
In the final section of these notes we prove the following

Theorem 1. Consider the equation
ut + Lu = f

where L is a divergence-form elliptic operator

Lu =
n∑

i,j=1

(aij(x, t)uxi)xj +
n∑

i=1

biuxi + cu

and aij ∈ C1(UT ), bi, c ∈ L∞(UT ). Also assume that
∑n

i,j=1(aij(x, t)ξiξj ≥ θ|ξ|2 at a.e. (x, t) ∈ UT .

Assume that u ∈ L2(0, T ;H1(U)) with u′ ∈ L2(0, T ;H−1(U)) and that for a.e. t ∈ [0, T ], the
identity

(1) 〈u′, v〉+B[u, v; t] = (f , v)

is valid for every v ∈ H1
0 (U), using notation (such as the bilinear form B) from Evans.

Then for any V ⊂⊂ U and T0 ∈ (0, T ), the restriction of u to V×[T0, T ] belongs to L∞(T0, T ;H1(V ))∩
L2(T0, T ;H2(V )), and the restriction of u′ belongs to L2(T0, T ;L2(V )). Moreover, the following es-
timates hold:

sup
T0≤t≤T

∫
V
|Du|2 dx+

∫∫
V×[T0,T ]

|D2u|2 dx dt ≤ C

(∫∫
UT

u2 dx dt+
∫∫

UT

f2dx dt

)
and ∫∫

V×[T0,T ]
|ut|2 dx dt ≤ C

(∫∫
UT

u2 dx dt+
∫∫

UT

f2dx dt

)
.

The constants depend on V, T0, the norms of the coefficients, the parabolicity constant θ

*******************************

We start with a lengthy discussion in which we prove estimates for smooth solutions of the heat
equation. These provide a model for the harder estimates of Theorem 1 .

1. Estimates for the inhomogeneous heat equation

Assume that u soves

(2) ut −∆u = f

in UT := U × [0, T ], where U is a bounded open subset of Rn with smooth boundary. We assume
that u is smooth enough to justify the calculations that follow. (We will eventually discuss how
to carry out these calculations rigorously for solutions that are only know at the outset to be of
rather low regularity.)

1.1. basic estimates. Multiply (2) by u and rewrite to find that

(3)
d

dt
(
1
2
u2) + |Du|2 = div(uDu) + fu.

Multiply by ut and rewrite to find that

(4) u2
t +

d

dt
(
1
2
|Du|2) = div(utDu) + fut.

1
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Multiply by −∆u and rewrite to find that

(5)
d

dt
(
1
2
|Du|2) + (∆u)2 = div(utDu)− f∆u.

If f is smooth enough, one can differentiate the equation and repeat the above sorts of computations.

1.2. boundary regularity. If u satisfies the boundary condition u = 0 on ∂U × [0, T ], (ie, u(t) ∈
H1

0 (U) for a.e. t, in the notation from Evans’ book) then formally ut ≡ 0 on ∂U × [0, T ], and so∫
U

div(uDu) dx =
∫

∂U
uν ·Duds = 0,

∫
U

div(utDu) dx =
∫

∂U
utν ·Duds = 0

for every time t. So one can integrate the above identities, and the boundary terms vanish. For
example, from (3) we deduce that

d

dt

∫
1
2
u2 dx +

∫
|Du|2 dx ≤ 1

2

∫
f2 dx+

1
2

∫
u2 dx.

And by Lemma 1 (see below; essentially Gronwall’s inequality plus another easy argument) it
follows that

(6) sup
0<t≤T

∫
u2 dx +

∫ T

0

∫
|Du|2 dxdt ≤ C

(∫
u2dx

∣∣∣∣
t=0

+
∫ T

0

∫
f2 dx dt

)
.

Similarly, by integrating (4) and using Cauchy’s inequality we obtain

1
2

∫
u2

t dx+
d

dt

∫
1
2
|Du|2dx ≤ 1

2

∫
f2dx.

Then Lemma 1 yields

(7) sup
0<t≤T

∫
|Du|2 dx +

∫ T

0

∫
u2

t dxdt ≤ C

(∫
|Du|2dx

∣∣∣∣
t=0

+
∫ T

0

∫
f2 dx dt

)
.

Similarly, from (5) we deduce that

(8) sup
0<t≤T

∫
|Du|2 dx +

∫ T

0

∫
∆u2 dxdt ≤ C

(∫
|Du|2dx

∣∣∣∣
t=0

+
∫ T

0

∫
f2 dx dt

)
.

The only new part in (8), as compared to (7), is the estimate of ‖∆u‖L2(UT ), which we could also
have obtained from (7) and the fact that ∆u = ut − f . Or conversely, we could have obtained the
estimate of ut from the estimate of ∆u. (We will do this later.)

Since u(·) ∈ H1
0 , elliptic regularity theorems imply that ‖u(·, t)‖H2(U) ≤ C‖∆u(·, t)‖L2 for every t,

so (8) provides control over ‖u‖L2
t H2

x
.

1.3. interior regularity. In deriving (6), (7), (8), we assumed that u = 0 on ∂U × [0, T ], and
these estimates are vacuous unless we have control over the norms of u(x, 0) that appear on the
right-hand sides. We can still get interior regularity, however, even if we know nothing about the
the initial or boundary data. For this, fix V ⊂⊂ U and T0 ∈ (0, T ), and let ζ be a smooth function
such that 0 ≤ ζ ≤ 1 and

(9) ζ = 1 on V × [T0, T ], ζ = 0 in a neighborhood of (U × {t = 0}) ∪ (∂U × [0, T ]).

Basic interior regularity estimates will follow from multiplying (3), (4), (5) by ζ2, integrating, and
using Lemma 1.
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First, multiplying (3) by ζ2 and integrating in the x variables for fixed t, we find that

d

dt

∫
1
2
ζ2u2 dx+

∫
ζ2|Du|2 = −

∫
ζζtu

2 + 2
∫
u ζ Dζ ·Du+

∫
ζ2fu

After rearranging and using some elementary inequalities, we find that

(10)
d

dt

∫
1
2
ζ2u2 dx+

∫
ζ2|Du|2 ≤ c1

∫
ζ2u2 dx + c2

∫ [
(ζ2

t + |Dζ|2)u2 + ζ2f2
]

for every t. We use Lemma 1 to find that

sup
0≤t≤T

∫
1
2
ζ2u2 dx+

∫ T

0

∫
ζ2|Du|2 dx dt ≤ C

∫ T

0

∫ [
(ζ2

t + |Dζ|2)u2 + ζ2f2
]
dx dt.

where we have used the fact that ζ = 0 at t = 0. Recalling the definition of ζ, we conclude that

(11) sup
T0≤t≤T

∫
V
u2 dx+

∫∫
V×[T0,T ]

|Du|2 dx dt ≤ C

(∫∫
UT \(V×[T0,T ])

u2 dx dt+
∫∫

UT

f2dx dt

)

The constant depends upon derivatives of ζ, among other things. Note that the support of |ζt|+|Dζ|
is contained in UT \ (V × [T0, T ]).

Similarly, we can repeat the arguments that lead from (4) to (7) and from (5) to (8), using the
cutoff function instead of the boundary conditions. Thus, multiplying (5) by ζ2 and more or less
repeating the above calculations leads to

(12) sup
0≤t≤T

∫
ζ2|Du|2 dx+

∫ T

0

∫
ζ2(∆u)2 dx dt ≤ C

∫ T

0

∫ [
(ζ2

t + |Dζ|2)|Du|2 + ζ2f2
]
dx dt.

Before putting a box around this equation, we improve it by showing that one can essentially
replace Du by u on the right-hand side. To do this, fix V ⊂⊂ W ⊂⊂ U and 0 < t0 < T0. We can
require that the test function ζ in the above inequality is supported in W × [t0, T ], and as before
that ζ ≡ 1 on V × [T0, T ]. Then we can apply (11) with V × [T0, T ] replaced by W × [t0, T ] to find
that ∫ T

0

∫
(ζ2

t + |Dζ|2)|Du|2 dx dt ≤ C
∫∫

W×[t0,T ]
|Du|2 dx dt

≤ C

(∫∫
UT \(W×[t0,T ])

u2 dx dt+
∫∫

UT

f2dx dt

)
Combining this with (12) we deuce that
(13)

sup
T0≤t≤T

∫
V
|Du|2 dx+

∫∫
V×[T0,T ]

(∆u)2 dx dt ≤ C

(∫∫
UT \(V×[T0,T ])

u2 dx dt+
∫∫

UT

f2dx dt

)

And by either repeating these arguments with (5) as the starting point, or by using the equation
ut = ∆u− f , we find that

(14)
∫∫

V×[T0,T ]
u2

tdx dt ≤ C

(∫∫
UT \(V×[T0,T ])

u2 dx dt+
∫∫

UT

f2dx dt

)

Finally, if we wish, we can apply interior elliptic regularity to further improve (13). This would
ultimately lead to estimates of ‖u‖L2(T0,T ;H2(V1)) for some V1 ⊂⊂ V
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1.4. Higher regularity. If for example f ∈ H1(UT ), then we can differentiate the equation to
find that uxi and ut both satisfy equations of the form

ũt −∆ũ = f̃

where f̃ = ft when ũ = ut, and f̃ = fxi when ũ = uxi . Then we can obtain further regularity by
applying the above estimates to ũ = ut or uxi . Similarly, if f has more derivatives, then we can
differentiate the equation more times and obtain still higher regularity for u.

2. a useful lemma

We have used the following lemma several times already in the above discussion.

Lemma 1. Suppose that f, g, h are nonnegative functions on [0, T ], that f is absolutely continuous,
and h is integrable, and that

f ′ + g ≤ c1f + c2h

at a.e. t ∈ [0, T ]. Then given T > 0, there exists a constant C (depending on T, c1, c2) such that

(15) sup
0<t≤T

f(t) +
∫ T

0
g(t)dt ≤ C

(
f(0) +

∫ T

0
h(t) dt

)
.

The hypotheses clearly imply that g is integrable, since 0 ≤ g ≤ f ′ + c1f + c2h.

Proof. The hypotheses imply that f ′ ≤ c1f + c2g, and hence that (e−c1tf)′ ≤ c2e
−c1th a.e.. By

integrating and rearranging we deduce that

(16) f(t) ≤ ec1tf(0) + c2

∫ t

0
ec1(t−s)h(s) ds.

for every t ∈ (0, T ]. (This is just Gronwall’s inequality). Now we integrate the hypotheses again to
find that

f(T ) +
∫ T

0
g(s) ds ≤ f(0) + c1

∫ T

0
f(s) ds+ c2

∫ T

0
gh(s) ds.

Using (16), this yields ∫ T

0
g(t) dt ≤ C

(
f(0) +

∫ T

0
h(t) dt

)
.

where the constant C depends on T, c1, c2. �

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Thus we consider the equation

ut + Lu = f

where L is a divergence-form elliptic operator

Lu =
n∑

i,j=1

(aij(x, t)uxi)xj +
n∑

i=1

biuxi + cu

and aij ∈ C1(UT ), bi, c ∈ L∞(UT ). We also assume that
∑n

i,j=1(aij(x, t)ξiξj ≥ θ|ξ|2 at a.e.
(x, t) ∈ UT .
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In this discussion, unlike the above, we assume only that we have a weak solution and we do not
make any ad hoc smoothness assumptions. We will only consider interior estimates. (Boundary
regularity is discussed in Evans.)

(If we wanted to establish about higher regularity, we would assume more smoothness of the coeff-
ficients, since in order to establish higher regularity we would have to differentiate the equation.)

Precisely, we assume that u ∈ L2(0, t;H1
loc(U)) with u′ ∈ L2(0, T ;H−1(U)) and that for a.e.

t ∈ [0, T ], the identity

(17) 〈u′, v〉+B[u, v; t] = (f , v)

is valid for every v ∈ H1
0 (V ), for every W ⊂⊂ U , using notation from Evans.

3.1. interior L∞L2∩L2H1 estimates. We first prove the analog of the interior regularity estimate
(11). For these we do not need aij to be differentiable; L∞ and uniform parabolicity are suffficient.

For this, we fix ζ as in (9), and such that ζ ∈ C∞c (UT ), where the subscript c indicates that ζ has
compact support. We write ζζζ(t) := ζ(x, t). Then v := ζζζ2(t) u(t) belongs to H1

0 (U) hence is an
acceptable “test function” in the definition (17) of a weak solution. Thus we find that

(18) 〈u′, ζζζ2 u〉+B[u, ζζζ2 u; t] = (f , ζζζ2 u)

for a.e. t ∈ [0, T ].

(To make things easier to read I am writing u instead of u(t) throughout, and similarly ζζζ. Also, in
this discussion, whenever I integrate over x variables I write u and ζ instead of u, ζζζ, since when we
integrate in the xvariables we are recalling that the abstract element say u(t) of a Hilbert space can
be identified with a function [u(t)](x) = u(x, t), and we are performing operations like integration
on the function u(x, t).)

First, one can check (for example by approximating u by smooth functions) that, since ζ is a
smooth function, (ζζζu)′ ∈ L2(0, T ;H−1(U)), and that (ζζζu)′ = ζζζu′ + ζζζ ′u. Thus

(19)
1
2
d

dt
‖ζζζu‖2L2 = 〈ζζζu′, ζζζu〉+ 〈ζζζ ′u, ζζζu〉 ≤ 〈u′, ζζζ2u〉+ ‖ζζζu‖2L2 + ‖ζζζ ′u‖2L2 .

Next, we write B[u, v; t] := B0[u, v; t] + B1[u, v; t], where B0[u, v; t] :=
∫ ∑n

i,j=1 a
ij(x, t)uxivxj dx,

and B1[u, v; t] = B[u, v; t]−B0[u, v; t]. Then

B0[u, ζζζ2 u; t] =
∫ ∑

aijuxi(ζ
2u)xj

dx =
∫ ∑

aijζ2uxiuxj dx + 2
∫ ∑

aijuxiuζζxj dx

where all the integrals are evaluated at time t. Using elementary inequalities and the parabolicity
assumption, we deduce that

(20) B0[u, ζζζ2 u; t] ≥ θ

2

∫
ζ2|Du|2 dx − C

∫
|Dζ|2u2.

Next, further elementary estimates show that

(21) |B1[u, ζζζ2 u; t]| ≤ θ

4

∫
ζ2|Du|2dx+ C

∫
ζ2u2 dx.

Finally,

(22) (f , ζζζ2 u) ≤
∫
ζ2f2dx+

∫
ζ2u2 dx

where again all the integrals are evaluated at time t.
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Now we substitute (19), (20), (21), (22), into (18) and rearrange to find
d

dt

∫
1
2
ζ2u2 dx+

θ

4

∫
ζ2|Du|2dx ≤ c1

∫
ζ2u2 dx + c2

∫ [
(ζ2

t + |Dζ|2)u2 + ζ2f2
]

This is exactly the same as (10) (except for some different constants), which we found in a corre-
sponding point of our formal discussion of the heat equation. Thus, exactly as before, we can use
Lemma 1 and the definition of ζ to conclude that

(23) sup
T0≤t≤T

∫
V
u2 dx+

∫∫
V×[T0,T ]

|Du|2 dx dt ≤ C

(∫∫
UT \(V×[T0,T ])

u2 dx dt+
∫∫

UT

f2dx dt

)

3.2. interior L∞H1 ∩ L2H2 estimates. Next we derive in this setting an estimate analogous
to (13). We do this essentially by repeating the calculations by which we derived (13) from (5).
However, we will simplify the work (and sweep most of the details under the carpet) by appealing
to results we established when studying interior elliptic regularity.

So, we fix ζ as above, and we let v := D−h
k (ζζζ2(t)Dh

ku(t)) for some k, where Dh
k denotes a difference

quotient, following notation from Evans, Sections 5.8 and 6.3. As in the previous subsection, v is
an acceptable “test function”, and so from the definition (17) of a weak solution we find that

(24) 〈u′, D−h
k (ζζζ2Dh

ku)〉 = −B[u, D−h
k (ζζζ2Dh

ku); t] + (f , D−h
k (ζζζ2Dh

ku))

for a.e. t ∈ [0, T ]. First note that, by integration by parts for difference quotients (see formula
(16), section 6.3.1, Evans)

〈u′, D−h
k (ζζζ2Dh

ku)〉 = 〈Dh
ku
′, ζζζ2Dh

ku〉 = 〈ζDh
ku
′, ζζζ Dh

ku〉.
So as in the previous subsection,

1
2
d

dt
‖ζζζDh

ku‖2L2 = 〈ζζζDh
ku
′, ζζζDh

ku〉+ 〈ζζζ ′Dh
ku, ζζζD

h
ku〉

≤ 〈u′, D−h
k (ζζζ2Dh

ku)〉+ ‖ζζζDh
ku‖2L2 + ‖ζζζ ′Dh

ku‖2L2 .(25)

Next we consider the right-hand side of (24). We already looked carefully at expression of exactly
this form when considering interior elliptic regularity. Indeed, the proof of Theorem 1 in Section
6.3.1 of Evans shows that

B[u, D−h
k (ζζζ2Dh

ku); t]− (f , D−h
k (ζζζ2Dh

ku)) ≥ θ

4

∫
U
ζ2|Dh

kDu|2 − C
∫

U
(|Du|2 + f2 + u2)dx

(This follows from combining equations (20) and (22) in section 6.3.1, recalling the definitions in
(10)-(14) of the same section. This is where we use the assumption that aij is C1; this was used
in the arguments from Evans that we are quoting here.) Also, by assuming that ζ is supported
in W × [t0, T ], where t0 ∈ (0, T0) and W ⊂⊂ U , we can replace U by W in the integrals on the
right-hand side. By combining this with (24), (25) we deduce that

d

dt
‖ζζζDh

ku‖2L2 +
∫

U
ζ2|Dh

kDu|2 ≤ C
∫

W
(|Du|2 + f2 + u2)dx.

Note also that both sides of the equation vanish if t < t0. Thus we deduce from Lemma 1 that

sup
0<t<T

‖ζζζDh
ku‖2L2 +

∫∫
UT

ζ2|Dh
kDu|2dx dt ≤ C

∫
W×[t0,T ]

(|Du|2 + f2 + u2)dx dt.

Since this holds for every k and every sufficiently small h, the theorem on difference quotients
implies that u(·, t) ∈ H2(V ) for every t ∈ [T0, T ] and moreover that

sup
T0<t<T

‖Du(t)‖2L2(V ) +
∫∫

V×[T0,T ]
|D2u|2dx dt ≤ C

∫
W×[t0,T ]

(|Du|2 + f2 + u2)dx dt.
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As in the proof of (13), we can replace the |Du|2 term on the right-hand side by using the interior
L2H1 estimates already established, which in this case means by appealing to (23) (with V × [T0, T ]
replaced by W × [t0, T ]). Thus we finally arrive at

(26) sup
T0≤t≤T

∫
V
|Du|2 dx+

∫∫
V×[T0,T ]

|D2u|2 dx dt ≤ C

(∫∫
UT

u2 dx dt+
∫∫

UT

f2dx dt

)
In this case (unlike our earlier discussion of the heat equation) we have proved that this holds,
starting only from the definition of a weak solution, and without making any unjustified regularity
assumptions.

Finally, by using the equation ut = −Lu+ f and (23), (26) we can argue that

(27)
∫∫

V×[T0,T ]
|ut|2 dx dt ≤ C

(∫∫
UT

u2 dx dt+
∫∫

UT

f2dx dt

)
.

In order to justify this, first note that the estimates already obtained imply that Lu(·, t) ∈ L2(V )
for a.e. t ∈ [T0, T ] (where this means Lu evaluated at tme t and restricted to V ), and that
B[u(t), v; t] = (Lu(·, t), v) for every v ∈ H1

0 (V ). Thus the weak form of the equation implies that

〈u′(t), v〉 = (−Lu(·, t) + f(·, t), v) for every v ∈ H1
0 (V ) and a.e. time t ∈ [T0, T ]

From this one can deduce that u′(t) = −Lu(·, t) + f(·, t), and then (27) follows from the estimates
already proved.

Thus we have proved Theorem 1.


