Therefore, if ϕ is a Borel regular measure over a metric space, the statements (1) and (2) of 2.2.2 hold for every ϕ measurable set B.

If ϕ is Borel regular and A is a Borel set, then $\phi \, \sqcup \, A$ is Borel regular.

We also observe that if ϕ is any measure over a topological space X such that all Borel subsets of X are ϕ measurable, and if

$$\psi(A) = \inf \{ \phi(B) : A \subset B \text{ and } B \text{ is a Borel set} \}$$

whenever $A \subset X$, then ψ is a Borel regular measure, and $\psi(A) = \phi(A)$ in case A is a Borel set.

2.2.4. Theorem. If ϕ is a Borel regular measure over a complete, separable metric space X, $0 < \phi(A) < \infty$, and $\phi(\{x\}) = 0$ whenever $x \in A$, then A has a ϕ nonmeasurable subset.

Proof. We consider the class Γ of all closed subsets C of A for which $\phi(C) > 0$, hence $\operatorname{card}(C) = 2^{\aleph_0}$. Noting that $\operatorname{card}(\Gamma) \le 2^{\aleph_0}$, we wellorder Γ so that, for each $C \in \Gamma$, the set Γ_C of all predecessors of C has cardinal less than 2^{\aleph_0} . By induction with respect to this wellordering we define functions f and g on Γ such that, for each $C \in \Gamma$, f(C) and g(C) are distinct elements of

$$C \sim [f(\Gamma_C) \cup g(\Gamma_C)];$$

this is possible because

$$\operatorname{card} [f(\Gamma_C) \cup g(\Gamma_C)] = 2 \operatorname{card} (\Gamma_C) < 2^{\aleph_0} = \operatorname{card} (C).$$

Since both im f and $A \sim \inf f$ (which contains im g) meet every member of Γ , neither set contains any member of Γ . If these two sets were ϕ measurable, both would have ϕ measure 0, hence $\phi(A)=0$. Therefore either A or $\inf f$ is ϕ nonmeasurable.

2.2.5. By a Radon measure we mean a measure ϕ , over a *locally compact Hausdorff space X*, with the following three properties:

If K is a compact subset of X, then $\phi(K) < \infty$.

If V is an open subset of X, then V is ϕ measurable and

$$\phi(V) = \sup \{ \phi(K) : K \text{ is compact}, K \subset V \}.$$

If A is any subset of X, then

$$\phi(A) = \inf \{ \phi(V) : V \text{ is open, } A \subset V \}.$$

We observe that, in case ϕ is a Radon measure, then

$$\phi(X \sim \operatorname{spt} \phi) = 0$$
,