
We consider the semlinear wave equation

(0.1) utt −∆u + f(u) = 0 in [0, T ]× Rn

with initial data

(0.2) u(0, x) = u0(x), ut(x, 0) = u1(x).

We assume the functions f is smooth.
We will generally assume that u is a scalar function. In fact, many of our

arguments are valid with very little change in the case where u takes values in Rk

or Ck for some k ≥ 2.
We will use the notation

2u = utt −∆u.

1. conserved quantities

First note that the semilinear equation (0.1) is the Euler-Lagrange equation for
the functional

L[v] :=
∫ T

0

∫
Rn

(
−1

2
v2

t +
1
2
|Dv|2 + F (v)

)
dx dt.

where F ′ = f . The Lagrangian is invariant with respect to space and time transla-
tions, and by Noether’s Principle this implies that solutions of the equation obey
certain conservation laws.

In particular, by multiplying (0.1) by ut and rearranging, we find that

(1.1)
d

dt

(
1
2
(u2

t + |Du|2) + F (u)
)

= div (utDu) + ut(2u + f(u))

Thus for a solution of the (0.1),

(1.2)
d

dt

(
1
2
(u2

t + |Du|2) + F (u)
)

= div (utDu).

This is interpreted as expressing the conservation of energy. A second conservation
law, interpreted as conservation of momentum, could be derived by multiplying the
equation by uxi

and arguing as above. This is less useful and we will not go into it
here.

Let us write

e(u) =
1
2
(u2

t + |Du|2) + F (u), E(u) =
∫

Rn

e(u) dx.

It follows from (1.2) that for a smooth, compactly supported solution of (0.1),

(1.3)
d

dt
E(u) =

∫
Rn

d

dt
e(u) dx =

∫
Rn

div(ut Du) dx = 0.

Note in particular that this holds for the linear wave equation.
The above fact can be “localized”; this is part of the content of the following

lemma
Notation: we fix (t0, x0) ∈ R.× R, and we write

(1.4) K := {(t, x) : |x− x0| < t0 − t, t > 0}.
For s < t we write Ks,t := {(σ, x) ∈ K : s < σ < t}. We also write

Dt := {x : |x− x0| < t0 − t}
1
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and Rs,t := ∂Ks,t \ (Ds ∪ Dt). We will sometimes write for example K(t0, x0),
Ks,t(t0, x0) etc when we need to keep track of the vertex of the cone,

Lemma 1. Assume that f : R → R is a smooth, bounded function Suppose also
that u ∈ H2

loc([0, T ]× Rn) solves

(1.5) 2u + f(u) = h in [0, T ]× Rn

for some function h ∈ L2
loc([0, T ]× Rn).

Then for every 0 ≤ s < t,

(1.6)
∫

Dt

e(u) dx−
∫

Ds

e(u) dx ≤
∫

Ks,t

uth dx dt− 1√
2

∫
Rs,t

F (u).

Here the equation (1.5) is assumed to hold in the sense that both sides belong
to L2([0, T ]× Rn), and they are equal a.e..

Proof. Note that the formal derivation we gave above of (1.1) is justified if u ∈
H2([0, T ]× Rn). We rewrite (1.1) in the form

divt,x(e(u),−utDu) := (∂t, ∂x1 , . . . , ∂xn
) · (e(u),−utDu)

= ut(2u + f(u)).

Thus in the present case

divt,x(e(u),−utDu) = uth.

We fix s < t and integrate this identity over Ks,t. By the divergence theorem (in
the (t, x) variables),∫

Ks,t

ut h dx dt =
∫

Ks,t

divt,x(e(u),−utDu) dx dt

=
∫

∂Ks,t

(e(u),−ut∇u) · νt,x dx dt.(1.7)

where νt,x denotes the spacetime unit normal to ∂Ks,t. Clearly νt,x has the form

νt,x = (1, 0, . . . , 0) on Dt, νt,x = (−1, 0, . . . , 0) on Ds

On Rs,t, it is not hard to check that

νt,x =
1√
2
(1, νx), νx :=

x− x0

|x− x0|
.

(To see this, note for example that Rs,t is the zero level set of the function ζ(x, t) :=
|x− x0| − (t0 − t), so the normal to Rs,t is parallel to the spacetime gradient of ζ.)
When we use these facts to rewrite the boundary integral on the right-hand side of
(1.7), we find that∫

Ks,t

ut h dx dt =
∫

Dt

e(u) dx−
∫

Ds

e(u) dx

+
1√
2

∫
Rs,t

e(u) + νx · ∇uut.(1.8)

Note in addition that at every point on Rs,t,

e(u) + νx · ∇uut ≥
1
2
(u2

t + |∇u|2) + F (u)− |∇u| |ut| ≥ F (u),

since |∇u| |ut| ≤ 1
2 (u2

t + |∇u|2). Combining this with (1.8), we obtain (1.6). �
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As a corollary, we obtain the following

Lemma 2. Let u, h be as in the previous lemma, and assume that F ≥ 0. Then
for 0 ≤ t ≤ t0,

sup
0<s<t

∫
Ds

e(u) dx ≤ C

∫
D0

e(u) dx + Ct

∫
K0,t

h2 dx dt(1.9)

≤ C

∫
D0

e(u) dx + Ct2 sup
0<s<t

∫
Ds

h(x, s)2 dx(1.10)

Proof. Note from Cauchy’s inequality that uth ≤ ε
2u2

t + 1
2εh

2 ≤ e(u) + 1
2εh

2, where
we have used the fact that F ≥ 0.

Again noting that F ≥ 0, it follows from (1.6) that∫
Dt

e(u) dx ≤
∫

D0

e(u) dx +
∫

K0,t

uth dx dt

≤
∫

D0

e(u) dx + ε

∫
K0,t

e(u) dx dt +
1
2ε

∫
K0,t

h2 dx dt

=
∫

D0

e(u) dx + ε

∫ t

0

∫
Ds

e(u) dx ds +
1
2ε

∫
K0,t

h2 dx dt

≤
∫

D0

e(u) dx + εt

(
sup

0<s<t

∫
Ds

e(u) dx

)
+

1
2ε

∫
K0,t

h2 dx dt

It follows that in fact

sup
0<s<t

∫
Ds

e(u) dx ≤
∫

D0

e(u) dx + εt

(
sup

0<s<t

∫
Ds

e(u) dx

)
+

1
2ε

∫
K0,t

h2 dx dt

We choose ε = 1
2t to arrive at the (1.9), and (1.10) follows directly from (1.9). �

We finish this section by noting

Lemma 3. If F = 0 (ie, if we consider the linear wave equation) then the above
conclusions remain true if we only assume that h ∈ L2

loc([0, T ]×Rn)) and the initial
data u0, u1 belong to H1

loc × L2
loc(Rn).

The assumptions of this lemma are essentially the assumptions under which we
established existence of solutions (for somewhat more general hyperbolic equations).

Proof. Let uε
0, u

ε
1 and hε be sequence of smooth functions converging to u0, u1 and

h in H1
loc(Rn), L2

loc(Rn) and L2
loc([0, T ] × Rn) respectively, and let uε denote the

solution of the problem

2uε = hε in [0, T ]× Rn, (uε, uε t)|t−0 = (uε
0, u

ε
1).

Fix ε, δ > 0 and let w := uε − uδ. Then w solves

2w = hε − hδ in [0, T ]× Rn, (w,wt)|t=0 = (uε
0 − uδ

1, u
ε
0 − uδ

1).
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Since the initial data and the right-hand side are smooth, the previous two lemmas
apply to w (with f = 0 of course). Thus for example

sup
0<s<t

∫
Ds

1
2
(w2

t + |Dw|2) dx ≤ C

∫
D0

(uε
0 − uδ

1)
2 + |D(uε

0 − uδ
1)|2 dx

+ Ct

∫
K0,t

(hε − hδ)2 dx dt.

The right-hand side tends to zero as ε, δ → 0, so the same is true of the left-hand
side. Notice also that for every t,∫

Dt

|w|2 dx =
∫

Dt

∣∣∣∣w(0, x) +
∫ t

0

wt(s, x)ds

∣∣∣∣2 dx

≤ C

∫
Dt

|w(0, x)|2 dx + Ct

∫
Dt

∫ t

0

|wt(s, x)|2dsdx(1.11)

We have already shown that the right-hand side tends to 0 as ε, δ → 0. By com-
bining this with the previous estimate, we find that

sup
0<s<t

(
‖wt‖2L2(Dt)

+ ‖w‖2H1(Dt)

)
→ 0 as ε, δ → 0.

And this implies that the sequence {uε} is Cauchy C([0, T ];H1) and that {uε t} is
Cauchy C([0, T ];L). Since these {uε}ε>0 and {uε t}ε>0 clearly converge to u and
ut, respectively, in suitable weak topologies as ε → 0, it follows that they converge
to the same limits in C([0, T ];H1(Dt)) and C([0, T ];L2(Dt)) respectively.

This convergence is strong enough that we can deduce that u satisfies (1.6) and
(1.9) by noting that these conclusions hold for every ε > 0, and then passing to
limits. �

2. well-posedness for Lipschitz nonlinearities

We now use the above estimates to prove well-posedness of solutions for the
semilinear wave equation (0.1) when f is Lipschitz. Altogether, our results show
that in this siuation, the initial value problem (0.1), (0.2) has a unique solution ,for
(u0, u1) ∈ H1

loc×L2
loc (Theorem 2.1), that the solutions depend continuously on the

initial data (Lemma 4), that the solution enjoys better regularity properties when
(u0, u1) ∈ H2

loc ×H1
loc (Lemma 5), and that if the associated energy functional has

a positivity property, then the total energy is conserved (Lemma 6.)
W will take for granted results about the solvability of the linear wave equation,

(1.5) with f(u) = 0, with initial data as in (0.2). In fact, explicit formulas for the
solutions are known, expressed in terms of convolutions of the Cauchy data (u0, u1)
and the right-hand side h with certain fundamental solutions.

Given a function u : [0, T ] × Rn → R, we will write u(t) to denote the function
Rn → R that we get when we fix the time variable to equal t, so that (u(t))(x) =
u(x, t).

As this notation suggests, it is often useful to view functions on [0, T ] × Rn as
maps from the time interval [0, T ] into spaces of functions on Rn. For example, if
U is a subset of Rn, then u ∈ L∞([0, T ];H1(U)) if∥∥‖u(·)‖H1(Dt)

∥∥
L∞([0,T ])

= ess supt∈[0,T ]

(∫
U

u2(x, t) + |∇u(x, t)|2 dx

)1/2

< ∞.
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In addition, we write u ∈ L∞([0, T ];H1
loc(Rn)) if u ∈ L∞([0, T ];H1(K)) for ev-

ery compact K ⊂ Rn. And we also write for example u ∈ L∞([0, T ];H1(Dt)) if
ess supt∈[0,T ]‖u(t)‖H1(Dt) < ∞, although this is perhaps a mild abuse of notation.

Theorem 2.1. Suppose that f : R → R is C1 and that there exists some constant
C such that |f ′(z)| ≤ C for all z ∈ R. Assume that (u0, u1) ∈ H1

loc × L2
loc(Rn).

Then for every T > 0, there exists a unique solution u : [0, T ]× Rn → R of (0.1),
(0.2) such that u ∈ L∞([0, T ];H1

loc(Rn)) and ut ∈ L∞([0, T ];L2
loc(Rn))

Proof. 1. We first solve the equation on a cone K with vertex (x0, t0), where t0
will be fixed later. We will do this using a fixed point argument. We define the
function space

X := {u ∈ L2(K) : u ∈ C([0, t0];H1(Dt)), ut ∈ C([0, t0];L2(Dt))}
We define the norm

(2.1) ‖u‖2X := sup
0≤t≤t0

∫
Dt

(u2 + u2
t + |∇u|2) dx.

This norm makes X into a Banach space.
We define a nonlinear mapping L : X → X by specifying that L(v) = u if u

(2.2) 2u = −f(v) in K,

with the Cauchy data

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ D0.

It is a standard fact about linear wave equations that this problem has a unique
solution.

2. We first verify that L maps X into X as claimed.
2a. It follows from Lemma 2 (with F (u) = 0, since (2.2) is a linear equation for

u, once v ∈ X is fixed) that for u = L(v),∫
Dt

1
2
(u2

t + |∇u|2) dx ≤ C

∫
D0

1
2
(u2

1 + |∇u0|2) dx + Ct2 sup
t∈[0,t0]

‖f(v)‖2L2(Dt)
.

The right-hand side is finite by the assumptions on the initial data, and because
|f(v)| ≤ C(|v|+ 1) and v ∈ X.

2b. To prove that u ∈ X, we must still show that supt ‖u‖L2(Dt) is bounded.
For every t, we argue as in (1.11) to find that∫

Dt

u(x, t)2 dx ≤ C

∫
Dt

t

∫ t

0

u2
t (x, s) dsdx + ‖u0‖2L2(D0)

≤ Ct20 sup
s∈[0,t0]

∫
Ds

u2
t (s, x)dx + ‖u0‖2L2(d0)

.(2.3)

Since we have already bounded sups∈[0,t0]

∫
Ds

u2
t (s, x)dx, this shows that u ∈ X.

3. We next claim that if t0 is chosen to be sufficiently small, then L is a contrac-
tion mapping. Indeed, let u1 = L(v1), u2 = L(v2) for v1, v2 ∈ X. Then w := u1−u2

solves
2w = f(v2)− f(v1) in K,

with initial data w = wt = 0 on D0. Again using Lemma 2, we see that,

(2.4)
∫

Dt

1
2
(w2

t + |∇w|2) dx ≤ Ct20 sup
s∈[0,t0]

‖f(v1)− f(v2)‖2L2(Ds)
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for every t ∈ [0, t0] And since f is Lipschitz,

sup
t
‖f(v1)− f(v2)‖2L2(Dt)

≤ C sup
t
‖v1 − v2‖2L2(Dt)

≤ C‖v1 − v2‖2X .

Also, arguing as in (2.3) and using the fact that w = 0 at time 0,

(2.5)
∫

Dt

w(x, t)2 dx ≤ Ct20 sup
s∈[0,t0]

∫
Ds

w2
t (s, x)dx

Combining (2.4) and (2.5), we obtain (recalling that w = L(v1)− L(v2))

(2.6) ‖L(v1)− L(v2)‖2X ≤ C(t20 + t40)‖v1 − v2‖2X
By choosing t0 > 0 sufficiently small (depending only on the nonlinearity f , we can
arrange that C(t20 + t40) < 1, and so for this choice of t0, L : X → X is a contraction
mapping. Note that the choice of t0 is independent of the intial data (u0, u1).

4. It follows from the contraction mapping principle (also known as Banach’s
fixed point theorem) that L has a unique fixed point. That is, there exists a unique
u ∈ X such that L(u) = u. This says exactly that u solves the equation (0.1) in K
and satisfies the initial condition (0.2) on D0.

Note also that the analog of L is still a contraction mapping on any cone K ′ =
{(x, t) : |x−x′| < t′− t} if 0 < t′ < t0, and hence there is a unique solution of the
initial value problem for (0.1) on every such cone.

5. Now we can cover Rn × [0, t0
2 ] by a countable collection of cones {Ki}, all

with height t0. We can do this in such a way that any compact set intersects only
finitely many cones. We let ui(x, t) denote the solution of (0.1) on Ki, which we
have shown above to exist. We then define

u(x, t) = ui(x, t) for (x, t) ∈ Ki.

To see that this is well-defined, suppose that (x̄, t̄) ∈ Ki∩Kj . For ε > 0 let t̄ε := t̄+ε,
and note that for sufficiently small ε > 0, K ′ = {(x, t) : |x − x̄| < t̄ε − t + ε} is
contained in Ki ∩ Kj . Thus ui = uj on K ′, by uniqueness. Since (x̄, t̄) was an
arbitrary point in Ki ∩Kj , it follows that ui = uj throughout Ki ∩Kj . Thus u is
well-defined.

6. Note that any compact set V × t0/2 ⊂ Rn × [0,∞) is contained in a finite
subcollection of cones Ki. It thus follows that at time t0/2, u(t) ∈ H1

loc and
ut ∈ L2

loc(Rn). We can therefore repeat the above argument to find a unique
solution on Rn× [ 12 t0, t0], By iterating this procedure, the solution can be extended
to arbitrarily large times.

�

Lemma 4. Assume that f be as in the previous theorem. Let K be any cone of the
form (1.4). Then there exists a constant C = C(K, f) with the following property:

Let u and ũ solve (0.1) with initial data (u0, u1) and (ũ0, ũ1) respectively. Define
the norm ‖ · ‖X as in (2.1). Then

‖u− ũ‖X ≤ C(‖u0 − ũ0‖H1(D0) + ‖u1 − ũ1‖L2(D0)).

Proof. 1. We first consider a cone K with vertex (t0, x0) such that t0 is sufficiently
small. We will later remove this smallness condition. Note that w := u− ũ solves

2w = f(ũ)− f(u) in K, (w,wt)|t=0 = (u0 − ũ0, u1 − ũ1).
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First, as in (2.3) we have

(2.7) sup
s∈[0,t0]

∫
Ds

w(s, x)2 dx ≤ Ct20 sup
s∈[0,t0]

∫
Ds

w2
t (s, x)dx + ‖u0 − ũ0‖2L2(d0)

.

Thus energy estimates for the linear wave equation imply that

sup
0<t<t0

∫
w2

t + |Dw|2 dx ≤ C

∫
D0

|D((u0 − ũ0)|2 + (u1 − ũ1)2 dx

+ Ct20 sup
0<t<t0

∫
Dt

(f(ũ)− f(u))2 dx

≤ C

∫
D0

|D((u0 − ũ0)|2 + (u1 − ũ1)2 dx

+ Ct20 sup
0<t<t0

∫
Dt

w2 dx

since |f(u) − f(ũ)| ≤ C|u − ũ| = C|w|. Combining this with (2.7), taking t0
sufficiently small, and rearranging, we arrive at the conclusion of the lemma.

2. Now consider a cone K = K(t∗, x∗) with vertex (t∗, x∗) for arbitrary t∗. We
claim that the conclusion in this case follows by covering the possibly large cone
K(t∗, x∗) by smaller cones and using Step 1. To see this, let K0,t0/2 := {(t, x) ∈ K :
0 < t ≤ t0/2}, where t0 is the number chosen in Step 1. Then we can cover K0,t0/2

with finitely many cones K1, . . . Km of height t0 and centered at points x1, . . . , xm.
Applying the above lemma on each smaller cone, we find that (using notation that
should be self-explanatory)

sup
0<t<t0/2

(‖u(t)‖2H1(Dt(t∗,x∗))
+ ‖ut(t)‖2L2(Dt(t∗,x∗))

)

≤
m∑

i=1

sup
0<t<t0/2

(
‖u(t)‖2H1(Dt(t0,xi))

+ ‖ut(t)‖2L2(Dt(t∗,x∗))

)
≤

m∑
i=1

‖u‖2X(K(t0,xi))

≤ C
m∑

i=1

(
‖u0‖2H1(Dt(t0,xi))

+ ‖u1(t)‖2L2(Dt(t0,xi))

)
≤ C(‖u0‖2H1(D0(t∗,x∗))

+ ‖u1(t)‖2L2(D0(t∗,x))

Repeating this argument for times t ∈ t0/2, t0 etc, we eventually cover the whole
cone. �

Lemma 5. Let f be as in the previous results. If (u0, u1) ∈ H2
loc ×H1

loc, then the
solution u of (0.1), (0.2) proved to exist in (2.1) satisfies

u ∈ H2
loc(R× Rn).

Proof. It suffices to show u ∈ H2(K) for any cone K. We henceforth fix such a
cone.

For any k ∈ 1, . . . , n, let τh
k u(x) := u(x + hek). In this notation the difference

quotient Dh
ku can be written Dh

ku = 1
h (τh

k u− u).
Note that w := τh

k u solves (0.1) with initial data (w,wt)|t=0 = (τh
k u0, τ

h
k u1).
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So we can apply the previous lemma on the cone K to find that

‖Dh
ku‖X(K) =

1
h
‖τh

k u− u‖X(K) ≤
C

h
(‖τh

k u0 − u0‖H1(D0) + ‖τh
k u1 − u1‖L2(D0)

C(‖Dh
ku0‖H1(D0) + ‖Dh

ku1‖L2(D0)).

Basic results about difference quotients imply that the right-hand side is bounded by
C(‖u0‖H2(V ) + ‖u1‖L2(V ) for some set V such that D0 ⊂⊂ V , and all h sufficiently
small. Recalling the definition of the X norm, this implies that there exists some
C such that ‖Dh

kDu‖H1(K) + ‖Dh
kut‖H1(K) ≤ C for all small h. Thus the basic

result on difference quotients implies that we second derivatives uxixk
and utk exist

for all i, k = 1, . . . , n and are bounded in L2(K) by the same constant C. Finally,
the equation implies that1 utt = ∆u− f(u), and since we have just shown that the
right-hand side belongs to L2(K), we conclude that the same is true for utt as well.
This completes that u ∈ H2(K). �

Lemma 6. Assume that the assumptions of the previous results hold, and that
f = F ′ with F ≥ 0. Assume also that (u0, u1) ∈ H1 × L2(Rn) are initial data for
(0.1) such that ∫

Rn

1
2
(|Du0|2 + u2

t ) + F (u) dx := E0 < ∞.

Then if u solves (0.1) with the given data, and if e(u) := 1
2 (|Du|2 +u2

t )+F (u), the
identity

(2.8)
∫

Rn

e(u(t)) dx = E0 for all t

holds.

Note that in (1.3) we gave a formal proof of this identity if the solution u is
known to be smooth and compactly supported. Here H2 (in both the x and t
variables) is sufficient smoothness to justify the computations that lead to (1.3).
This lemma shows that this result is valid for the solutions we have found above,
although the solutions are not compactly supported in general and are not smooth
enough to justify the computations (1.1), (1.2).

The assumption that F ≥ 0 makes the proof easier but it unnecessarily strong
and could be relaxed somewhat.

Proof. 1. First let us assume that (u0, u1) ∈ H2
loc × H1

locc, in addition to the
assumptions above. Then it follows from Lemma 5 that u satisfies the hypotheses
of Lemma 1. So for t > 0 fixed, we conclude from facts such as (1.8) (established
during the proof of Lemma 1) and the fact that F ≥ 0 that
(2.9)∫

Dt(T,0)

e(u(t)) dx−
∫

D0(T,0)

e(u(0)) dx =
1√
2

∫
R0,t(T,0)

(−e(u) + νx · ∇uut)dσ ≤ 0.

In particular
∫

Dt(T,0)
e(u) dx ≤ E0 for every t, T . If we fix t and let T tend to ∞,

we deduce that
∫

Rn e(u(t)) dx ≤ E0.

1strictly speaking, at this point we should write the equation in a weak form that only requires
one t derivative of u, and then find that this weak form of the equation implies that the weak ∂

∂t

derivative of ut exists and is given by ∆u− f(u).
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Next note that

(2.10)
∫ ∞

t

(
∫

R0,t(T,0)

e(u)dσ)dT ≤ C

∫ t

0

∫
Rn

e(u) dx dt ≤ CtE0.

The easiest way of proving this is by an appeal to the “coarea formula” (see below).
Alternatively, one can also note that for every t ≤ T ,∫

R0,t(T,0)

e(u)dσ =
√

2
∫ t

0

∫
∂BT−t(x0)

e(u)dσ′ dt

where σ denotes n-dimensional volume measure on a hypersurface in a Rn+1, and
σ′ denotes n − 1-dimensional volume measure on a hypersurface in Rn. Then
(2.10) follows by substituting this into the left-hand side and changing the order of
integration (and also noting that the integrand is nonnegative).

It follows from (2.10) that we can find a sequence Tk →∞ such that∫
R0,t(Tk,0)

e(u)dσ → 0.

Since the right-hand side of (2.9) is easily seen to be bounded in absolute value by
2

∫
R0,t(Tk,0)

e(u)dσ, we find by writing (2.9) for every Tk and letting k tend to ∞
that ∫

Rn

e(u(t)) dx = E0

which proves the lemma when the initial data are smooth enough.
2. If it is only true that (u0, u1) ∈ H1 × L2, then one can approximate this

initial data by a sequence {(uε
0, u

ε
1) ∈ H2

loc × H1
loc) such that (uε

0, u
ε
1) → (u0, u1)

in H1 × L2. Let uε denote the solution of (0.1) with initial data (uε
0, u

ε
1). Using

Lemma 4 (continnuous dependence of the solution on the data) and the fact that
the conclusions hold for uε, for every ε > 0, one can argue that the conclusions are
satisfied for u as well.

�

3. nonlinearities with arbitrary growth

.
Next we consider f that can grow arbitrarily quickly, but that satisfies a posi-

tivity condition. We will prove

Theorem 3.1. Assume that f is locally Lipschitz and that 0 ≤ uf(u) ≤ CF (u) for
all u ∈ R, where F (s) =

∫ s

0
f(t) dt.

Assume that (u0, u1) ∈ H1 ×  L2 are such that

E0 :=
∫

Rn

1
2
(|Du0|2 + u2

1) + F (u0) dx < ∞.

Then there exists a function u ∈ H1
loc([0,∞)×Rn) solving the equation 2u+f(u) =

0 in the following weak sense:∫∫
[0,∞)×Rn

[−vtut + Dv ·Du + f(u)v] dtdx = 0 for all v ∈ C∞
c ((0,∞)× Rn).

and such that u|t=0 = u0(in the trace sense). Moreover,

E(u(t)) :=
∫

Rn

1
2
(|Du(t)|2 + u2

t (t)) + F (u(t)) dx ≤ E0
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for all t ≥ 0.

Proof. 1. Let

fk(s) :=

 f(−k) if s ≤ −k
f(s) if |s| ≤ k
f(k) if s ≥ k.

Note that fk is Lipschitz. so the equation 2u + fk(u) = 0 satisfies the hypotheses
of Theorem 2.1 in the previous section. Let uk solve

2uk + fk(uk) = 0, (uk, uk,t)|t−0 = (u0, u1).

Also, define Fk(s) =
∫ s

0
f(t) dt. Note that Fk(s) = F (s) if |s| ≤ k, and if s > k,

then

(3.1) Fk(s) = F (k) + (s− k)f(k) ≥ C−1kf(k) + (s− k)f(k) ≥ C−1sfk(s) ≥ 0

for a constant that does not depend on s. (Similarly for s < −k). In particular, this
implies that the hypotheses of Lemma 6 are satisfied, so that the energy identity
(2.8) holds (with F replaced by Fk).

�


