
Note: A standing homework assignment for students in MAT1501 is: let me
know about any mistakes, misprints, ambiguities etc that you find in these notes.

1. measures and measurable sets

If X is a set, let 2X denote the power set of X, ie, the collection of all subsets
of X.

A measure µ on X is defined to be a nonnegative, countably subadditive set
function on X, ie, a function µ : 2X → [0,∞] such that

(1) µ(∅) = 0, and µ(A) ≤
∑

µ(Ai) whenever A ⊂ ∪iAi

for any finite or countable collection of subsets Ai ⊂ X. Note in particular that
the definition implies that µ(A) ≤ µ(B) when A ⊂ B.

Remark 1. What we are calling a measure is called an outer measure in many
books.

Given a measure µ on X, we say that a set A ⊂ X is µ-measurable if

(2) µ(B) = µ(B ∩A) + µ(B \A)

for all B ⊂ X. To establish that measurability of A, it is only necessary to check
that µ(B) ≥ µ(B ∩ A) + µ(B \ A) for all B, since the opposite inequality follows
from the definition of a measure. It is obvious from the definition that X and ∅ are
measurable, and also that

(3) A is µ-measurable =⇒ X \A is µ- measurable .

Given a measure µ on X and a subset B ⊂ X, we define the function µ B :
2X → [0,∞]by

µ B(A) = µ(B ∩A).
It is straightforward to check that µ B is a measure, regardless of whether or notB
is measurable.

The first theorem of measure theory is

Theorem 1. Suppose that µ is a measure on a set X, and {Ai} be a sequence of
µ-measurable sets. Then

i. Both ∪∞i=1Ai and ∩∞i=1Ai are µ-measurable.
ii. µ(∪∞i=1Ai) = limj→∞ µ(∪ji=1Ai).

iii. µ(∩∞i=1Ai) = limj→∞ µ(∩ji=1Ai), as long as the right-hand side is finite.
iv. If the sets {Ai} are pairwise disjoint, then µ(∪∞i=1Ai) =

∑∞
i=1 µ(Ai).

Sometimes (ii) and (iii) are stated in the form
ii’. If E1 ⊂ E2 ⊂ . . . are measurable and Ej ↑ E, then µ(E) = limj→∞ µ(Ej).
iii’. If E1 ⊃ E2 ⊃ . . . are measurable and Ej ↓ E, then µ(E) = limj→∞ µ(Ej)

as long as the right-hand side is finite.

sketch of proof. It is straightforward to verify by induction that conclusions (i)
and (iv) hold for finite collections of sets. Once this is known, it follows that
µ(∪∞i=1Ai) ≥

∑j
i=1 µ(Ai) for every j, which in view of (1) implies that (iv) holds

for a countable collection of pairwise disjoint sets as stated. Then (ii) can be
deduced from (iv), and (iii) from (ii). To verify (i), it is easiest to note that for
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given B ⊂ X (not necessarily measurable), the function µ B : 2X → [0,∞] defined
by

µ B(A) = µ(B ∩A)
is itself a measure; this is not hard to check. Moreover, every µ-measurable set is
also µ B-measurable. Using these facts, (i) can be inferred from (ii) and (iii). �

Conclusion (i) of the theorem, with (3), implies that the collection of µ-measurable
sets is a σ-algebra, where we recall the definition:

A collection S ⊂ 2X is said to be a σ-algebra if ∅, X ∈ S,

(4) A ∈ S =⇒ X \A ∈ S,
and

(5) if A1, A2, . . . ∈ S, then ∪∞i=1 Ai ∈ S.
Clearly, if (4) and (5) hold, then so does

(6) if A1, A2, . . . ∈ S, then ∩∞i=1 Ai ∈ S.
It is equally clear that (4) and (6) imply (5). It is not true in general that (5) and
(6) imply (4)

Exercise 1. Find an example of a set X and a collection S ⊂ 2X that satisfies (5)
and (6) but not (4).

We will often say simply “measurable” rather than ”µ-measurable”, when there
is no hope of confusion.

A statement is true µ-a.e. if there exists a set E ⊂ X such that µ(E) = 0, and
the statement is true in X \ E.

A measure µ on a set X is said to be regular if for every A ⊂ X, there exists a
measurable B ⊂ X such that A ⊂ B and µ(A) = µ(B).

In practice, every measure that we encounter will be regular.
Also, we note:

Lemma 1. Given an arbitrary meausre µ on a space X, there exists a regular
measure µ∗ such that if B is any µ-measurable set, then B is µ∗-measurable, and
µ(B) = µ∗(B).

Proof. If we define

µ∗(B) := inf{µ(A) : A µ-measurable, B ⊂ A},
then it is straightforward to check that µ∗ has the stated properties. �

Exercise 2. Fill in the missing details in the proof.

From the lemma we can see that the question of whether or not a measure is
regular has to do with how it behaves on unmeasurable sets, and that a measure µ
is regular if “µ(B) is as large as possible for every unmeasurable B”

Regularity is a convenient condition to assume, since for example it allows one
to drop the hypothesis of measurability in part iii of Theorem 1. This might, for
example, save one from the necessity of verifying measurability in some arguments.
But if we are chiefly interested in measurable sets, then the lemma suggests that
we need not worry much about regularity.

Here is another easy
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Exercise 3. Given any set X containing at least 2 points, construct a measure on
X that is not regular.

2. Borel measures

We now assume that X is a topological space. (Before long, we will limit our
attention to the case when X = Rn with the standard topology.)

A measure µ on X is Borel if every open set is µ-measurable
The Borel σ-algebra is the smallest σ-algebra containing the open set. A set

belonging to this σ-algebra is said to be a Borel set. Thus, we could equivalently
define a Borel measure to be one for which every Borel subset is measurable.

A measure µ is Borel regular if it is Borel and, in addition. for every A ⊂ X,
there exists a Borel B ⊂ X such that A ⊂ B and µ(A) = µ(B).

(This is not quite the same thing as being both Borel and regular. For example, “Borel regular” is

a very restrictive condition on a topological space X on which the only two open sets are ∅ and X.)

In practice, every measure that we encounter will be Borel regular.
All the remarks made above about regular measures apply with small changes

to Borel regular measures. In particular, we have

Lemma 2. Given a Borel measure µ on a topological space X, there exists a Borel
regular measure µ∗∗ such that µ(B) = µ∗∗(B) for every Borel set B.

Proof. Define
µ∗(B) := inf{µ(A) : A Borel, B ⊂ A},

and then argue as before. �

2.1. Caratheodory’s criterion. The following theorem gives a beautiful and sim-
ple characterization of Borel measures on metric spaces.

Theorem 2. (Carathéodory’s Criterion) If X is a metric space and µ is a measure
on X, then µ is a Borel measure if and only if

(7) µ(A ∪B) = µ(A) + µ(B) whenever dist (A,B) > 0.

Here dist (A,B) := infa∈A,b∈B d(a, b), where d is the metric on X.

Proof. The proof that every Borel measure satisfies (7) is easy. Given A,B such
that dist(A,B) = α > 0, let C := ∪a∈A{x ∈ X : d(x, a) < α/2}. Then C is open
and hence measurable, and so

µ(A ∪B) = µ((A ∪B) ∩ C) + µ((A ∪B) \ C) = µ(A) + µ(B).

We now assume that (7) holds, and we give the proof of the other implication.
It suffices to prove that every closed set is measurable. Let C be a closed set and
A an arbitrary set. We must show that

µ(A) ≥ µ(A ∩ C) + µ(A \ C).

We may assume that µ(A) is finite, as the above inequality is otherwise obvious.
For each j, let Cj := {x ∈ X : dist(x,C) ≤ 1/j}. Then

dist (A ∩ C,A \ Cj) > 0,

and so
µ(A) ≥ µ((A ∩ C) ∪ (A \ Cj) = µ(A ∩ C) + µ(A \ Cj).
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So it suffices to show that

(8) µ(A \ C) ≤ lim
j→∞

µ(A \ Cj).

To do this, let Rj := Cj \ Cj+1, so that for every j

A \ C = (A \ Cj) ∪ (∪∞k=jA ∩Rk)

(this is where we use the assumption that C is closed). Thus the subadditivity of
µ implies that

µ(A \ C) ≤ µ(A \ Cj) +
∞∑
k=j

µ(A ∩Rk)

by (1). Thus to prove (8) we only need to show that

(9)
∞∑
k=j

µ(A ∩Rk) ≤ lim
N→∞

N∑
k=1

µ(A ∩Rk) <∞.

This follows by noting that dist(Rj , Rk) > 0 whenever |j − k| ≥ 2. Thus for every
N

N∑
k=1

µ(A ∩Rk) ≤
N∑
k=1

µ(A ∩R2k) +
N∑
k=1

µ(A ∩R2k−1) by (1)

= µ(∪Nk=1(A ∩R2k)) + µ(∪Nk=1(A ∩R2k−1)) using (7)

≤ 2µ(A) <∞.

�

Exercise 4. Taking X to be the unit interval, construct a measure µ on X that is
not Borel.

2.2. An important family of examples. Hausdorff measure, which we define
below, plays a central role in geometric measure theory

First, for s ≥ 0, let

ωs :=
πs/2

2sΓ( s2 + 1)
.

If I have gotten the formula right, whenever k is an integer, ωkdk is the k-dimensional
Lebesgue measure of a Euclidean ball in Rk of diameter d (ie, radius d/2.)

Let X be a separable metric space. For A ⊂ X and s, δ > 0 we define

(10) Hsδ(A) = inf
{∑

ωs(diam Ci)s : A ⊂ ∪Ci,diam Ci ≤ δ ∀i
}
.

Then s-dimensional Hausdorff measure Hs is defined by

(11) Hs(A) := lim
δ→0
Hsδ(A) = sup

δ>0
Hsδ(A).

We make a number of remarks:

Remark 2. The reason we assume that X is separable is to guarantee that, given
an arbitrary set A ⊂ X, it is easy to find countable sequences of sets Ci such that
A ⊂ ∪Ci. We will in fact chiefly be interested in the case X = Rn.
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Remark 3. It is easy to see that if X = Rn with the usual metric, then

Hsδ(A) = inf
{∑

ωs(diam Ci)s : A ⊂ ∪Ci,diam Ci ≤ δ ∀i, Ci closed ∀i
}

= inf
{∑

ωs(diam Ci)s : A ⊂ ∪Ci,diam Ci ≤ δ ∀i, Ci open∀i
}

= inf
{∑

ωs(diam Ci)s : A ⊂ ∪Ci,diam Ci ≤ δ ∀i, Ci convex ∀i
}
.

These follow from the fact that for any set C ⊂ Rn,

diam(C) = diam(C̄) = inf{diam(U) : U open, C ⊂ U} = diam(co C),

where co C denotes the convex hull of C.
The first two equalities in fact remain valid on any metric space X.

Remark 4. Note that the definition of Hs makes sense even if X is an infinite-
dimensional space. In fact it is perfectly reasonable to try to measure finite-
dimensional subsets of, for example, function spaces such as L2(Rn).

Remark 5. It is a fact that ω0 = 1, and taking this for granted, one sees that H0 is
counting measure, which means that

H0(A) =
{

number of points in A, if finite
+∞ if not .

Remark 6. Hsδ is not in general a Borel measure.

Remark 7. If X = Rn for some n then

Hs(x+A) = Hs(A)

for all x ∈ Rn and A ⊂ Rn, and

Hs(λA) = λsHs(A)

where x+A = {x+ a : a ∈ A} and λA = {λa : a inA}.

Exercise 5. verify some or all of the above remarks.

.

Lemma 3. Hs is a Borel regular measure.

Proof. It is easy to check that H satisfies the hypotheses (7) of Carathéodory’s
criterion, Theorem 2. Hence Hs is a Borel measure.

To show that Hs is Borel regular, it we must show that given any A ⊂ X, there
exists a Borel set B ⊃ A such that Hs(B) ≤ Hs(A). Given A ⊂ X, construct B
as follows: first, for every δ > 0 let {Cδi } be a collection of closed sets such that
A ⊂ ∪Cδi and

∑
ωs(diamCδi )s ≤ Hsδ(A) + δ. The existence of such a sequence of

closed sets follows from Remark 3. Then define

B = ∩∞k=1 ∪∞i=1 C
δk
i for some sequence δk ↘ 0.

It is immediate that B is Borel, and also easy to see that Hs(B) ≤ Hs(A). �

Lemma 4. Suppose that 0 < s < t, and let A be a subset of a separable metric
space X. Then

if Hs(A) <∞, then Ht(A) = 0.
if Ht(A) > 0, then Hs(A) = +∞.
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The two conclusions of the lemma are easily seen to be equivalent. The redun-
dancy is for emphasis.

Proof. If {Ci} is any sequence of sets with diamCi < δ for all i and A ⊂ ∪Ci, then∑
ωt(diam Ci)t =

∑
ωt(diam Ci)t−s(diam Ci)s ≤

ωt
ωs
δt−s

∑
ωs(diam Ci)s.

It follows that Htδ(A) ≤ ωt

ωs
δt−sHsδ(A) This easily implies the conclusions of the

lemma. �

In view of the previous lemma, the following definition makes sense:

Definition 1. The Hausdorff dimension of a set A ⊂ X is

dimH(A) := inf{t ≥ 0 : Ht(A) = 0}.

We will later prove that Hn = Ln on Rn, where Ln denotes Lebesgue measure.
It follows that Hs(A) = +∞ if s < n and A is any open set, or more generally any
set of positive Ln measure.

2.3. approximation properties, Egoroff’s Theorem, and Lusin’s Theorem
for Borel measures. Next we prove some results that are a little technical but
very useful. For example, they are needed to prove that Lusin’s Theorem (maybe
more obviously a useful result) holds for Borel regular measures on metric spaces.

We begin with a useful lemma

Lemma 5. Assume that X is a metric space, and that S ⊂ 2X is a collection of
sets containing all the closed sets, and such that if A1, A2, . . . ∈ S, then

∪∞i=1Ai ∈ S. and ∩∞i=1 Ai ∈ S.(12)

Then S contains the Borel sets.

(Compare Exercise 1.)
From the proof one can easily see that the lemma is still true if S is assumed to

contain all open sets, rather than all closed sets.

Proof. Let S1 be the smallest family of subsets of S that contains the closed sets
and satisfies (12). Then define

S2 := {A ⊂ X : A ∈ S1 and X \A ∈ S1}.

Then it is straightforward to check that S2 is a σ-algebra. Moreover, we claim that
S2 contains all the closed sets. To prove this, we must check that every closed set
belongs to S1, which is immediate, and that every open set belongs to S1. This is
clear, since given an open set U , we can write

U = ∪∞k=1{x ∈ U : dist(x, ∂U) ≥ 1
k
}

and the sets on the right-hand side are all closed. �

Our first result addresses the possibillity of approximating a set from the inside
by a closed set.
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Theorem 3. Suppose that µ is a Borel measure on a metric space X. Then for
any Borel set E such that µ(E) <∞,

(13) µ(E) = sup {µ(C) : C ⊂ E, C closed} .

If X = Rn then in fact

µ(E) = sup {µ(K) : K ⊂ E, K compact} .

Proof. Fix a Borel set E. We would like to prove (13). It is convenient to define

ν = µ E, so that ν(A) := µ(A ∩ E).

Then ν(X) <∞ (this is what we gain by considering ν instead of µ), and it suffices
to show that

(14) ν(A) = sup {ν(C) : C ⊂ A, C closed} .

for every Borel set A ⊂ X (since then in particular it holds for A = E.)
To do this, we will write S to denote the collection of all subsets of A ⊂ X that

satisfy (14). In view of Lemma 5, to prove (14) it suffices to show that

• S contains every closed set.
• S is closed with respect to countable union.
• S is closed with respect to countable intersection.

The first of these is clear.
For countable unions: fix ε > 0 and assume that A1, A2, . . . belong to S. For

each i, by definition of S, we can find a closed set Ci such that Ci ⊂ Ai, and

ν(Ai \ Ci) = ν(Ai)− ν(Ci) < ε2−i

Here and below we use the fact that if C ⊂ A and C s measurable, then ν(A) = ν(C) + ν(A \C), which

follows directly from the definition of measurability. Then

lim
N→∞

ν(∪∞i=1Ai \ ∪Ni=1Ci) = ν(∪∞i=1Ai \ ∪∞i=1Ci)

≤
∞∑
i=1

ν(Ai \ Ci)

< ε.

Hence there exists some N such that

ν(∪∞i=1Ai)− ν(∪Ni=1Ci) = ν(∪∞i=1Ai \ ∪Ni=1Ci) < ε.

Since ∪Ni=1Ci is a closed subset of ∪∞i=1Ai and ε is arbitrary, we conclude that ∪iAi
belongs to S.

For countable intersections: this is similar to countable unions (but actually a
little easier.)

Exercise 6. supply the details for countable intersections.

The exercise completes the proof of (13).
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For X = Rn, we write B(R, x) := {y ∈ Rn : |y − x| < R}. Then if µ(E) < ∞
and E is measurable,

µ(E) = sup
k∈N

µ(E ∩ B̄(k, 0))

= sup
k∈N

sup{µ(C) : C closed, C ⊂ E ∩ B̄(k, 0)}

= sup{µ(K) : K compact,K ⊂ E}.

�

Next we prove a complementary result about approximation from the outside by
open sets.

Lemma 6. Suppose that µ is a Borel measure on a metric space X, and that E is
a Borel set such that

(15) E ⊂ ∪∞i=1Vi, with Vi open and µ(Vi) <∞ for all i..

Then

(16) µ(E) = inf{µ(O) : O open, E ⊂ O}.

Clearly (16) cannot hold if for example µ(E) < ∞ and µ(O) = +∞ for every
open set O (such as is the case with s-dimensional Hausdorff measure on Rn when
s < n.) This example illustrates the necessity for some sort of hypothesis along the
lines of (15).

Proof. For each Vi, we apply the previous theorem to find a closed set Ci ⊂ Vi \E
such that

µ((Vi \ E) \ Ci) < ε2−i.

Then we define
W = ∪i(Vi \ Ci)

Clearly W is open, and since W \E ⊂ ∪i(Vi \E), we deduce from the choice of Ci
that µ(W \ E) < ε. �

We next prove

Theorem 4 (Egoroff’s Theorem). Let µ be a measure on a space X, and assume
that fi, i = 1, 2, . . . and g are measurable functions on X such that fi → g µ almost
everywhere. Assume also that A is a µ-measurable subset of X, and that µ(A) <∞.

Then for any ε > 0 there is a µ-measurable set E ⊂ A such that

fj → g uniformly on E, µ(A \ E) < ε.

We emphasize that the theorem assumes only that X is a set and µ a measure
— we do not require any additional conditions here. So this is a less deep result
that Lusin’s Theorem, which follows.

Proof. For i, j ≥ 1, let

Ei,j := {x ∈ A : |fk(x)− g(x)| < 1
i

for all k ≥ j}.

Then for every i,
lim
j→∞

µ(A \ Ei,j) = 0
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by assumption, and so we can find some J(i) such that

µ(A \ Ei,J(i)) < ε2−i.

We define
E = ∩∞i=1Ei,J(i).

Then the definition implies that fj → g uniformly on E, since |fj − g| < 1
i on E

for j ≥ J(i). And

µ(A \ E) = µ(A \ ∩∞i=1Ei,J(i)) = µ(∪∞i=1(A \ Ei,J(i)))

≤
∞∑
i=1

µ(A \ Ei,J(i)) < ε.

�

Theorem 5 (Lusin’s Theorem). Assume that X is a Borel regular measure on a
metric space X, that f : X → Rm is µ-measurable, and that A is a µ-measurable
set with µ(A) <∞.

Then for every ε > 0 there exists a closed set C ⊂ A such that the restriction of
f to C is continuous, and

µ(A \ C) < ε.

Proof. First we note that the general case easily follows from the case m = 1, so
we focus on that for simplicity.

We may also assume that A is a Borel set, as otherwise we can replace it by a
Borel set Ã such that A ⊂ Ã and µ(A) = µ(Ã).

Step 1 We now verify f is the characteristic function of a Borel set E satisfies the
conclusion of the theorem. (In fact, as the proof shows, this case of Lusin’s Theorem
is more or less equivalent to Theorem 3, about inner approximation of measurable
sets by closed sets.) Indeed, fix ε > 0, and use Theorem 3 to find closed subsets C0

and C1 of A∩E and A\E respectively, such that µ((A∩E)\C0)+µ((A\E)\C1) < ε.
Then let C = C0 ∪ C1. Let us write fC to denote the restriction of f to C. We
claim that fC is continuous. It suffices to check that the inverse image by fC of
every closed set is closed. Since fC takes on only two values, 0 and 1, we need to
check that C0 = (fC)−1{0} and C1 = (fC)−1{1} are both closed in C, and this is
immediate.

Step 2. It is easy to deduce from Step 1 that a finite linear combination of
characteristic functions (ie, a function with finite range) satisfies the conclusion of
the theorem.

Step 3. One can also check that, given any measurable function f , one can find
a sequence fi such that fi → f a.e. in A, and each fi has finite range. (we gave a
slightly clumsy argument for this in the lecture.)

For each such fi, given ε > 0, we can use Step 2 to find a closed set Ci such that
fi,Ci

is continuous and µ(A \ Ci) < ε2−i−1. Then every fi is continuous on ∩Ci,
and µ(A \ ∩Ci) < ε/2. We can further use Egoroff’s Theorem to find a closed set
C ⊂ (∩Ci) such that fi → f uniformly on C, and

µ(A \ C) = µ(A \ (∩Ci)) + µ((∩Ci) \ C) < ε

Then fC is a uniform limit of continuous functions, and hence continuous. �
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3. measurable functions

Note, above we have taken for granted basic facts about measurable functions,
such as the definition:

If µ is a measure on a set X, then a function f : X → R is said to be µ-measurable
if f−1(A) is µ-measurable for every open A ⊂ R.

Of course the same definition makes sense for functions f : X → Y where Y is
any topological space.

We recall without proof the following basic result.

Theorem 6. Assume that µ is a measure on a set X.
• A linear combination of µ-measurable functions is µ-measurable.
• A product of µ-measurable functions is µ-measurable.
• if f1, f2, . . . are µ-measurable functions, then so are

sup
i
fi, inf

i
fi, lim sup

i→∞
fi, lim inf

i→∞
fi

• If particular, if (fi) is a sequence of µ-measurable functions, and fi → f µ
a.e., then f is µ-measurable.
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