
Mat 1501 lecture notes, week of September 23-27.

1. differentiation of measures and covering theorems

Recall that σ is absolutely continuous with respect to ν if σ(A) = 0 whenever
ν(A) = 0. When this holds we write σ � ν. If µ is a signed measure, then µ � ν
means that µ can be written in the form µ+ − µ−, with µ+, µ− � ν.

Recall also that measures σ and ν on a set Ω are mutually singular if there
exists a set B ⊂ Ω such that σ = σ B and ν = ν (Ω \ B). When this holds we
write σ ⊥ ν.

Thus we refer to µac as the absolutely continuous part of µ, and µs as the
singular part of µ (sometimes without explicitly mentioning the reference measure
ν.)

Our next goal is to prove the following important result.

Theorem 1. Suppose that ν is a Radon measure, and µ a signed Radon measure,
on Rn. Then

1. limr→0
µ(Br(x))
ν(Br(x)) = dµ

dν (x) exists and is finite for ν almost every x.
2. µ = µac+µs, where µac, µs are signed Radon measures such that µac � ν

and µs ⊥ ν.
3. µac(B) =

∫
B
dµ
dν dν for every Borel set B.

Remark 1. One may be tempted to say that measures σ and ν are mutually
singular iff their supports are disjoint. This is not correct, due to the way the
support of a measure is defined. Indeed, in a topological space X

supp(σ) = X \ ∪V open:σ(V )=0V.

Thus in particular the support is always closed. In a metric space X, this is
equivalent to

supp(σ) = {x ∈ X : σ(Br(x)) > 0 for all r > 0}.
This for example, if {xj} and {yj} are two countable dense subsets of the unit
interval (0, 1) ⊂ R such that {xj} ∩ {yj} = ∅, and if σ =

∑
2−jδxj

and ν =∑
2−jδyj , then σ ⊥ ν, but supp(σ) = supp(ν) = [0, 1].

In general,
disjoint supports⇒ mutually singular

(this should be clear) but as the above example shows, the converse is definitely
not true.

If ν is a measure and f is a ν-integrable function, then ν f denotes the (in
general signed) measure defined by

(ν f)(A) =
∫
A

f dν.

You are probably familiar with simpler results in the same spirit as Theorem
1, but with ν replaced by Lebesgue measure Ln. Proofs of such results normally
rely on the Vitali covering lemma. The utility of the Vitali covering lemma in these
arguments stems from the fact that

Ln(B5r(x)) = 5nLn(Br(x))

for every x ∈ Rn and r > 0. For an arbitrary Radon measure µ, nothing like this
is true, and so the Vitali covering lemma is not very useful. So our first task is
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to develop some argument that we can use in place of the Vitali covering lemma.
That is the content of the following crucial lemma, whose proof we omit:

Lemma 1 (Besicovitch Covering Lemma). For every positive integer n, there exists
a number P (n) with the following property:

Assume that A is a bounded subset of Rn and that B is a family of closed balls
such that

(1) for every x ∈ A, inf{r : Br(x) ∈ B} = 0.

Then there are families B1, . . . ,BP (n) of closed balls (some of them possibly empty)
such that, if we write Bi = {Bij}j, then

(2) Bij ∈ B for all i, j

(3) A ⊂ ∪P (n)
i=1 ∪j B

i
j

and

(4) Bij ∩Bij′ = ∅ whenever j 6= j′.

The lemma allows us to cover a set A (the “set of centers”) by at most P (n)
families of pairwise disjoint closed balls. The point is that the amount of overlap is
bounded by some absolute constant, depending only on the dimension. The proof
can be found for example in the book of Mattila.

The Besicovitch covering lemma has the following consequence:

Lemma 2. Let µ be a finite Radon measure on Rn, and suppose that A ⊂ Rn, with
µ(A) <∞. Let B be a family of closed balls with the property that

(5) for every x ∈ A, inf{r : Br(x) ∈ B} = 0.

Then there is a countable, pariwise disjoint collection of balls {Bi} ⊂ B such that

(6) µ(A \ ∪iBi) = 0.

Note that we do not need to assume that A is µ-measurable.

Proof. We may assume that µ(A) > 0, as otherwise the conclusion of the
lemma is trivial.

Step 1: Fix an open set U such that A ⊂ U and µ(U) ≤ (1 + ε)µ(A), for ε
to be chosen. We discard from B all balls that are not subsets of U ; as remarked
earlier, the modified collection of balls that we obtain in this way(we will abuse
notation and still call it B) continues to satisfy (5).

Let B1, . . . ,BP (n) be collections of closed balls contained in B satisfying the
conclusions of the Besicovitch Covering Lemma. Then

µ(A) ≤
P (n)∑
i=1

µ(∪jBij)

by (3), so there exists some i0 such that
1

P (n)
µ(A) ≤ µ(∪jBi0j ).
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So by taking M1 sufficiently large, we obtain

1
2P (n)

µ(A) ≤ µ(∪M1
j=1B

i0
j ).

Let us relabel these balls {B1, . . . , BM1}. Then

µ(A \ ∪M1
j=1Bj) ≤ µ(U \ ∪M1

j=1Bj) = µ(U)− µ(∪M1
j=1Bj) ≤

[
(1 + ε)− 1

2P (n)

]
µ(A)

using the previous inequality and the choice of U at the last step.
Now fix ε = 1

4P (n) and θ = 1− 1
4P (n) , so that the above inequality becomes

µ(A \ ∪M1
j=1Bj) ≤ θµ(A).

Step 2: Now we let A1 = A \∪M1
j=1Bj , and we let U1 be an open set containing

A1 and disjoint from ∪M1
j=1Bj , and such that µ(U1) ≤ µ(A1)(1 + ε) for the value

of ε chosen above. We repeat the above argument to find a new finite collection
of closed, pairwise disjoint balls, say {BM1+1, . . . , BM2}, that are contained in U1

(and hence disjoint from {Bj}M1
j=1) and such that

µ(A \ ∪M2
j=1Bj) = µ(A1 \ ∪M2

j=M1+1Bj) ≤ θµ(A1) ≤ θ2µ(A).

Step 3. Repeating this procedure a countable number of times and taking the
union of all balls found in the process, we obtain a pairwise disjoint collection of
closed balls satisfying the required conclusion (6). �

Remark 2. When approximating a set A by closed disjoint balls, as in the above
lemma, we generally want to arrange that the balls

• contain µ almost all of A — this can be done under the hypotheses of
Lemma 2

• and don’t contain too much extra stuff.
To satisfy the latter condition, we can always fix an open set O containing A and
such that µ(O \A) < ε. Then we can replace B by

B′ := {B ∈ B : B ⊂ O}

It is not hard to see that B′ still satisfies (5), and any for any {Bi} ⊂ B′, clearly
µ(∪iBi) ≤ µ(O) ≤ µ(A) + ε, so that we can make the “extra stuff” covered by the
balls arbitrarily small.

Of course this stratgy was used in the proof of the above lemma

We introduce some notation that will be used in the proof of the Theorem. For
Radon measures µ and ν on Rn and x ∈ Rn we define

(7) D(µ, ν, x) := lim sup
r→0

µ(Br(x))
ν(Br(x))

(8) D(µ, ν, x) := lim inf
r→0

µ(Br(x))
ν(Br(x))

Note that

Lemma 3. D(µ, ν, x), D(µ, ν, x) are both Borel measurable functions.
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Proof. We recall that a real-valued function f is upper semicontinuous if
f−1((−∞, a)) is an open set for every a ∈ R. If the domain of f is a metric space
for example, then this is equivalent to the condition that f(x) ≥ lim supy→x f(y)
for every x ∈ X. The main steps in the proof of the lemma are:

(1) verify1 that x 7→ µ(Br(x)) is upper semicontinuous for every fixed r. The
same of course holds for x 7→ ν(Br(x)).

(2) It is a standard fact from measure theory that upper semicontinuous func-
tions are Borel measurable.

(3) It is a standard fact from measure theory, that if f, g are nonnegative
Borel measurable functions, then f/g is measurable. (Here we use the
conventions 0/0 = 0, a/0 = sign(a)∞.) Thus x 7→ µ(Br(x))

ν(Br(x)) is a Borel
function for every fixed r.

(4) It is a standard fact from measure theory that if fr is a measurable function
for every r, then f(x) := lim supr→0 fr(x) and f(x) := lim infr→0 fr(x)
are measurable functions.

�

Exercise 1. Carry out the proof of Step 1 in the above argument. Concerning Steps
2-4, refamiliarize yourself with the relevant standard facts from measure theory, as
necessary.

Exercise 2. Construct a measure µ on a metric space X (for example a subset of
some Rn ) containing a point x for which lim supy→x µ(Br(y)) < µ(Br(x)).

Also, if you like, construct a measure µ on a metric space X for which there
exists some x ∈ X such that lim infy→x µ(Ur(y)) > µ(Ur(x)). (see footnote for
notation.)

The main ingredient in the proof of Theorem 1 is the following

Lemma 4. Assume that µ, ν are Radon measures on Rn and that 0 ≤ t <∞. Let
A ⊂ Rn. Then:

1. If D(µ, ν, x) ≥ t for every x ∈ A then µ(A) ≥ tν(A).
2. If D(µ, ν, x) ≤ t for every x ∈ A then µ(A) ≤ tν(A).

Here we do not require that A is either µ- or ν-measruable.

Proof. We will prove conclusion (2), so we assume that A is a set such that
D(µ, ν, x) ≤ t for every x ∈ A. We may also assume that ν(A) < ∞ as otherwise
the conclusion is immediate.

Fix ε > 0 let U be an open set such that A ⊂ U and ν(U) ≤ ν(A) + ε.
Let B = {Br(x) : x ∈ A,Br(x) ⊂ U, µ(Br(x))

ν(Br(x)) ≤ t+ε}. From the definitions it is
clear that B satisfies (5), so we conclude from Lemma 2 the existence of a countable

1 The proof uses the fact that Br(x)) is defined to be a closed ball. If we instead consider open
balls, Ur(x) := {y : |x− y| < r}, then one can check that x 7→ µ(Ur(x)) is lower semicontinuous.
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family {Bi} of balls satisfying (6) for the measure µ. Using these balls we compute

µ(A) = µ(A ∩ (∪Bi)) by (6)

≤
∑

µ(Bi)

≤ (t+ ε)
∑

ν(Bi) by definition of B
≤ (t+ ε)ν(U) since {Bi} are pairwise disjoint and ∪Bi ⊂ U
≤ (t+ ε)(ν(A) + ε).

By letting ε tend to zero we deduce conclusion (2). The other conclusion is obtained
in a similar way. �

Exercise 3. Prove that
1. If D(µ, ν, x) ≥ t for ν almost every x ∈ A then µ(A) ≥ tν(A).
2. If D(µ, ν, x) ≤ t for µ almost every x ∈ A then µ(A) ≤ tν(A).

Exercise 4. Construct examples to show that it is not in general true that
1. If D(µ, ν, x) ≥ t for µ almost every x ∈ A then µ(A) ≥ tν(A).
2. If D(µ, ν, x) ≤ t for ν almost every x ∈ A then µ(A) ≤ tν(A).

We now give the

proof of Theorem 1. We will prove the theorem under the assumption that
µ is a Radon measure.

Exercise 5. Prove the general case of the theorem (ie, in which µ is a signed Radon
measure) follows, once we know the theorem holds when µ is a Radon measure.

Step 1. Define
Z0 := {x ∈ Rn : D(µ, ν, x) = +∞}

Z1 := {x ∈ Rn : D(µ, ν, x) < D(µ, ν, x)}.
Step 1a. We first claim that

(9) ν(Z0) = 0.

Clearly

Z0 := ∪R∈N ∩k∈N CR,k, CR,k := {x ∈ Rn : |x| ≤ R,D(µ, ν, x) ≥ k}.

And by Lemma 4,

ν(CR,k) ≤ 1
k
µ(CR,k) ≤ 1

k
µ({x ∈ Rn : |x| ≤ R}.

Hence ν(∩k∈NCR,k) = 0 for every R, which implies (9).
Step 1b. We next claim that

(10) ν(Z1) = µ(Z1) = 0.

Toward this end, for 0 ≤ s < t <∞ we define

As,t,R := {x ∈ Rn : |x| ≤ R,D(µ, ν, x) ≤ s < t ≤ D(µ, ν, x)}

Then Lemma 4 implies that

µ(As,t,R) ≤ sν(As,t,R) ≤ s

t
µ(As,t,R).
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Since As,t,R is bounded, µ(As,t,R) and ν(As,t,R) are finite, so the above inequalities
imply that µ(As,t,R) = ν(As,t,R) = 0. Then it is easy to deduce that (10) holds,
since

Z1 = ∪R,s,t positive rationals As,t,R

At this point we have completed the proof of conclusion (1) of Theorem 1, since
it follows imediately from (9) and (10).

Step 2: Next, let µs := µ Z0, and let µac = µ (Rn\Z0). To prove conclusion
(2) of the theorem, we must show that µs ⊥ ν and µac � ν. The first conclusion is
clear from the definition of µs, in view of the fact that ν(Z0) = 0.

To prove that µac � ν, note that if A is a Borel measurable set then

µac(A) = ∪∞m=1µ({x ∈ A : m− 1 ≤ D(µ, ν, x) < m})

≤
∞∑
m=1

m ν({x ∈ A : m− 1 ≤ D(µ, ν, x) < m})

using Lemma 4 and the fact that D(µ, ν, x) ≤ D(µ, ν, x) at every x, which implies
that D(µ, ν, x) ≤ m everywhere in {x ∈ A : m− 1 ≤ D(µ, ν, x) < m}.

In particular the above implies that µac(A) = 0 whenever ν(A) = 0. Since µ is
Borel regular, this same conclusion follows for also for non-measurable sets. Hence
µac � ν.

3. Finally we fix an arbitrary Borel set B, and we check that

(11) µac(B) =
∫
B

dµ

dν
dν.

Let us write Z = Z0 ∪ Z1. Then ν(Z) = 0, so∫
B

dµ

dν
dν =

∫
B\Z

dµ

dν
dν

Now fix t > 1, and for every integer k define

Sk := {x ∈ B \ Z : tk ≤ dµ

dν
< tk+1},

S−∞ := {x ∈ B \ Z :
dµ

dν
(x) = 0}.

We will use the notation Z∗ := {−∞} ∪ Z. Then B \Z = tk∈Z∗Sk, since dµ
dν exists

and is finite everywhere in B \ Z. It follows that∫
B

dµ

dν
dν =

∫
B\Z

dµ

dν
dν =

∫
tk∈Z∗Sk

dµ

dν
dν =

∑
k∈Z∗

∫
Sk

dµ

dν
dν.

By the definition of Sk,

tkν(Sk) ≤
∫
Sk

dµ

dν
dν ≤ tk+1ν(Sk) if k ∈ Z,∫

S−∞

dµ

dν
dν = 0.

However, since D(µ, ν, x) = D(µ, ν, x) = dµ
dν (x) ∈ [tk, tk+1) in Sk, we can use

Lemma 4 to find that

µ(Sk) ≤ tk+1ν(Sk), tkν(Sk) ≤ µ(Sk).
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Similarly, µ(S−∞) = 0. Putting these together, we find that

1
t

∑
k∈Z∗

µ(Sk) ≤
∫
B

dµ

dν
dν ≤ t

∑
k∈Z∗

µ(Sk).

Since ∑
k∈Z∗

µ(Sk) = µ(tk∈Z∗Sk) = µ(B \ Z),

we can let t↘ 1 to conclude that∫
B

dµ

dν
dν = µ(B \ Z).

Finally, we deduce (11) from this by noting that, since µ(Z1) = 0,

µ(B \ Z) = µ(B \ Z0) = µ (Rn \ Z0)(B) = µac(B).

�

2. applications of the above theorem

Now we record some consequences of the above result:
notation: we write

−
∫
V

f dµ :=
1

µ(V )

∫
V

f dµ.

Corollary 1. If ν is a Radon measure on U ⊂ Rn and f ∈ L1
loc(U ; dν), then

lim
r→0
−
∫
Br(x)

fdν = f(x)

for ν almost every x ∈ U .

Proof. We apply Theorem 1 to the signed measure µ = ν f and the Radon
measure ν. Then dµ

dν (x) is exactly limr→0−
∫
Br(x)

fdν. The result then follows, since

ν f = µ = ν dµ
dν , so that dµ

dν = f , ν a.e.. �

The above result can be strengthened as follows:

Corollary 2. If ν is a Radon measure on U ⊂ Rn and f ∈ Lploc(U), then

lim
r→0
−
∫
Br(x)

|f(x)− f(y)|p dν(y) = 0

for ν almost every x ∈ U .

Proof. Let {qi} be a countable dense subset of R, and for each i, let Ei be a
set of ν measure 0 such that

|f(x)− qi|p = lim
r→0
−
∫
Br(x)

|f(y)− qi|p dν(y)

for every x ∈ U \ Ei; the existence of such a set follows from Corollary 1, since
x 7→ |f(x) − a|p is an integrable function for every a ∈ R. Let E = ∪iEi. Then
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ν(E) = 0, and if x 6∈ E then

lim sup
r→0

−
∫
Br(x)

|f(x)− f(y)|p dν(y)

≤ lim sup
r→0

C−
∫
Br(x)

|f(x)− qi|p + |qi − f(y)|p dν(y)

≤ C|f(x)− qi|

for all i. The right-hand side can be made arbitrarily small, since {qi} is dense. �

Another corollary is a result already used in our discussion of representation
theorems:

Corollary 3. Assume that ν is a Radon measure on Rn and that λ : Cc(Rn)→ R
is a linear functional that satisfies

(12) |λ(f)| ≤M
∫
|f | dν for every f ∈ Cc(Rn).

Then there exists a ν-measurable function g such that

λ(f) =
∫
f g dν, |g(x)| ≤M at ν a.e x

This is a special case of a more general fact, but we only need the case of Radon
measures on Rn.

Proof. (sketch)
First, it is easy to check that (12) implies that λ satisfies the hypotheses of

one of our representation theorems, and hence that there exists a Radon measure
µ such that

(13) λ(f) =
∫
fdµ for all f ∈ Cc(Rn).

We claim that

(14) µ� ν

(15)
dµ

dν
(x) ≤M for ν a.e. x.

Given (14) and (15), the conclusion of the corollary (with g = dµ
dν ) follows directly

from Theorem 1. �

Exercise 6. Prove (14) and (15).
Hint: Recalling from the proof of Theorem 1 that

µac = µ {x ∈ Rn : D(µ, ν, x) <∞},

both claims easily reduce to showing that D(µ, ν, x) ≤M at every x. To do this, it
will be necessary to use the hypothesis (12) and the definition (13) of µ, since that
is all we know about µ.
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3. Hn = Ln

Our next result also involves the use of a covering lemma. We will prove

Theorem 2. Hn = Ln on Rn.

Recall that the definition of HausdorffHs measure involves a constant ωs chosen
so that ωkDk is the volume (ie, k-dimensional Lebesgue measure) of a ball in Rk
of diameter D. (So ωk is the lebesgue measure of a k-ball of radius 1/2.)

We will require an auxiliary result that we will state without proof.

Theorem 3 (Isodiametric Inequality). If C is a bounded subset of Rn, then

Ln(C) ≤ ωn(diamC)n.

Thus, of all sets with given diameter D, a ball encloses the largest volume.

The example of an equilateral triangle shows that a set of diameter D need not
be contained in a ball of diameter D.

about the proof. The theorem is proved by symmetrization. That is, the
idea is to modify a given set C (of diameter D) in a series of steps that each preserve
its volume (ie Lebesgue measure) and do not increase its diameter. In this way one
can produce a set, say Csym, that is symmetric with respect to reflection through all
the coordinate hyperplanes, say of diameter Dsym ≤ D. This set can be contained
in a ball of diameter D, so

Ln(C) = Ln(Csym) ≤ ωn(Dsym)n ≤ ωnDn.

�

Proof of Theorem 2. Step 1. First, fix δ > 0 and A ⊂ Rn, and note that
by the isodiametric inequality,

Hnδ (A) = inf{
∑

ωn(diamCi)n : A ⊂ ∪Ci, diamCi < δ}

≥ inf{
∑
Ln(Ci) : A ⊂ ∪Ci, diamCi < δ}

≥ Ln(A).

Letting δ ↘ 0, we find that Hn ≥ Ln.
Step 2. Recall that by definition,

Ln(A) = inf{
∑
|Ri| : A ⊂ ∪Ri, Ri a rectangle for all i }

where |R| denotes the product of the side-lengths of a rectangle, and rectangle here
means one with sides parallel to the coordinate axes. (similarly for “cube” below.)
It follows that

Ln(A) = inf{
∑
|Qi| : A ⊂ ∪Qi, Qi a cube for all i,diamQi < δ for all i}

Exercise 7. Check that this holds, if it is not obvious.
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Taking this for granted, note that for every n, there is a (large) constant cn
such that ωn(diamQ)n ≤ cn|Q| for every cube Q ⊂ Rn. Thus for every δ > 0,

Ln(A) = inf{
∑
|Qi| : A ⊂ ∪Qi, Qi a cube for all i,diamQi < δ for all i}

≥ inf{
∑

ωn
1
cn

(diamQ)n : A ⊂ ∪Qi, Qi as above}

≥ 1
cn
Hnδ (A)

for every A. Letting δ ↘ 0, we conclude that

(16) Hn ≤ cnLn

which is at least a step in the right direction.
Step 3. We next show that for any rectangle R,

(17) |R| = Ln(R) ≥ Hn(R).

To do this, fix δ > 0, and note that by the Vitali covering theorem (for example),
we can find a countable collection of pairwise disjoint closed balls {Bi}∞i=1 such that

diamBi < δ ∀i, ∪iBi ⊂ R, Ln(R \ ∪iBi) = 0.

Also, in view of (16), Hn(R \ ∪iBi) = 0, so for any ε > 0, there exist sets Ci, i =
1, 2, . . . such that

diamCi < δ ∀i, R \ ∪Bi ⊂ ∪iCi,
∑

ωn(diamCi)n < ε.

Now {Bi} ∪ {Ci} constitute a covering of R by sets of diameter less than δ, so

Hnδ (R) ≤
∑

ωn(diamBi)n +
∑

ωn(diamCi)n

≤
∑
Ln(Bi) + ε.

Since the balls are pairwise disjoint and contained in R, it follow that

Hnδ (R) ≤ Ln(R) + ε.

Letting δ → 0, we prove our claim (17).
Step 4. For an arbitrary A ⊂ Rn, it follows that

Ln(A) = inf{
∑
i

|Ri| : A ⊂ ∪Ri, Ri a rectangle for ali i}

≥ inf{
∑
i

Hn(Ri) : A ⊂ ∪Ri, Ri a rectangle for ali i}

≥ Hn(A).

�

4. weak convergence of measures

Let {µn} be a sequence of signed measures. We say that µn converges weakly
as measures to a limit µ if

lim
n→∞

∫
fdµn =

∫
fdµ

for all f ∈ C0(U). When this holds we write µn ⇀ µ weakly as measures, or (when
no ambiguity can result) simply µn ⇀ µ.

We began to discuss this topic. Notes to appear later.
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