131)

which gives Lemma 2.2. Note that for a complete proof, one has to approximate |x|p by
a function with two bounded derivatives to make the application of Itô’s equation valid.
We leave the details as an exercise for the reader. 2
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2.2. Wiener chaos. We can also define multiple stochastic integrals,∫
Λk

∫
Rk
f(t1, . . . , tk, x1 . . . , xk)ξ(t1, x1) · · · ξ(tk, xk)dx1 · · · dxkdt1 · · · dtk (132)

=

∫
Λk

∫
Rk
f(t,x)ξ⊗k(t,x)dt dx

where Λk = {0 ≤ t1 < t2 < · · · < tn < ∞}. For example, in the previous section

we have constructed
∫ t2

0

∫
R f(t1, t2, x1, x2)ξ(t1, x1)dx1dt1 and shown that it is progressively

measurable. Hence we can define
∫

0≤t1<t2<∞

∫
R2 f(t1, t2, x1, x2)ξ(t1, x1)ξ(t2, x2)dx1dt1dt2 as∫∞

0

∫
R

[∫ t2
0

∫
R f(t1, t2, x1, x2)ξ(t1, x1)dx1dt1

]
dx2dt2. The construction extends inductively

to (132). The resulting multiple stochastic integrals have

E

[∫
Λk

∫
Rk
f(t,x)ξ⊗k(t,x)dt dx

∫
Λj

∫
Rj

g(t,x)ξ⊗j(t,x)dt dx

]
= 〈f, g〉L2(Λk×Rk) 1j=k.

(133)

and in fact they span L2(Ω,F , P ) (see, e.g. [75] for a nice treatment).
In this way, there is an isometry between L2(Ω,F , P ) and

⊕∞
k=0 L

2(Λk×Rk), i.e. given
a random variable X ∈ L2(Ω,F , P ), there are fk ∈ L2(Λk × Rk), k = 0, 1, 2, . . ., with

X =
∞∑
k=0

∫
Λk

∫
Rk
fk(t,x)ξ⊗k(t,x)dt dx.

Here f0 is simply the constant EX, with the convention
∫
f0 = f0. By (133),

E[X2] =
∞∑
k=0

||fk||2L2(Λk×Rk).

This Wiener chaos representation can be very useful. But the problem is that if ϕ is
non-linear, then knowing the chaos representation of X tells us nothing about the chaos
representation of ϕ(X). For example, in Section 2.3 we will see that the chaos series for the
solution z(t, x) of the stochastic heat equation is particularly simple. But unfortunately,
we do not know the chaos series for the main quantity of interest in these notes, log z(t, x),
the Hopf-Cole solution of KPZ.

2.3. The stochastic heat equation. The stochastic heat equation is

∂tz = 1
2
∂2
xz − zξ, t > 0, x ∈ R,

z(0, x) = z0(x), (134)

where ξ(t, x) is space-time white noise. z0 could be taken to be random, but we will
always assume that it and the white noise ξ are independent. We will usually assume that
z0(x) ≥ 0. In that case, as long as z0 is not identically zero, we will prove in Theorem 2.11
that z(t, x) > 0, in which case h(t, x) = − log z(t, x) is well defined. Recall that h(t, x) is
the Hopf-Cole solution of KPZ (1).

All our physical problems will only involve z0 which are positive in some sense. However,
for purposes of proving uniqueness we will have to take differences. The solvability will
depend on the initial data, and will have to include objects like exponential Brownian
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motions, as well as delta function initial data. A reasonable class which includes everything
we want is z0(x) such that

∫
A
z0(x)dx is a signed measure in A satisfying for some c <∞,

E[ sup
A⊂[−n,n]

∫
A

z0(x)dx] < cecn. (135)

This class is preserved by the heat semigroup.

2.4. Mild solutions. To make sense of the equation, we rewrite it in Duhamel form

z(t, x) =

∫
R
p(t, x− y)z0(y)dy −

∫ t

0

∫
R
p(t− s, x− y)z(s, y)ξ(s, y)dyds (136)

using the kernel of the heat equation

p(t, x) =
1√
2πt

e−x
2/2t. (137)

If z(t, x) is progressively measurable with∫ t

0

∫
R
p2(t− s, x− y)E[z2(s, y)]dyds <∞ (138)

then the stochastic integral in (136) makes sense as an element of L2(P ) as shown in the
previous section. Such a z(t, x) for which equality holds in (136) for all 0 ≤ t ≤ T and
x ∈ R will be called a mild solution of the stochastic heat equation (134).

Of course we need to know such a solution exists. There are many ways to do it, but an
easy way is Picard iteration: Let z0(t, x) = 0 and

zn+1(t, x) =

∫
R
p(t, x− y)z0(y)dy −

∫ t

0

∫
R
p(t− s, x− y)zn(s, y)ξ(s, y)dyds. (139)

They are progressively measurable by construction. Let z̄n(t, x) = zn+1(t, x) − zn(t, x).
Then

z̄n+1(t, x) = −
∫ t

0

∫
R
p(t− s, x− y)z̄n(s, y)ξ(s, y)dyds. (140)

So

E[|z̄n+1(t, x)|2] =

∫ t

0

∫
R
p2(t− s, x− y)E[|z̄n(s, y)|2]dyds. (141)

Let fn(t) = supx,s∈[0,t] E[|z̄n(s, x)|2]. Suppose that f 0(t) < ∞. Then we have, after
integrating the heat kernel,

fn+1(t) ≤ C

∫ t

0

fn(s)√
t− s

ds. (142)

Iterating the inequality,

fn+1(t) ≤ C

∫ t

0

∫ s

0

fn−1(u)√
(t− s)(s− u)

duds. (143)

Changing the order of integration

fn+1(t) ≤ C

∫ t

0

∫ t

u

fn−1(u)√
(t− s)(s− u)

dsdu = C ′
∫ t

0

fn−1(u)du. (144)

Now Gronwall’s inequality implies that fn(t) ≤ (C ′t)n/2/(n/2)!, so there is a limit z(t, x)
which is progressively measurable and solves the equation.
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If we examine what f 0(t) <∞ means, it is just that supxE[z2
0(x)] <∞. This is pretty

restrictive. In fact, typical initial data we are interested in are (1) z0(x) = δ0(x) (2)
z0(x) = eB(x)1x>0. Both lie out of this class. Thus we need an a priori estimate for such
solutions.

Lemma 2.3. Let z(t, x) satisfy (136) with z0 as in (135). Then there exists a c <∞ for
all x ∈ R,

E[z2(t, x)] ≤ ct−1/2ec(t+|x|). (145)

In particular, let z(t, x) satisfy (136) with z0 = δ0 (or, in general, localized initial data).
Then there exists a c = c(T ) such that for all 0 < t ≤ T , for all

E[z2(t, x)] ≤ cp2(t, x). (146)

Proof. Without loss of generality we can assume the initial data is non-random because we
could always take the conditional expectation given F0, and then take a further expectation
to get the result. Then, squaring (136) and taking expectation we have

E
[
z2(t, x)

]
=

(∫
R
p(t, x− y)z0(y)dy

)2

+

∫ t

0

∫
R
p2(t− s, x− y)E

[
z2(s, y)

]
dyds. (147)

Iterating the equation, we obtain

E
[
z2(t, x)

]
=
∞∑
n=0

E[In(t, x)] (148)

where, for ∆n(t) = {0 ≤ tn ≤ tn−1 ≤ · · · ≤ t0 = t}, x0 = x

In(t, x) =

∫
∆n(t)

∫
Rn

n−1∏
i=0

p2(ti− ti+1, xi−xi+1)

(∫
R
p(tn, xn − y)z0(y)dy

)2 n∏
i=1

dxidti. (149)

Now we use the fact that for s < u < t∫
R
p2(t− u, x− z)p2(u− s, z − y)dz =

√
t−s

4π(t−u)(u−s)p
2(t− s, x− y) (150)

to simplify

In(t, x) =
1

Γ(n−1
2

)

∫
∆n(t)

n∏
i=1

dti√
4π(ti−1 − ti)

∫
R
p( t0−tn

2
, x0 − xn)

(∫
R
p(tn, xn − y)z0(y)dy

)2

dxn

=
2−n+

1
2

Γ(n−1
2

)

∫ t

0

∫
(t− s)

n
2 p2(t− s, x− z)

(∫
R
p(s, z − y)z0(y)dy

)2

dzds

≤ C( t
4
)n/2(n!)−1/2

∫ t

0

∫
p2(t− s, x− z)

(∫
R
p(s, z − y)z0(y)dy

)2

dzds.

(135) implies that is a C such that

lim sup
s→0

s1/2E

[(∫
R
dyp(s, x− y)z0(y)

)2
]
<∞. (151)

We obtain E[In] ≤ C ′′( t
4
)n/2(n!)−1/2. Summing in n gives (145). Keeping track of the heat

kernels in the last two bounds one obtain (146). �
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Now let us go back to (141). If we define f̃n(t) = supx,s∈[0,t] s
1/2e−c|x|E[|z̄n(s, x)|2] then

we still get

fn+1(t) ≤ C

∫ t

0

fn(s)√
t− s

ds. (152)

It is because we can estimate
∫
p2(t − s, x − y)s−1/2ec|y|dy ≤

∫
p2(t − s, x − y)s−1/2(ecy +

e−cy)dy and the latter, by completing the square is equal to ec
′(t−s)(ecx+e−cx)(s(t−s))−1/2.

Integrating in s, and noting that t is fixed and finite, so that C could depend on t, gives
the bound.

The rest of the argument goes the same way, so we obtain the following existence and
uniqueness result:

Theorem 2.4 (Existence and uniqueness of mild solutions). Suppose that z0 satisfies
(135). Then there exists a unique progressively measurable z(t, x) satisfying (136) and
(138).

2.5. Martingale problem. The solution z(t, x) of the stochastic heat equation (134) is
a random element of C(R+, C(R)) where C means the space of continuous functions with
the topology of uniform convergence on compact sets. We can also think of it through
its distribution, which is a probability measure Q on C(R+, C(R)). C(R+, C(R)) comes
equipped with a natural filtration Ft which is the σ−field generated by z(s, x), x ∈ R,
s ≤ t. The martingale formulation is an alternative way to identify the probability measure
Q by specifying that under it, a rich enough class of processes should be martingales with
respect to Ft.

As in the previous section we will need to insist that our probability measure Q satisfies
for all T > 0 and for some c <∞,

sup
s∈[0,T ]

sup
x∈R

s−1/2e−a|x|EQ
[
(z(s, x))2

]
<∞. (153)

Definition 2.5. Such a probability measure Q on (C(R+, C(R)),F ) is a solution of the
martingale problem for the stochastic heat equation (134) with initial data z0 if for all
smooth test functions ϕ on R with compact support, both

Nt(ϕ) =

∫
R
ϕ(x)z(t, x)dx−

∫
R
ϕ(x)z0(x)− 1

2

∫ t

0

∫
R
ϕ′′(x)z(s, x)dxds, (154)

and

Λt(ϕ) = Nt(ϕ)2 −
∫ t

0

∫
R
ϕ2(x)z2(s, x)dxds (155)

are local martingales under Q.

The martingale problem is extremely useful for studying asymptotic problems for sto-
chastic processes. For example, if we want to prove a discrete KPZ model converges to
Hopf-Cole solution of KPZ, we know that we really mean the convergence of the expo-
nentiated version of the former to the solution of the stochastic heat equation. We can
do it by writing down approximate versions of (154) and (155) which are martingales in
the discrete model. If we can prove tightness, then the limiting process has to solve the
martingale problem. The key is therefore the following uniqueness result [15, 82].

Proposition 2.6. The martingale problem for the stochastic heat equation has a unique
solution which coincides with the distribution of the unique strong solution z(t, x) of (134).
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Remark 2.7. Many readers will be more familiar with the classic martingale problem
for finite dimensional stochastic differential equations, which asks that for a nice class of
functions f on Rd (say smooth functions of compact support),

Mf (t) := f(x(t))−
∫ t

0

Lf(x(s))ds (156)

be martingales, where Lf = 1
2

∑d
i,j=1 aij(x)∂2

xixj
f +

∑d
i=1 bi(x)∂xif . Under reasonable

conditions, this produces a weak solution of the stochastic differential equation dx =
b(x)dt+ σ(x)dB on Rd.

Another, older, formulation is simply to ask that this holds for the functions f(x) = xi,
i = 1, . . . , d and f(x) = xixj, i, j = 1, . . . , d (as local martingales). In fact, we don’t even
need the quadratic ones if we ask that

Nt(i) := xi(t)−
∫ t

0

bi(x(s))ds

and

Λt(i, j) := Nt(i)Nt(j)−
∫ t

0

aij(x(s))ds

are (local) martingales.
Of course, there is no reason to fix a special basis of Rd, and the sum of local martingales

is a local martingale. So we may as well take vectors ϕ ∈ Rd and ask that Nt(ϕ) :=

ϕ · x(t)−
∫ t

0
ϕ · b(x(s))ds and Λt(ϕ) = N2

t (ϕ)−
∫ t

0
ϕ · a(x(s))ϕds are martingales. The two

equations (154) and (155) are just the infinite dimensional version of this last criterion.

2.6. Chaos representation. Iterating (136) once we obtain

z(t, x) =

∫
R
p(t, x− y)z0(y)dy +

∫ t

0

∫
R2

p(t− s, x− y2)p(s, y2 − y1)z0(y1)ξ(s, y1)dy1dy2ds

+

∫
0≤s1<s2≤t

∫
R2

p(t− s2, x− y2)p(s2 − s1, y2 − y1)z(s1, y1)ξ(s1, y1)ξ(s2, y2)dy1dy2ds1ds2.

Iterating this n− 1 times we obtain,

z(t, x) =
n−1∑
k=0

∫
0≤s1<···<sk≤t

∫
Rk+1

p(t− sk, x− yk)p(sk − sk−1, yk − yk−1) · · · p(s2 − s1, y2 − y1)×

× p(s1, y1 − y0)z0(y0)ξ(s1, y1) · · · ξ(sk, yk)dy0dy1 · · · dykds1 · · · dsk

+

∫
0≤s1<···<sn≤t

∫
Rn
p(t− sn, x− yn)p(sn − sn−1, yn − yn−1) · · · p(s2 − s1, y2 − y1)×

× z(s1, y1)ξ(s1, y1) · · · ξ(sn, yn)dy1 · · · dynds1 · · · dsn.

Compute the L2 norm of the nth term∫
0≤s1<···<sn≤t

∫
Rn
p2(t− sn, x− yn)p2(sn − sn−1, yn − yn−1) · · · p2(s2 − s1, y2 − y1)×

× E[z2(s1, y1)]dy1 · · · dynds1 · · · dsn.
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Use the apriori estimate Lemma 2.3 to see that the nth term goes to 0 in L2(P ) as n→∞.
We obtain the chaos representation

z(t, x) =
∞∑
k=0

∫
∆k

∫
Rk

∫
R

pk(s, y0,y)z0(y0)dy0ξ
⊗k(s,y)dyds. (157)

where ∆k = {0 ≤ s1 < · · · < sk ≤ t} and for such an s = (s1, . . . , sk)

pk(s, y0,y) = p(t−sk, x−yk)p(sk−sk−1, yk−yk−1) · · · p(s2−s1, y2−y1)p(s1, y1−y0) (158)

are Brownian transition densities to be at yi at times si, i = 1, . . . , k and end up at x at
time t, given that the Brownian motion started at y0 at time 0.

Since

p2
k(s,y) = pk(s,

√
2y)

k∏
j=1

1√
2π(sj − sj−1)

,

we have ∫
∆k

∫
Rk

p2
k(s,y) dy ds = (4π)−

k
2

∫
∆k

k∏
j=1

1
√
sj − sj−1

ds =
1

2kΓ
(
k
2

+ 1
) . (159)

The second equality comes from recognizing that the integrand is the density of a Dirichlet
distribution. So (157) is easily seen to be a valid chaos series.

The chaos series represents an alternative way to prove discrete models converge to the
stochastic heat equation. For example, the directed random polymer partition functions
have the form of discrete versions of the chaos series.

To illustrate another use of the chaos series, we have the following small time asymptotics
for the solution of the stochastic heat equation with Dirac initial data, which is readily
checked by computing the mean square of the k ≥ 2 terms in the chaos series (157) are of
smaller order, so that the first (deterministic) term and the second (linear) term dominate.

Proposition 2.8. Let z(t, x) be the solution of (134) with z(0, x) = δ0(x). As t↘ 0,

z(t, x) = p(t, x) + t1/4ζ(t, x) +O(t1/2) (160)

where the process ζ(t, x) = t−1/4
∫ t

0

∫
R p(t − s, x − y)p(s, y)ξ(s, y)dyds is Gaussian mean

zero, with finite limiting covariance as t↘ 0.

So for small time, the heat part of the equation dominates. Note that on the physical
side this is related to the picture of the weakly asymmetric scaling being critical between
the KPZ and the Edwards-Wilkinsen (EW) universality classes. The relation between t
and β in the continuum random polymer is t ∼ β4, as can be seen by a naive Brownian
scaling. So t→ 0 is the same as β → 0, and as the asymmetry goes away, one finds oneself
in the EW class. Another way to think about it is to put a small parameter in front of the
non-linearity in KPZ and send it to zero, to see the Gaussian fluctuations.

2.7. Regularity.

Theorem 2.9. Let z(t, x) be the solution to (134) with z0(x) ≥ 0 satisfying (135). For
any α < 1/2 and β < 1/4, and any δ > 0, T <∞,

lim
λ→∞

P

(
sup

δ≤s<t≤T, |x|,|y|≤B,

|z(t, x)− z(s, y|
|t− s|β + |x− y|α

≥ λ

)
= 0 (161)
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This can be proved with the methods of Section 2.13. Since it is almost the same, we
will not repeat it here. There are many references, e.g. [119], [45].

2.8. Comparison. We are interested in studying stochastic partial differential equations
of the type

∂tz = 1
2
∂2
xz + f(z) + σ(z)ξ, t > 0, x ∈ R,

z(0, x) = z0(x). (162)

Of course, this means the Duhamel version

z(t, x) =

∫
R
p(t, x− y)z0(y)dy +

∫ t

0

∫
R
p(t− s, x− y)f(z(s, y))dyds (163)

+

∫ t

0

∫
R
p(t− s, x− y)σ(z(s, y))ξ(s, y)dyds. (164)

If f and σ are Lipschitz, then the existence and uniqueness theorem still applies (see [45])).
There are not many general methods for studying stochastic partial differential equa-

tions. One very disturbing thing to keep in mind is that if z satisfies (162) and Φ is
non-linear in the sense that Φ′′(z) 6= 0 then ∂tΦ(z) does not satisfy a stochastic partial
differential equation. The reason is that unlike the case of finite dimensional stochastic dif-
ferential equations, the Itô correction is always infinite. One way out is to consider coloured
noises where the correlations 〈ξ(t, x), ξ(s, y)〉 = φ(y − x)δ(t − s) are more reasonable in
space. This is much the same thing as discretizing the equation,

∂tz i
n

= 1
2
[z i+1

n
− 2z i

n
z i−1

n
] + f(z i

n
) + n1/2σ(z i

n
)dB i

n
. (165)

One of the few general facts that are available is the comparison principle.

Proposition 2.10. Let z1(t, x), z2(t, x) be two solutions of (162) with f1(z) ≤ f2(z) and
σ1(z) = σ2(z) Lipschitz functions, both using the same white noise ξ and with initial data

z1(0, x) ≤ z2(0, x), x ∈ R
Then, with probability one, for all t ≥ 0,

z1(t, x) ≤ z2(t, x), x ∈ R.

The proof is via approximation by discretizations (165), for which the comparison is
almost obvious. Note that the Lipschitz assumption is only used in the uniqueness. In its
absence one still has versions for which the comparison is true, which can be sufficient to
prove distributional statements about the solutions (see [93] for an example.) In the case
of the stochastic heat equation (134), we can also prove Proposition 2.10 by approximation
with asymmetric exclusion (see Section 201). The comparison at the discrete level follows
from the basic coupling for exclusion.

2.9. Positivity.

Theorem 2.11 (Mueller 91 [92]). Let z(t, x) be the solution to (134) with z0(x) ≥ 0 and∫
z0(x)dx > 0. Then for all t > 0, z(t, x) > 0 for all x ∈ R with probability one.

Remark 2.12. It is also true that z(t, x) > 0 for all x ∈ R and t > 0 with probability
one, but we only give the proof of the weaker statement.

Remark 2.13. We could also start with a non-trivial positive measure. In a small time
the heat part of the semigroup sends us in to the situation above.
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Remark 2.14. If the theorem seems obvious, note that it is only just true. If 1
2
< γ < 1

then if z0 has compact support, the solution of ∂tz = 1
2
∂2
xz + ξzγ does as well [74]. When

z is small, it is a battle between the heat equation trying to spread the stuff out and the
random term killing the stuff. If γ < 1 then the random term is too large and it wins. If
γ ≥ 1 the random term is too small and the heat part wins.

Let

N(t, x) =

∫ t

0

∫
R
p(t− s, x− y)f(s, y)ξ(s, y)dyds. (166)

If f(s, y) = z(s, y) then this is the noise term in (136). We need to show that it doesn’t
win against the heat equation smoothing, so we need an estimate of how big it is. It is a
random function of t and x (a random field) and we need to control the maximum. If the
random f were not in the integrand then we just have a mean zero Gaussian field. We
compute the covariance, and knowing this, the maximum can be controlled in terms of a
typical point. The main point of the following large deviations estimate is that roughly
the same thing is true for (166).

Lemma 2.15. Suppose that f is progressively measurable with |f(s, y)| ≤ K, then, for
r <∞ there exists 0 < C <∞ such that

P ( sup
0≤t≤T
|x|≤r

|N(t, x)| ≥ λ) ≤ C exp
{
−Cλ2T−1/2K−2

}
. (167)

A proof of the lemma can be found on page 30 of [45]. We sketch the original proof of
Theorem 2.11 due to Mueller [92]. It would be nice to have alternative arguments.

Proof of Theorem 2.11. We have z0(x) ≥ γ1[b−a,b+a](x) for some a > 0, b and γ > 0. If
we shift the noise by b along with the initial condition the solution just gets shifted as
well. So without loss of generality, we can assume that b = 0. Furthermore, if z(t, x)
is a solution of the stochastic heat equation (134) then so is γ−1z(t, x). So we can also
assume γ = 1. By the comparison principle, Proposition 2.10, we therefore have the
following problem: Let t > 0. Under the assumption that z(0, x) = 1[−a,a](x), show that
P (z(t, x) > 0 for |x| ≤M) > 1− δ for all M, δ > 0. To prove this, let

Ak =
{
z( tk

`
, x) ≥ 1

8k
1[−a−Mk`−1,a+Mk`−1](x)

}
. (168)

Suppose we could show that

P (A C
k+1 | A1 ∩ · · · ∩Ak) <

δ
`
. (169)

Then we would have P (A C
n ) ≤

∑n−1
k=0 P (A C

k+1 | A1 ∩ · · · ∩Ak) < δ as desired.
So we concentrate on (169). First of all note that by the Markov property, it is the

same thing as proving P (A C
k+1 | Ak) <

δ
`
. By the comparison principle Proposition 2.10,

and the linearity of the stochastic heat equation (134) in the initial data, it is enough to
show that (*) there is an ` > 0 so that if we start with z(0, x) = 1

[−a−Mk
`
,a+

Mk
`

]
(x), then

z( t
`
, x) ≥ 1

8
1[−a−M(k+1)`−1,a+M(k+1)`−1](x) with probability at least 1− δ/`.

To show (*), note that

z( t
`
, x) =

∫ a+
Mk
`

]

a−Mk
`

p( t
`
, x− y)dy −

∫ t
`

0

∫
R
p( t

`
− s, x− y)z(s, y)ξ(s, y)dyds. (170)
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The key point is now that for small times, the first, deterministic, term dominates. We
are interested in a lower bound for it for x on [−a −M(k + 1)`−1, a + M(k + 1)`−1]. By
inspection, the minimum is at x = a + M(k + 1)`−1, where by normalizing the Gaussian
integral,

min
|x|≤a+M(k+1)`−1

∫ a+
Mk
`

a−Mk
`

p( t
`
, x− y)dy =

∫ 2at−1/2`1/2+M(2k+1)t−1/2`−1/2

Mt−1/2`−1/2

p(1, x)dx > 1
4

(171)

for sufficiently large `. Hence what we need to show is that for sufficiently large `, with
probability at least 1− δ/`,

sup
|x|≤a+M(k+1)`−1

∣∣∣∣∣
∫ t

`

0

∫
R
p( t

`
− s, x− y)z(s, y)ξ(s, y)dyds

∣∣∣∣∣ < 1
8
. (172)

The proof will be based on the large deviation estimate Lemma 2.15. But first let’s see
roughly why it is true. One believes that the supremum of such objects behaves, up to
constants, like a typical value. So we drop the sup and compute the variance

E

(∫ t
`

0

∫
R
p( t

`
− s, x− y)z(s, y)ξ(s, y)dyds

)2
 =

∫ t
`

0

∫
R
p2( t

`
− s, x− y)E[z2(s, y)]dyds.

(173)
Recall that E[z2(s, y)] ≤ Cu2(s, y) where u solves the deterministic heat equation with the
same initial data. So the variance is bounded by∫ t

`

0

∫
R
p2( t

`
− s, x− y)

(∫
|b|≤a+Mk`−1

p(s, y − b)db
)2

dyds→ 0 (174)

as `→∞. In other words, we should be able to choose an ` large enough that (172) holds.
To make it rigorous, we can assume without loss of generality that there is a K < ∞

such that z(t, x) < K throughout, for by the regularity theorem, z(t, x) is continuous and
bounded, so P (sup 0≤s≤t

|x|≤r
z(t, x) > K) → 0, so we can choose K large enough that this

probability is less than δ/2. Then, by Lemma 2.15, the probability of the complement of
(172) is bounded by C exp

{
−C`1/2t−1/2K−2

}
which is less than δ/2 for sufficiently large

`. �

Remark 2.16. It is worth noting that the proof after (170), comparing the deterministic
and stochastic parts, works also for ∂tz = 1

2
∂2
xz + zγξ when γ < 1, although we know that

in that case, the stochastic part wins and the solution has compact support. The reason
the proof does not work is that at each step k, in the reduction to (*), in the γ < 1 case
one ends up increasing the noise. If γ > 1, the noise is reduced at each iteration. This is
why the linear case is critical for the argument.

2.9.1. Regularity of the one-point density. Let z(t, x) be the solution of the stochastic
heat equation. We will be studying F (s) = P (z(t, x) ≤ s). The density (if it exists) is
f(s) = F ′(s). Using Malliavin calculus it can be shown6 [98],[91] that f(s) is a smooth
function. The key ingredient is the fact that z(t, x) > 0.

6The results are for the stochastic heat equation on a finite interval with Dirichlet boundary conditions
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2.10. The continuum random polymer. Fix a space-time white noise ξ(t, x). The

(point-to-point) continuum random polymer is the probability measure P ξ
0,0,T,x on contin-

uous functions x(t) on [0, T ] with x(0) = 0 and x(T ) = x and formal density

e
∫ T
0 ξ(t,x(t))dt (175)

with respect to Brownian motion. Unfortunately the density does not make sense. Once
again, it needs a type of infinite renormalization. This can be achieved in several ways.
We could smooth out the noise, construct the measure with the smoothed out noise, and
then obtain our desired measure as a limit as the smoothing is removed. We will give an
alternate construction which is direct and stresses the Markov property.

Let z(s, x, t, y) denote the solution of the stochastic heat equation after time s starting
with a delta function at x,

∂tz = 1
2
∂2
yz + ξz, t > s, y ∈ R,

z(s, x, s, y) = δx(y). (176)

It is important that they are all using the same noise ξ.
P ξ

0,0,T,x is defined to be the probability measure on continuous functions x(t) on [0, T ]
with x(0) = 0 and x(T ) = x and finite dimensional distributions

P ξ
0,0,T,x(x(t1) ∈ dx1, . . . , x(tn) ∈ dxn) (177)

=
z(0, 0, t1, x1)z(t1, x1, t2, x2) · · · z(tn−1, xn−1, tn, xn)z(tn, xn, T, x)

z(0, 0, T, x)
dx1 · · · dxn

for 0 < t1 < t2 < · · · < tn < T .
One can check these are a consistent family of finite dimensional distributions. It is

basically because of the Chapman-Kolmogorov equation∫
R
z(s, x, τ, u)z(τ, u, t, y)du = z(s, x, t, y) (178)

which is a consequence of the linearity and uniqueness of solutions of the stochastic heat
equation. So there is a probability measure on the product space. One can then show
using essentially the Kolmogorov criteria, that the paths are Hölder of any exponent less
than 1/2, just like Brownian motion. In particular, they are continuous. Using (178) the
resulting process is Markovian. The quadratic variation can be computed and it is the
same as Brownian motion. However, for almost every realization of the noise ξ, P ξ

0,0,T,x is

singular with respect to the Brownian bridge P 0
0,0,T,x (see [1]for proofs).

One can also define the point-to-line continuum random polymer P ξ
0,0 on continuous

functions x(t) on [0, T ] with x(0) = 0. Its finite dimensional distributions are

P ξ
0,0(x(t1) ∈ dx1, . . . , x(tn) ∈ dxn, x(t) ∈ dx) (179)

=
z(0, 0, t1, x1)z(t1, x1, t2, x2) · · · z(tn−1, xn−1, tn, xn)z(tn, xn, T, x)∫

R z(0, 0, T, x)dx
dx1 · · · dxndx

The paths x(t) look like Brownian motions under P ξ
0,0 on a small scale, but on a large

scale (i.e. for large T ) they are expected to have the scaling x(T ) ∼ T 2/3.
The continuum random polymer is the limit of diffusively rescaled polymer paths in the

intermediate scaling regime as long as the random environment satisfies E[eλω] < ∞ for
sufficiently small |λ| [1] (note however, that it is expected to be true as long as E[ω6

−] <∞.)
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2.11. Universality of KPZ and the continuum random polymer: The weakly
asymmetric limit. There are two other choices of scaling in (15). 1. If one takes b = 1/2
and z = 2, then (13) turns

∂th = −1
2
ε1/2(∂xh)2 + 1

2
∂2
xh+ ξ (180)

into
∂thε = −1

2
(∂xhε)

2 + 1
2
∂2
xhε + ξ. (181)

This is the idea behind the weakly asymmetric limit in which the KPZ equation can be
obtained as a limit of asymmetric exclusion. 2. If one takes b = 0 and z = 2 then (13)
turns

∂th = −1
2
(∂xh)2 + 1

2
∂2
xh+ ε1/2ξ (182)

into
∂thε = −1

2
(∂xhε)

2 + 1
2
∂2
xhε + ξ. (183)

This is the idea behind the intermediate disorder limit in which the KPZ equation can be
obtained as a limit of directed random polymers with small β.

If a model in the KPZ class has an adjustable parameter, then a diffusive scaling of
time and space combined with this weak asymmetry/disorder can lead to KPZ. The KPZ
equation is thus a fixed point of its own small universality class. This is often called the
universality of the KPZ equation, which should not be confused with the KPZ universality,
in which the fixed point is highly trivial and poorly understood, with Airy processes as its
fixed time marginals.

2.12. Intermediate disorder regime for directed random polymers. We want to
study the intermediate disorder limit of the free energy given by (58) with x = 0. The
weakly asymmetric limit described in the previous sections tells us to look at space scales
ε−1, time scales ε−2 and β of order ε1/2. We define

zε(t, x) = cε(t)Zβε1/2(0, bε−2tc, bε−1xc) (184)

Note that β has changed its meaning. The constant cε depends on the model and consists
of two pieces: There is a factor ε−1 so that the initial data for zε looks like a Dirac delta
function at 0. There is also a factor (1 − E[e−βε

1/2ξ − 1])bε
−2tc which compensates for the

deterministic growth term which is hiding in the equation. So

cε(t) = ε−1(1− E[e−βε
1/2ξ − 1])bε

−2tc. (185)

Note that because of parity, the process z̃ε(t, x) lives on the even7 sites of the lattice
ε2Z× εZ. Now let pε(t, x) be the solution of the discrete heat equation

pε(t+ ε2, x) = 1
2
(pε(t, x+ ε) + pε(t, x− ε)) (186)

with initial data ε−11(x = 0). Note that we have implicitly set everything to 0 on the odd
sites of the lattice. After some computation we obtain from (58) that

zε(t, x) = pε(t, x) + 2−1/2βN−1/2
∑

s∈ε2Z∩[0,t],x∈εZ

pε(t− s, x− y)ẑε(s− ε2, y)ξε(s, y) (187)

where ẑε(s, y) = 1
2
(zε(s, y + ε) + zε(s, y − ε)),

ξε = β−1ε−1/2(e−βε
1/2ξ − E[e−βε

1/2ξ]), (188)

7In fact, the ξ(i, j) where i and j do not have the same parity are not used in the directed polymer problem.
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and N = ε−3/2 is the number of summands. This equation is clearly a discrete version
of the mild form (136) of the stochastic heat equation. Then we can repeat the argument
of Lemma 2.3 and we will show in Section 2.13 how to prove that the zε are tight as two
parameter stochastic processes. Once we have tightness, we have weak convergence, and
the limit will satisfy the mild form (136) of the stochastic heat equation, thus identifying
it as the unique solution. Note the convergence is a little subtle. While it is true that
pε(t, x)→ p(t, x) weakly, it is not true strongly. But it is just because of the parity problem:
pε(t, x) takes twice the normal value on sites with even parity and vanishes on sites with
odd parity. The same thing happens for zε(t, x). Multiplied, this gives a factor of 4 on the
last term in (187), as opposed to the first two terms which have a factor of 2. This results
in the limiting equation

z√2β(t, x) = p(t, x) +
√

2β

∫ t

0

∫
R
p(t− s, x− y)z√2β(s, y)ξ(s, y)dyds (189)

or
∂tz√2β = 1

2
∂2
xz
√

2β +
√

2βξz√2β, z√2β(0, x) = δ0(x). (190)

This was originally done by expanding the discrete partition function as a series of discrete
Wiener-Itô chaose series and taking the limit term by term [].

Before we turn to the tightness, let us make a few remarks and state the general result.

Remark 2.17. The above argument shows that the rescaled unconditioned point-to-point
partition function converges to the stochastic heat equation. By unconditioned, we just
mean that we take the expectation on the set of paths which end up at a point, instead of
conditioning them to end up at that point. To get the conditioning, one just divides by
the probability to end at that point, which includes a term of order ε, cancelling the ε−1 in
(185). To get the point-to-line partition function asymptotics also requires at most very
slight tweaks of the above proof.

Remark 2.18. It would appear that the argument depends on the existence of exponential
moments of the random field ξ. In fact, one only needs the finiteness of a few moments.
Without the intermediate scaling, the free energy is predicted to have the Tracy-Widom
asymptotics as soon as E[ξ5

−] <∞ where ξ− = max(−ω, 0) [18]. A similar reasoning leads
to the prediction that for the intermediate scaling, E[ξ6

−] < ∞ is enough. Let us explain
roughly the argument when E[ξ8

−] <∞, which is simpler. In the argument above, we are

making an expansion of the exponetial in (188) so it goes wrong when ξ � −ε−1/2. By
Chebyshev’s inequality,

P (ξ < −ε−1/2) ≤ ε4E[ξ8
−1ξ−<ε−1/2 ] = o(ε4). (191)

There are only order ε−4 sites in our lattice that the random walk path can possibly visit.
Hence the probability that even one site has ξ < −ε−1/2 goes to zero with ε. So we can
work with the cutoff variables without affecting the result. To see that E[ξ6

−] <∞ should
really be enough, just note that the random walk paths really only visit ε−3 sites. In fact,
one expects the condition ε−3P (ξ < −ε−1/2)→ 0 as ε→ 0 to be necessary and sufficient.

To state the main result, we extend the field zε(t, x) of (184) which in principle lives on
ε2Z+ × εZ, to R+ × R. It doesn’t really matter how we do this, but we could first make
the paths continuous in x by drawing little straight lines between zε(t, x) and zε(t, x+ ε).
Then we could draw straight lines from zε(t, x) to zε(t+ ε2, x). The result is a continuous
function on R+ ×R. Let’s call its distribution Pε. So for each ε > 0 we have a probability
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measure on C([0,∞), C(R)) where C means continuous functions with the topology of
uniform convergence on compact sets. The main result is

Theorem 2.19 ([2]). Suppose that E[ξ8
−] < ∞. The measures Pε are tight and have a

unique weak limit P which is the distribution of the solution of the stochastic heat equation
(189) with initial condition z(0, x) = δ0(x).

We have sketched above the argument to identify the limit. Below we sketch the argu-
ment for the tightness. First we note an important corollary. Recall the key open problem
for directed polymers in one dimension is to show that the free energy has the asymptotics

logEx

[
e−β

∑N
i=0 ξ(i,xi)

]
∼ cN +N1/3ζ (192)

where the fluctuations ζ have the GUE Tracy-Widom distribution. It is supposed to be
true for any distribution for the i.i.d. ξ satisfying E[ξ5

−] <∞, though not a single example
is known8. Combining Theorem 2.19 and Theorem 1.5 we have

Corollary 2.20 (Weak universality). Suppose that E[ξ8
−] < ∞ and without loss of gen-

erality assume E[ξ] = 0. Let κ2 = E[ξ2], κ3 = E[ξ3], κ4 = E[ξ4 − 3ξ2] be the next three
cumulants. Let Ex denote the expectation over the random walk conditioned to start at 0
and end at x after n steps. Then

lim
β→∞

lim
N→∞

logEx

[
e
− β

N1/4

∑N
i=0 ξ(i,xi)

]
− κ2

2
β2N1/2 + κ3

3!
β3N1/4 − κ4

4!
β4

β4/3

dist
= FGUE (193)

As discussed above, the we expect it to hold when ε−3P (ξ < −ε−1/2)→ 0.

2.13. Tightness of the approximating partition functions. We just give a sketch of
the tightness. It comes down to obtaining some modulus of continuity estimates which
hold uniformly in ε > 0. Start with the equation for (185) which we can write as

zε(t, x) = ε
∑
y∈εZ

pε(t−δ, x−y)zε(δ, y)+ ε2
∑

s∈[δ,t]∩ε2Z

ε
∑
y∈εZ

pε(t−s, x−y)zε(s, y)ξε(s, y) (194)

for any δ ∈ [0, t). Here pε(t, x) are the discrete heat kernels, i.e. the transition densities
of the underlying random walks, normalized so that as ε tends to zero, pε(t, x) tends to

the standard Brownian transition probability density p(t, x) = 1√
2πt
e−x

2/2t. In exactly the

same way as in (146) we get the apriori bound

E
[
z2
ε (t, y)

]
≤ Cp2

ε(t, y). (195)

By Burkholder’s inequality applied to the last term in (194) we also have for M > 2,

E
[
zMε (s, y)

]
≤ CMp

M
ε (s, y). (196)

Note that for the first term of (194) the bound is just standard for the (discrete) heat
equation. From (195) we also have good modulus of continuity estimates for the first term
on the right side of (194). Now we try to develop them for the second term which we write
as

Uε,δ(x, t) =

∫ t

δ

∫
pε(t− s, x− y)zε(s, y)ξε(s, y) (197)

8During the final preparation of this manuscript the result was proved for the special case of ξ with the
log gamma distribution [22].
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introducing the integral notation for the sums to avoid huge expressions. At any rate,
if we extend these functions from the lattice to R+ × R, the sums really are replaced by
integrals. By Burkholder’s inequality, we can estimate E[|Uε(x+ γ, t)− Uε(x, t)|M ] by

CME

[(∫ t

δ

∫
(pε(t− s, x+ γ − y)− pε(t− s, x− y))2z2

ε (s, y)

)M/2
]

(198)

Apply Hölder with p = M/2, q = M/(M − 2) to bound this by

C ′ME

[∫ t

δ

∫
zMε (s, y)

] [∫ t

δ

∫
(pn(t− s, x+ γ − y)− pn(t− s, x− y))

2M
M−2

]M−2
2

From (196) we can bound on the first term independent of ε (it does depend on t, δ). And
one can check that there is a C also depending only on t, ε > 0 such that[∫ t

δ

∫
(pε(t− s, x+ γ − y)− pε(t− s, x− y))

2M
M−2

]M−2
2

≤ Cγ
M
2
−1.

Now we try to do the same thing for E[|Uε(x, t + h) − Uε(x, t)|M ]1/M . We estimate it by
constant multiples of two terms

E

[∣∣∣∫ tδ ∫ (pε(t+ h− s, x− y)− pε(t− s, x− y))2z2
ε (s, y)

∣∣∣M2 ] 1
M

(199)

and

E

[∣∣∣∫ t+ht

∫
p2
ε(t+ h− s, x− y)z2

ε (s, y)
∣∣∣M2 ] 1

M

(200)

The first one we estimate by Hölder with p = M/2, q = M/(M − 2),

E

[∫ t

δ

∫
zMε (s, y)

] 1
M
(∫ t

δ

∫
|pε(t+ h− s, x− y)− pε(t− s, x− y)|

2M
M−2

)M−2
2M

The apriori bound (195) controls the expectation. The second term is bounded in ε when

M > 8, in which case it can be computed and is less than CMh
1
4
− 2
M . (200) we estimate by

Hölder again

E
[∫ t+h

t

∫
zMε (s, y)

] 1
M
(∫ t

δ

∫
p2
ε(t− s, x− y)

)M−2
2M

(201)

From the apriori bound this is again less than CMh
1
4
− 2
M .

We obtain

Lemma 2.21. For each even M > 8, and each δ > 0, there is a CM < ∞ such that for
t, t+ h ≥ δ,

E[|zn(x+ γ, t+ h)− zn(x, t)|M ]1/M ≤ CM max(γ, h)
1
4
− 2
M . (202)

Note that if we were more careful we could improve the modulus of continuity to Hölder
1/2− in space, but for tightness we do not need an optimal result.

Now we use the inequality of Garsia [64] that

|f(x)− f(y)| ≤ 8

∫ |x−y|
0

Ψ−1(B/u2d)dp(u) (203)
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for all functions f continuous in a unit cube I ⊂ Rd that satisfy the inequality∫
I

∫
I

Ψ(f(x)− f(y)/p(d−1/2|x− y|)) dxdy ≤ B

for all hypercubes I ⊂ I0, where (i) e(I) denotes the volume of I, (ii) Ψ is non-constant
even convex function and (iii) p is a continuous even function that satisfies the condition
limn→0 p(u) = 0.

We are working in d = 2 (space+time). Choosing Ψ(x) = xM , M > 6 and p(x) = xγ/M

we have from Lemma 2.21.

E

[∫
t,s∈[δ,T ],x,y∈R

Ψ

(
|zn(x, t)− zn(y, s)|

p(2−1/2
√

(t− s)2 + (x− y)2)

)]
≤ CM (204)

Here we have extended zn(t, x) as a continuous function to [0, T ]× R.

Since
∫ h

0
Ψ−1(B/u2d)dp(u) = CM,γB

1/Mh
γ−4
M with a finite CM,γ for γ > 4, we conclude

that if H[δ,T ]×R(α,K) denotes the set of functions z(t, x) on [δ, T ]× R with

|z(t, x)− z(s, y)| ≤ K|(t− s)2 + (x− y)2|α/2,
then

Lemma 2.22. If Pn denotes the distribution of zn(t, x) then for any δ > 0 and α < 1/4,

lim sup
K→∞

lim sup
n→∞

Pn(H[ε,T ]×R(α,K)) = 1. (205)

In particular, since H[ε,T ]×R(α,K) are compact sets of C([δ, T ]× R), the Pn are tight.

2.14. Asymmetric exclusion. The asymmetric simple exclusion process (ASEP) with
parameters p, q ≥ 0, p+ q = 1,p 6= q is a continuous time Markov process on S = {0, 1}Z,
the 1’s being thought of as particles and the 0’s as holes. Each particle waits a random
exponent mean one amount of time and then attempts a jump, one site to the right
with probability p and one site to the left with probability q. However, the jump is only
performed if there is no particle at the target site. Otherwise, nothing happens and the
particle waits another exponential time. All particles are doing this independently of each
other.

The generator of ASEP acts on local functions (functions which depend on only finitely
many coordinates) by

Lf(η) =
∑
x

{pη(x)(1− η(x+ 1)) + q(1− η(x))(η(x+ 1))} (f(ηx,x+1)− f(η)) (206)

where ηx,x+1 ∈ {0, 1}Z is obtained from η by switching the occupation variables at x and
x+ 1. The corresponding Markov semigroup acts on the Banach space C(S) of continuous
functions on S with sup norm ‖f‖ = supη∈S |f(η)| by

Ptf(η) = E[f(η(t)) | η(0) = η]. (207)

The domain of the generator L is given by

D =

{
f ∈ C(S) : Lf = lim

t↘0
t−1(Ptf − f) exists

}
.

The problem with such a definition of course is that it is very hard to tell which f are in
D. So the following definition is important.
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Definition 2.23. A subspace D0 ⊂ D is a core for L if L is the closure of its restriction
to D0.

In particular, one can check invariance of a measure on the core:

Lemma 2.24 (Prop. I.2.13 of [86]). If D0 is a core for L, then a probability measure µ is
invariant for the semigroup Pt, i.e. P ∗t µ = µ if and only if

∫
Lfdµ = 0 for all f ∈ D0.

A function on the state space {0, 1}Z is called local if it only depends on finitely many
coordinates. For ASEP we have the important

Lemma 2.25 (Thm. I.3.9 of [86]). The subspace D0 of local functions is a core for the
generator (206).

Hence we can check the following

Proposition 2.26. For any ρ ∈ [0, 1] the Bernoulli product measure πρ on {0, 1}Z with
πρ(η(x) = 1) = ρ and πρ(η(x) = 0) = 1− ρ is invariant for ASEP.

Proof. Let f be a local function, depending on η(x), |x| ≤ B. We want to show
∫
Lfdπρ =

0. We can assume
∫
fdπρ = 0, for otherwise we can subtract a constant to make it so,

without affecting Lf . Changing η to ηx,x+1 we have∫
η(x)(1− η(x+ 1))f(ηx,x+1)dπρ(η) =

∫
η(x+ 1)(1− η(x))f(η)

dπρ(η
x,x+1)

dπρ(η)
dπρ(η)

=

∫
η(x+ 1)(1− η(x))f(η)dπρ(η)

since dπρ(ηx,x+1)

dπρ(η)
= 1. Hence∫

Lfdπρ =

∫
(p− q)

∑
x

(η(x+ 1)(1− η(x))− η(x)(1− η(x+ 1)))f(η)dπ(η). (208)

Note that the summation is telescoping. Hence it can be rewritten as
∫
gfdπρ where g

does not depend on the variables η(x), |x| ≤ B. Since πρ is a product measure
∫
gfdπρ =∫

gdπρ
∫
fdπρ which vanishes by assumption. �

The πρ are the extremals of the set of translation invariant probability measures invariant
for ASEP. There are other invariant measures which are not translation invariant, e.g. the

blocking measures which are product measures with µ(η(x) = 1) = (p/q)x

1+(p/q)x
.

2.14.1. Height function. Define η̂(x) = 2η(x) − 1 which take values {−1, 1} instead of
{0, 1} and define the height function of ASEP by

h(t, x) =


2N(t) +

∑
0<y≤x η̂(t, y), x > 0,

2N(t), x = 0,

2N(t)−
∑

x<y≤0 η̂(t, y), x < 0,

(209)

where N(t) is the net number of particles which crossed from site 1 to 0 up to time t.,
meaning that particle jumps 1→ 0 are counted as +1 and jumps 0→ 1 are counted as −1.
We usually think of h(x) in terms of its linear interpolation on R. The reason for the funny
definition with the N(t) is that, defined this way, the h(t, x) is the Markov process with
state space simple random walk paths with the very simple dynamics that local minima
jump to local maxima at rate q and local maxima jump to local minima at rate p.
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2.15. Weakly asymmetric limit of simple exclusion. We will consider the weakly
asymmetric simple exclusion with

q − p = ε1/2 (210)

We have to choose some parameters carefully to make the proof work. Then we will explain
them. Let

νε = p+ q − 2
√
qp = 1

2
ε+ 1

8
ε2 +O(ε3) (211)

and
λε = 1

2
log(q/p) = ε1/2 + 1

3
ε3/2 +O(ε5/2). (212)

Recall the definition (209) of the height function. The rescaled height function is

hε(t, x) := λεh(ε−2t, ε−1x) + ε−2νεt (213)

The main result is that hε(t, x) converge to the Hopf-Cole solution of KPZ. What this
means of course is that

zε(t, x) = e−hε(t,x) (214)

converges to the solution of the stochastic heat equation. This was first proved by Bertini
and Giacomin [15] in the case of data close to equilibrium, and extended to the case of
step initial data (Dirac initial data for the stochastic heat equation) in [3]. For step initial
data one has to multiply zε(t, x) by a large factor ε−1/2 in order to get the initial Dirac in
the limit. Since the stochastic heat equation is linear, one has a fair amount of freedom to
do such things.

We now state the main results. zε(t, x) really lives on R+×εZ, but we can extend it easily
to R+ × R by putting in little diagonal lines. We still call it zε(t, x). It is not continuous
in t, but the jumps are small. Usually, convergence of discontinuous stochastic processes
is done on the Skorohod space D of right continuous paths with left limits. But our jumps
are small, and vanish in the limit, so the Skorohod topology is unnecessary. We can just
use the uniform topology on D. We call the resulting space Du. So our process lives in
Du([0,∞);C(R)). We have such a process zε(t, x) for each ε > 0 and its distribution is a
probability measure Pε on Du([0,∞);C(R)). The initial distibutions µε, ε ∈ (0, 1/4) are
the distributions of hε(0, x) or zε(0, x) under Pε.

Theorem 2.27 ([15]). Suppose that the initial distribution µε satisfies

(1) µε converge weakly to a limit µ supported on continuous functions.
(2) For each n = 1, 2, . . . there is an a = an and c = cn such that for all x ∈ R.

Eµε [z
n(0, x)] ≤ cea|x| (215)

and
Eµε [|h(0, x)− h(0, y)|2n] ≤ cea(|x|+|y|)(|x− y|). (216)

Then Pε, for ε ∈ (0, 1/4), are a tight family of measures and the unique limit point is
supported on C((0,∞);C(R)) (continuous in both space and time) and corresponds to the
solution of the SHE with initial data z(0, x) distributed as µ.

Taking initial data Bernoulli 1/2 we have a stationary process uε(t, x) = ε−1(hε(t, x +
ε)−hε(t, x)) for each ε ∈ (0, 1/4). The convergence of the hε is interpreted as distributional
convergence of the uε. The limiting process u(t, x) means nothing other than the distri-
butional derivative in x of the limiting process h(t, x). Since it is the limit of stationary
processes, it is stationary itself. In this way, [15] prove that white noise is stationary for
the stochastic Burgers equation. Remarkably, this is the only proof known.
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The case of step initial data is not included in Theorem 2.27. Here µε is concentrated on
the special configuration with all zero’s to the left of the origin and all one’s to the right.
The initial height function is |x|. So hε(0, x) = λε|ε−1x| ∼ ε−1/2|x|. Hence zε(t, x) has to
be redefined as

zε(t, x) = ε−1/2e−hε(t,x). (217)

We then have for the corresponding Pε,

Theorem 2.28 ([3]). Pε, ε ∈ (0, 1/4), are a tight family of measures and the unique limit
point P is supported on C((0,∞);C(R)) and corresponds to the solution of the SHE with
initial data z(0, x) = δ0(x).

The proof in [3] reduces the problem to the setup in [15] after a short time. Unfortu-
nately, the proof of the key bound (2.29) in [15] is very hard to follow. We will concentrate
here on providing a simple straightforward proof, and to do this we will work on a circle
geometry εZ/Z. We always choose ε−1 ∈ Z and we fix the number of particles to be ε−1/2
so that the height function is properly periodic.

2.15.1. Gärtner’s microscopic Hopf-Cole transformation. We write the stochastic differen-
tial equation which governs the evolution of zε(t, x).

dzε = Ωεzεdt+ (e−2λε − 1)zεdM
−
ε + (e2λε − 1)zεdM

−
ε (218)

where

Ω = ε−2ν + (e−2λ − 1)r− + (e2λ − 1)r+ (219)

and dM±(t, x) = dP±(t, x) − r±(x)dt where P−(t, x), P+(t, x), x ∈ εZ are independent
Poisson processes running at rates r−(t, x), r+(t, x).

r−(x) = ε−2q(1− η(x))η(x+ 1) =
1

4
ε−2q(1− η̂(x))(1 + η̂(x+ 1)) (220)

r+(x) = ε−2pη(x)(1− η(x+ 1)) =
1

4
ε−2p(1 + η̂(x))(1− η̂(x+ 1)) (221)

This is just a way of writing that the process jumps at rates

r−(x) (222)

to e−2λεzε and

r+(x) (223)

to e2λεzε, independently at each site x ∈ εZ.
Let

Dε = 2
√
pq = 1− 1

2
ε+O(ε2) (224)

and ∆εf(x) = ε−2(f(x+ ε)− 2f(x) + f(x− ε)) be the εZ Laplacian. We also have

1
2
Dε∆εzε = 1

2
ε−2Dε(e

−λεη̂(x+1) − 2 + eλεη̂(x))zε (225)

The key point is that parameters can be chosen so that

Ωε = 1
2
ε−2Dε(e

−λεη̂(x+1) − 2 + eλεη̂(x)) (226)
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We can do this because the four cases, corresponding to the four possibilities for η̂(x), η̂(x+
1): 11, (−1)(−1), 1(−1), (−1)1, give four equations in three unknowns,

11 1
2
ε−2Dε(e

−λε − 2 + eλε) = ε−2νε

(−1)(−1) 1
2
ε−2Dε(e

λε − 2 + e−λε) = ε−2νε

1(−1) 1
2
ε−2Dε(e

λε − 2 + eλε) = ε−2νε + (e2λε − 1)ε−2p

(−1)1 1
2
ε−2Dε(e

−λε − 2 + e−λε) = ε−2νε + (e−2λε − 1)ε−2q

Luckily, the first two equations are the same, so it is actually three equations in three
unknowns, with solution given by (212), (211) and (224).

Hence [65],[15],

dzε = 1
2
Dε∆εzε + zεdMε (227)

where

dMε(x) = (e−2λε − 1)dM−(x) + (e2λε − 1)dM+(x) (228)

are martingales in t with

d〈Mε(x),Mε(y)〉 = ε−11(x = y)bε(τ−[ε−1x]η)dt (229)

where τxη(y) = η(y − x) and

bε(η) = 1− η̂(1)η̂(0) + b̂ε(η) (230)

where

b̂ε(η) = ε−1{[p((e−2λε − 1)2 − 4ε) + q((e2λε − 1)2 − 4ε)]

+[q(e−2λε − 1)2 − p(e2λε − 1)2](η̂(1)− η̂(0)) (231)

−[q(e−2λε − 1)2 + p(e2λε − 1)2 − ε]η̂(1)η̂(0)}.

Clearly bε ≥ 0. It is easy to check that there is a C <∞ such that

0 ≤ b̂ε ≤ Cε1/2 (232)

and, for sufficiently small ε > 0,

0 ≤ bε ≤ 3. (233)

We have the following bound on the initial data. For each p = 1, 2, . . . there exists Cp <∞
such that for all x ∈ R,

E[zpε (0, x)] ≤ eCp|x|. (234)

For any δ > 0 let Pδ
ε denote the distribution of zε(t, x), t ∈ [δ,∞), as measure on

D[[δ,∞), C(R)] where D means the right continuous paths with left limits, with the topol-
ogy of uniform convergence on compact sets. In [15], Section 4 it is shown that if (234)
holds, then, for any δ > 0, Pδ

ε , ε > 0 are tight. The limit points are consistent as δ ↘ 0,
and from the integral version of (227),

zε(t, x) = ε
∑
y∈εZ

pε(t, x− y)zε(0, y) (235)

+

∫ t

0

ε
∑
y∈εZ

pε(t− s, x− y)zε(s, y)dMε(s, y)
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where pε(t, x) are the transition probabilities for the continuous time random walk with

generator 1
2
D∆ε, normalized so that pε(t, x)→ p(t, x) = e−x

2/2t
√

2πt
, we have

lim
t→0

lim
ε→0

E

(zε(t, x)− ε
∑
y∈εZ

pε(t, x− y)zε(0, y)

)2
 = 0 (236)

so that the initial data hold under the limit P. Finally, we need to identify the limit of
the martingale terms. Let ϕ be a smooth test function on R. We hope to show that under
P, (154) and (155) are local martingales. We have that

Nt,ε(ϕ) := ε
∑
x∈εZ

ϕ(x)zε(t, x)− 1
2

∫ t

0

ε
∑
x∈εZ

Dε∆εϕ(x)zε(s, x)ds (237)

is a martingale under Pε. So the key point is to identify the quadratic process. We have
that

Λt,ε(ϕ) := Nt,ε(ϕ)2 − 1
2

∫ t

0

ε
∑
εZ

ϕ2(x)bε(s, x)z2
ε (s, x)ds (238)

is a martingale under Pε.
The problem with (238) is that we have the bε instead of 1. First let’s note that even if

we don’t know what the asymptotic behaviour of bε is, we do know |bε| ≤ 3. Using this,
we can recover all the estimates we had before about modulus of continuity. In particular,
we have the tightness. But we still need to identify the limit martingales. Let

aε(t, x) = η̂(ε−2t, x+ 1)η̂(ε−2t, x)z2
ε (t, x) (239)

and recall that bεz
2
ε = z2

ε + aε.
So the main estimate needed to identify the limit with martingales is

Proposition 2.29 (Bertini-Giacomin [15]). Let

aε(t, x) = η̂(ε−2t, x+ 1)η̂(ε−2t, x)z2
ε (t, x) (240)

Then for any smooth test function ϕ ∈ C∞0 (R) under the weakly asymmetric exclusion Pε,∫ t

0

ε
∑
x∈εZ

ϕ2(x)aε(s, x)ds→ 0 (241)

Note that aε(t, x) is of order 1. The proposition is a kind of ergodic theorem. We
expect essentially product measure with density 1/2 under which η̂(x + 1) and η̂(x) are
independent and mean zero. The term z2

ε (t, x) shouldn’t mess things up too much because
we could replace it by z2

ε (t, x− ε). The error would be of order ε1/2, so it doesn’t matter.
Then, in equilibrium, z2

ε (t, x− ε) is independent of η̂(x+ 1) and η̂(x).

Proof. We will give a different proof from the one of Bertini and Giacomin, which comes
from hydrodynamic limits. Let µε be the probability measure on {0, 1}εZ/Z corresponding
to our random initial data. Let ν be the uniform measure on configurations with ε−1/2
particles. Because we are on εZ/Z there are ε−1 sites and

H(µε/ν) := Eµε [log(µε/ν)] ≤ Cε−1. (242)
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Let Eε denote the expectation with respect to the process starting from µε and Eeq
ε

denote the expectation with respect to the equilibrium process starting with π. We have
the entropy inequality,

Eε[fε] ≤ K−1ε logEeq
ε [eKε

−1fε ] +K−1εH(µε/ν). (243)

Hence if for any K ∈ R,

lim sup
ε→0

ε logEeq
ε [eKε

−1fε ] = 0 (244)

we have Eε[fε]→ 0.
Our f will be of the form ε

∫ s
0
V (η(s))ds. So we have to estimate ε log

∫
u(t, η)dπ1/2(η)

where

u(t, η) = Eε

[
exp

{∫ t

0

V (η(s))ds

}
| η(0) = η

]
. (245)

By Jensen’s inequality,

log

∫
udν ≤ 1

2
log

∫
u2dν. (246)

By the Feynman-Kac formula u solves

∂tu = Lu+ V u. (247)

Multiplying by u and integrating by parts we get

1
2t

log

∫
u2dν =

1
t

∫ t
0

{∫
V u2dν −D(u)

}
ds∫

u2dν
(248)

where D(u) is the Dirichlet form ε−2 1
2

∑
x

∫
|∇x,x+1u|2dν with ∇x,x+1u(η) = u(ηx,x+1) −

u(η), ηx,x+1 being the configuration with the occupation variables exchanged between sites
x and x+1. By the Rayleigh-Ritz formula the last ratio is bounded above by the principle
eigenvalue of S + V where S = L+ L∗ is the generator of the symmetric simple exclusion
process (i.e. p = q). Thus the problem (244) is reduced to large deviations for a reversible
process.

The following estimate combines the one and two block estimates of hydrodynamic
limits. Let f be a local function, and let f̄(ρ) = Eπρ [f ], where πρ is a the product measure
with density ρ. Let

Vε,δ =
∑
x∈εZ

ϕ2(x)
[
f(τxη)− f̄(η̄x,ε−1δ)

]
(249)

where η̄x,ε−1δ is the empirical density in an interval of length e−1δ around x. Then

lim
δ→0

lim
ε→0

sup
‖u‖2=1

{∫
Vε,δu

2dν −Dε(u)

}
= 0 (250)

We will be using this with
f(η) = η̂(1)η̂(0) (251)

for which it is easy to see that f̄(ρ) = (ρ− 1
2
)2. Now note that we have apriori that z(t, x)

is Hölder 1
2
− in space. So we can have the same estimate (250) if we replace (249) by

Vε,δ =
∑
x∈εZ

ϕ2(x)
[
f(τxη)− f̄(η̄x,ε−1δ)

]
z2
δ (t, x). (252)

where
z2
δ (t, x) = min

{
z2(t, x+ 1

2
ε−1δ), z2(t, x+ 1

2
ε−1δ)

}
. (253)
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The big conclusion of all this hydrodynamics argument is that if we want to prove that

lim sup
ε→0

Pε(

∫ t

0

ε
∑
x∈εZ

ϕ2(x)aε(s, x)ds ≥ λ) = 0 (254)

it suffices to prove that

lim sup
δ→0

lim sup
ε→0

Pε(

∫ t

0

ε
∑
x∈εZ

ϕ2(x)(η̄x,ε−1δ)
2z2
δ (t, x)ds ≥ λ) = 0. (255)

To prove this, note that

η̄x,ε−1δ = ε1/2δ−1(log zε(x+ 1
2
ε−1δ)− log zε(x− 1

2
ε−1δ)) (256)

so that
ε
∑
x∈εZ

ϕ2(x)(η̄x,ε−1δ)
2z2
δ (t, x) ≤ 2δ−2ε2

∑
x∈εZ

ϕ2
δ(x)(log zε(x))2z2

ε (x) (257)

where ϕδ(x) = (ϕ2
δ(x + 1

2
ε−1δ) + ϕ2

δ(x − 1
2
ε−1δ))1/2 . The last term clearly goes to zero

under Pε as ε→ 0, for any fixed δ (there is an extra ε in front.) This completes the proof.
�

2.15.2. Invariance of Brownian motion for KPZ. As pointed out in [15], since the Bernoulli
product measure is invariant for ASEP, taking the weakly asymmetric limit in equilibrium
one obtains a stationary process for the distributional derivative u = ∂xh of the KPZ
solution. In particular, white noise is invariant for the Hopf-Cole solution of the stochastic
Burgers equation. Note that u determines h up to a constant. We can think of equivalence
classes of height functions h where two height functions are equivalent if they differ by an
absolute constant. In [63] it is observed that in (41) all terms except the first, ∂thκ, only
depend on the equivalence class of hκ, and therefore through this equation, the absolute
height can be recovered. In this way, it is shown that a two sided Brownian motion with a
height shift given by (an independent) Lebesgue measure is invariant for the KPZ equation.

2.16. Steepest descent analysis of the Tracy-Widom step Bernoulli formula. We
only give here a heuristic explanation of the proof. We are taking the limit of (96) with
ρ = 1/2, t = ε−3/2T , x = ε−1X, q − p = γ = ε1/2, and

m = 1
2

[
−sε−1/2 + t

2
+ x
]
. (258)

The first term in the integrand of (96) is the infinite product
∏∞

k=0(1 − µτ k). Observe
that τ = q/p ≈ 1 − 2ε1/2 and that Sτ+ , the contour on which µ lies, is a circle centered
at zero of radius between τ and 1. The infinite product is not well behaved along most of
this contour, however we can deform the contour to one along which the product is not
highly oscillatory. However, the Fredholm determinant has poles at every µ = τ k and the
deformation must avoid passing through them. Observe that if

µ = ε1/2µ̃ (259)

then
∞∏
k=0

(1− µτ k) ≈ e−
∑∞
k=0 µτ

k

= e−µ/(1−τ) ≈ e−µ̃/2.

We make the µ 7→ ε−1/2µ̃ change of variables and find that if we consider a µ̃ contour

C̃ε = {eiθ}π/2≤θ≤3π/2 ∪ {x± i}0<x≤ε−1/2−1 ∪ {ε−1/2 − 1 + iy}−1<y<1,
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then the above approximations are reasonable. Thus the infinite product goes to exp{−µ̃/2}.
Now we turn to the Fredholm determinant and determine a candidate for the pointwise

limit of the kernel. The kernel Jµ(η, η′) is given by an integral whose integrand has four
main components: An exponential

exp{Λ(ζ)− Λ(η′)},
a rational function (we include the differential with this term for scaling purposes)

dζ/η′(ζ − η),

a doubly infinite sum
µf(µ, ζ/η′),

and an infinite product
g(η′)/g(ζ).

We proceed by the method of steepest descent, so in order to determine the region along
the ζ and η contours which affects the asymptotics we must consider the exponential term
first. The argument of the exponential is given by Λ(ζ)− Λ(η′) where

Λ(ζ) = −x log(1− ζ) +
tζ

1− ζ
+m log(ζ),

where x, t and m are as in (258). For small ε, Λ(ζ) has a critical point in an ε1/2 neigh-
borhood of -1. One has some freedom in where to center the expansion and for purposes
of having a nice ultimate answer we choose to use

ξ = −1− 2ε1/2
X

T

We can rewrite the argument of the exponential as (Λ(ζ) − Λ(ξ)) − (Λ(η′) − Λ(ξ)) =
Ψ(ζ) − Ψ(η′). The idea of extracting asymptotics for this term (which starts like those
done in [116] but quickly becomes more involved due to the fact that τ tends to 1 as ε goes
to zero) is then to deform the ζ and η contours to lie along curves such that outside the
scale ε1/2 around ξ, ReΨ(ζ) is very negative, and ReΨ(η′) is very positive, and hence the
contribution from those parts of the contours is negligible. Rescaling around ξ to blow up
this ε1/2 scale, gives us the asymptotic exponential term. This change of variables sets the
scale at which we should analyze the other three terms in the integrand for the J kernel.

Returning to Ψ(ζ), we make a Taylor expansion around ξ and find that in a neighborhood
of ξ

Ψ(ζ) ≈ − T
48
ε−3/2(ζ − ξ)3 + 1

2
(s+ X2

2T
)ε−1/2(ζ − ξ).

This suggests the following change of variables

ζ̃ = 2−4/3ε−1/2(ζ − ξ) η̃ = 2−4/3ε−1/2(η − ξ) η̃′ = 2−4/3ε−1/2(η′ − ξ), (260)

after which our Taylor expansion takes the form

Ψ(ζ̃) ≈ −T
3
ζ̃3 + 21/3(s+ X2

2T
)ζ̃ .

In the spirit of steepest descent analysis we would like the ζ contour to leave ξ in a direction
where this Taylor expansion is decreasing rapidly. This is accomplished by leaving at an
angle ±2π/3. Likewise, since Ψ(η) should increase rapidly, η should leave ξ at angle ±π/3.
Since ρ+ = 1/2, α = 1 which means that the ζ contour is originally on a circle of diameter
[−1 + δ, 1 + δ] and the η contour on a circle of diameter [−1 + 2δ, 1− δ] for some positive
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δ (which can and should depend on ε so as to ensure that |ζ/η| ∈ (1, τ−1)). In order to
deform these contours to their steepest descent contours without changing the value of
the determinant, great care must be taken to avoid the poles of f , which occur whenever
ζ/η′ = τ k, k ∈ Z, and the poles of 1/g, which occur whenever ζ = −τ−n, n ≥ 0. We will
ignore these considerations in the formal calculation. The one very important consideration
in this deformation, even formally, is that we must end up with contours which lie to the
right of the poles of the 1/g function.

Let us now assume that we can deform our contours to curves along which Ψ rapidly
decays in ζ and increases in η, as we move along them away from ξ. If we apply the change
of variables in (260) the straight part of our contours become infinite rays at angles ±2π/3
and ±π/3 which we call Γ̃ζ and Γ̃η

9.
Applying this change of variables to the kernel of the Fredholm determinant changes the

L2 space and hence we must multiply the kernel by the Jacobian term 24/3ε1/2. We will
include this term with the µf(µ, z) term and take the ε→ 0 limit of that product.

Before we consider that term, however, it is worth looking at the new infinite product
term g(η′)/g(ζ ′). In order to do that let us consider the following. Set

q = 1− r, a =
logα(c− xr)

log q
, b =

logα(c− yr)
log q

.

Then observe that
∞∏
n=0

1 + (1− r)nα(−c+ xr)

1 + (1− r)nα(−c+ yr)
=

(qa; q)∞
(qb; q)∞

=
Γq(b)

Γq(a)
(1− q)b−a

=
Γq(b)

Γq(a)
e(b−a) log r =

Γ1−r(−r−1 log(αc) + c−1y + o(r))

Γ1−r(−r−1 log(αc) + c−1x+ o(r))
ec
−1(y−x) log r+o(r log r), (261)

where the q-Gamma function and the q-Pochhammer symbols are given by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1− q)1−x

when |q| < 1 and

(a; q)∞ = (1− a)(1− aq)(1− aq2) · · · .
The notation o(f(r)) above refers to a function f ′(r) such that f ′(r)/f(r) → 0 as r → 0.
The q-Gamma function converges to the usual Gamma function as q → 1, uniformly on
compact sets (see [5]).

Now consider the g terms and observe that in the rescaled variables this corresponds
with (261) with r = 2ε1/2, c = 1 (recall α = 1 as well) and

y = 21/3ζ̃ − X

T
, x = 21/3η̃′ − X

T

Since αc = 1 and since we are away from the poles and zeros of the Gamma functions we
find that

g(η′)

g(ζ)
→

Γ
(

21/3ζ̃ − X
T

)
Γ
(
21/3η̃′ − X

T

) exp
{

21/3(ζ̃ − η̃′) log(2ε1/2)
}
. (262)

9Note that this is not the actual definition of the contours which one uses in the real proof because of the
singularity problem.
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This exponential can be rewritten as

exp

{
z̃

4
log ε

}
exp

{
21/3 log(2)(ζ̃ − η̃′)

}
. (263)

where

z̃ = 24/3(ζ̃ − η̃′). (264)

It appears that there is a problem in these asymptotics as ε goes to zero, however we will
find that this apparent divergence exactly cancels with a similar term in the doubly infinite
summation term asymptotics. We will now show how that log ε in the exponent can be
absorbed into the 24/3ε1/2µf(µ, ζ/η′) term. Recall

µf(µ, z) =
∞∑

k=−∞

µτ k

1− τ kµ
zk.

If we let n0 = blog(ε−1/2)/ log(τ)c then observe that

µf(µ, z) =
∞∑

k=−∞

µτ k+n0

1− τ k+n0µ
zk+n0 = zn0τn0µ

∞∑
k=−∞

τ k

1− τ kτn0µ
zk.

By the choice of n0, τn0 ≈ ε−1/2 so

µf(µ, z) ≈ zn0µ̃f(µ̃, z).

The discussion on the exponential term indicates that it suffices to understand the behavior
of this function only in the region where ζ and η′ are within a neighborhood of ξ of order
ε1/2. Equivalently, letting z = ζ/η′, it suffices to understand µf(µ, z) ≈ zn0µ̃f(µ̃, z) for

z =
ζ

η′
=
ξ + 24/3ε1/2ζ̃

ξ + 24/3ε1/2η̃′
≈ 1− ε1/2z̃.

Let us now consider zn0 using the fact that log τ ≈ −2ε1/2:

zn0 ≈ (1− ε1/2z̃)ε
−1/2 1

4
log ε ≈ e−

1
4
z̃ log ε. (265)

Plugging back in the value of z̃ in terms of ζ̃ and η̃′ we see that this prefactor of zn0 exactly
cancels the log ε term which came from the g infinite product term.

What remains is to determine the limit of 24/3ε1/2µ̃f(µ̃, z) as ε goes to zero and for
z ≈ 1− ε1/2z̃. This limit can be found by interpreting the infinite sum as a Riemann sum
approximation for an appropriate integral. Define t = kε1/2, then observe that

ε1/2µ̃f(µ̃, z) =
∞∑

k=−∞

µ̃τ tε
−1/2

ztε
−1/2

1− µ̃τ tε−1/2
ε1/2 →

∫ ∞
−∞

µ̃e−2te−z̃t

1− µ̃e−2t
dt.

This used the fact that τ tε
−1/2 → e−2t and that ztε

−1/2 → e−z̃t, which hold at least pointwise
in t. If we change variables of t to t/2 and multiply the top and bottom by e−t then we
find that

24/3ε1/2µf(µ, ζ/η′)→ 21/3

∫ ∞
−∞

µ̃e−z̃t/2

et − µ̃
dt.

As far as the final term, the rational expression, under the change of variables and zooming

in on ξ, the factor of 1/η′ goes to -1 and the dζ
ζ−η′ goes to dζ̃

ζ̃−η̃′ .



INTRODUCTION TO KPZ 52

Therefore we formally find the following kernel: −Kcsc,Γ
a′ (η̃, η̃′) acting on L2(Γ̃η) where:

Kcsc,Γ
a′ (η̃, η̃′) =∫

Γ̃ζ

exp{−T
3

(ζ̃3 − η̃′3) + 21/3a′(ζ̃ − η̃′)}21/3

(∫ ∞
−∞

µ̃e−21/3t(ζ̃−η̃′)

et − µ̃
dt

)
Γ
(

21/3ζ̃ − X
T

)
Γ
(
21/3η̃′ − X

T

) dζ̃

ζ̃ − η̃
,

where a′ = s+ X2

2T
+ log 2 (recall that this log 2 came from (263)).

We have the identity ∫ ∞
−∞

µ̃e−z̃t/2

et − µ̃
dt = (−µ̃)−z̃/2π csc(πz̃/2), (266)

where the branch cut in µ̃ is along the positive real axis, hence (−µ̃)−z̃/2 = e− log(−µ̃)z̃/2

where log is taken with the standard branch cut along the negative real axis. We may use
the identity to rewrite the kernel as

Kcsc,Γ
a′ (η̃, η̃′) =∫

Γ̃ζ

exp{−T
3

(ζ̃3 − η̃′3) + 21/3a′(ζ̃ − η̃′)}21/3 π(−µ̃)−21/3(ζ̃−η̃′)

sin(π21/3(ζ̃ − η̃′))

Γ
(

21/3ζ̃ − X
T

)
Γ
(
21/3η̃′ − X

T

) dζ̃

ζ̃ − η̃
.

To make this cleaner we replace µ̃/2 with µ̃. Taking into account this change of variables
(it also changes the exp{−µ̃/2} in front of the determinant to exp{−µ̃}), we find that a
nice way to write the final answer is∫

C̃
e−µ̃

dµ̃

µ̃
det(I −Kcsc,Γ

s+
X2

2T

)L2(Γ̃η).

The details can be found in [42].
The asymptotic analysis of the corner growth case ρ = 1 is slightly easier because there

are fewer constraints on the contours, and no term (262). In the analysis though, there
is apparently no term now to cancel the divergent term in (265). However, this is easily
resolved by simply shifting the initial problem by a factor log(ε−1/2). The nice thing is
that this is exactly what we need (217) in order to see an initial Dirac delta function.
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