Mat 1501 lecture notesweek of September 30-Oct 4.

1. weak convergence

We say that a sequence (pi) of Radon measures on R™ converges weakly to a
limiting measure p if

(1) /f dpy — /fdu for all f € C.(R™) as k — oo.

When this holds, we write ur — p.

There are a number of variants of this notion, listed below. However, the
default definition for us will be that in , and we will always try to state clearly
when we are considering one of the following alternatives.

e One variant arises if consider sequences such that holds, but with
C.(R™) replaced by the larger space f € Cyp(R™). This is a slightly stronger
notion of weak convergence, since we ask that hold for a large class
of functions, and is applicable to sequences of measures with uniformly
bounded total variation.

e We can also define weak convergence of a sequence of signed measures, by
ezactly the same formula as for Radon measures.

e We can also define weak convergence for vector-valued measures. For
example, if pug = (,u,lc, ..., 1) is a sequence of R™-valued measures, then

M — 18
/F~d,uk —>/F-du for all F' € C.(R",R™)

where

/F-dMZZ/Fi-dm, F=(F'. .. F™).
i=1

e more generally still, recall that if Y is a separable Banach space, then
we can think of continuous linear functionals on the space C.(R",Y) as
“Y*-valued measures on R™”. We say that a sequence of linear functionals
Ak € Co(R™, Y)* converges weakly to a limit X if

A (F) = A(F) for all F e C.(R")Y).
When this holds, we will again write A\ — A.

There is also a closely related notion in which we impose the stronger
condition

A (F) = A(F) for all F € Cyp(R™,Y).
Note that every example mentioned above is a special case of the last one(s).

Thus we will sometimes state and prove results in the setting of C.(R™,Y)*, since
it includes all possible special cases of interest for us.

1.1. weak compactness.

Theorem 1. AssumeY is a separable Banach space, and that that Ay, is a sequence
of linear functionals on C.(R™;Y") such that, for every compact K C R™, there exists
some Cg such that

(2)  M(F) < Cg sup |F(2)|ly for all F € C.(R™,Y) with support in K.
rzeK
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Then there exists a subsequence ky and some X\ € C.(R™Y)* such that

(3) A, (F) = AF) as { — oo, for every F € C.(R",Y).

PrOOF. Step 1. First we claim that C.(R™;Y") is separable. To see this, fix
dense subsets D; C Y and Dy C C.(R™), and define

D := { finite sums of the form >_ f;(x)y;, with y; € Dy and f; € Dsy}.
Then D is countable, and it is not hard to check that it is dense in C.(R";Y").
Exercise 1. Prove that D is dense in C,(R™,Y).

(A very similar issue arose in our proof of the representation theorem for ele-
ments of C.(R™,Y)*. There I believe that I just asserted without proof, and without
asking you to check it, the related fact that was needed.)

Step 2. We may assume that the countable dense subset D C C.(R™,Y") found
above is a vector space over @, since if it is not, then we can replace it by a set,
still countable, with this property.

Let us write the elements of D as Fy, Fy,.. ..

The sequence A\ (Fy),k =1,2,... is a bounded sequence of real numbers, as a
result of , so there is a subsequence of the positive integers, which we can write
ki, € =1,2,..., such that

At (F1) — alimit, say Ly as £ — oo.

Repeating this argument and repeatedly passing to subsequences (so that, say,
(k122 is a a subsequence of (k)52 ,, then finally taking a diagonal subsequence,
we can find a subsequence (k¢)32, such that

Ak, (F;) — alimit L; as { — oo for all i.

We can thus define a function L : D — R by L(F;) = L; for every i. It follows from
the linearity of the Ag, and the assumption that L is linear and that

(4) L(F;) < Ck su}g |1 (z)|ly if supp(F;) C K.
xe

Step 3. Thus, L defines a continuous map from a dense subset of C.(R",Y)
to R, and so has a unique extension to a continuous map A : C.(R",Y) — R. For
every F; € D,

limsup [Ar, (F) = A(F)| < limsup (|Ax, (F = Fy)| + [Ax, (F) = ME)| + [NF; = F)])
< limsup A, (F' = F3)[ + [A(F; — F)|.

Since D is dense, it follows from this, , and that A\ satisfies . ([l

The theorem may also be proved by simply citing a version of the Banach-
Alaoglu Theorem, which in fact is just a more general form of the same result
(without any assumption of separability, and requiring some form of the axiom of
choice in its proof.)
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1.2. other descriptions of weak convergence of Radon measures. We
now return to weak convergence of sequences of Radon measures.

Theorem 2. Assume that (ug) is a sequence of Radon measures on R™. Then the
following are equivalent.

(1) pr — p.
(2) For every open bounded O C R™ and compact K C R",
lim inf 1 (0) > p(0), and lim sup ug (K) < p(K).

(3) For every bounded Borel set A C R™ such that u(0A) =0,
lim 1, (A) = p(A).
PRroOF.
(1) = (2): Suppose that O C R™ is open. Then

uo) = Sup{/fdu L 0<f<1,feC(O)

Since for any f with support in O and such that 0 < f <1, |

[ fdn =t [ i < tmint e 0),

the first claim follows by taking the supremum over all such f. The second claim
is proved similarly, starting from the observation that for K compact,

wK) = inf{/fdu :0< f<1,feC(R"),f>10on K}.

(2) = (3): If u(0A) =0, then (writing A° for the interior of A)
A) = p(A%) + p(0A) = u(A°).
Also, since u(A°) < u(A) < u(A), (and similarly for p,) it follows that

p(A) = p(A) > limsup pn (A) > liminf p, (A°) > p(A°) = p(A).

(3) = (1): Assume (3), and fix f € C.(R™). We want to prove that

(5) [ fui— [ san.

We may assume that f > 0, since the general case follows easily.
Note that

(6) the set  {t#0:p(f '{t}) >0} is at most countable,
since for any countable set C' of nonzero real numbers,
u(supp () = > n(fH{t:}),
t;eC
whereas, if (@ failed, the sum on the right-hand side above could be made arbi-
trarily large by a suitable choice of C.
Now fix e > 0 and choose 0 =ty < t; < ... < ty (for some N) such that
(7) |ti — t,’_l‘ <e and u(fil{ti}) =0 for all ¢, tny > sup f.
R"
Next, let
B; .= {ZL’ ceR":t; < f((E) < ti+1}
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and define
N
fa = Z tilgi .
i=1

It follows from the choice of ¢; and the continuity of f that u(9B;) = 0 for every
i > 1, and hence from (2) that

/fs du =Yt (Bi) = Y tin(Bi) = /f dp

as k — oo. In addition, the definitions imply that |f — f-| < elk, where K is the
support of f. Thus

‘/(f - fs)dM’ < epu(K)

and

< elimsup px(K) < ep(K).

+ ’/feduk—/fe du’+‘/(fa—f)du‘

/ fp - / f du‘ < 2ep(K)

and since ¢ is arbitrary, this implies . (]

lim sup ‘ J

Since

/fduk—/fdus]/(f—faduk

it easily follows that

lim sup

1.3. examples of weak convergence.

Example 1. Let (z1) be a sequence of points in R™.
Let pg = 04,. Thus,

[fam=ta) o fecm,
Then it is more or less immediate that
if xp — some limit x, then pp — p:= 9,

as k — oo. Although this is sort of trivial, it illustrates the utility of weak conver-
gence. In particular, if z;, — x and z;, # x, then it is not the case that 6, — &,
in certain natural stronger topologies. In particular, under these hypotheses, for
every k we have

162, = 8elles = sup{ [ fa0,, = 82) : € Coll),sup f(@)] < 1)
= sup{f(zx) — f(z) : f € Co(R"),sup|f(x)] <1}
=2 ’

Example 2. One similarly checks that

if ) — o0, then pp — 0.
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Example 3. Let v € C°(R™) be a function with support in the unit ball, and
such that

Y >0, Y(a)de = | Y(x)dr =
R™ B4
For € > 0, define
1 =z
we(x) = g¢(g)a pe = L" L.
Then pe — po := d§p as € — 0, or equivalently,
[ = [ t@p@ds — 10 = [ fa)duote)  ase o

Indeed, a change of variables shows that

[ w@ar= [ v =1
B:(0) B1(0)
Thus

= sup |f(z) — f(0 |HO ase —0

using the continuity of f.

Exercise 2. let us define p. as above, but consider the limit e — oo rather than
¢ — 0. Find all possible limits of any convergent subsequences of (u:) as € — oo.
(If there is only one possible limit, then of course the whole sequence converges.)

Example 4. The last example illustrates that a sequence of measures, each of which
is supported on an n-dimensional set, can converge weakly to a limting measure
supported on a lower-dimensional set.

Now we give an example to illustrate the opposite phenomenon.

Let pj be the measure on R defined by

Thus,

This is just a Riemann sum approximation to fol f(z)dz, and if f is continuous,
it is certainly the case that the Riemann sums converge to the integral. It follows
that

wr — L1L[0,1].

Example 5. Suppose that g : R — R is a continuous periodic function with period
p, and for e € (0,1], let g.(z) := g(Z). Thus g has period ep, so oscillates rapidly
as e — 0.



Let p := L' g., so that

[ fane = / Fa)g(E)ds.

1 [P
pe — (g) L1, where (g) = f/ g(x)dzr = average of g over one period.
pJo

One can check that

Equivalently,

) [ 1@aEia— ) [ f@yae or e R
This is a real analysis exercise.
Exercise 3. Prove that holds.
Perhaps the easiest way to see that holds is to note that
pe(I) = ()L (1) as € — 0.

if I is any interval, and hence if I is any open set or any closed set. It is easy to
persuade yourself that this is true, and this implies the conclusion, by Theorem 2]
I do not know if this is the easiest way to go if you want to check all the details,
and in fact Theorem [2| as stated does not apply unless g(z) > 0 for all z.

Suppose that I is an interval and that v : I — R™ is a smooth curve. There
are two natural ways to associate a measure to 7.
First, we can define a Radon measure i, by specifying that

) [rduw = [10eh@las o fec e

Second, we can define an R"-valued measure v, by specifying that

(10) /F dv.y = /IF('y(s)) -~'(s) ds for F e C.(R™;R"™)

Note that 11, depends only on the image of 7, and not on the parametrization,

in the sense that

H~y = H~yoo
if 0 : I — I is a diffeomorphism (so that v and v o o are different parametrizations
of the same curve).

Similarly, but not quite the same, v, = vyo, whenever ¢ : I — [ is an
orientation-preserving diffeomorphism (i.e., o’ > 0 everywhere in I), in which case
~ and v o ¢ are different parametrizations of the same oriented curve.

These two different ways of encoding geometric information in a measure behave
differently with respect to weak convergence, as show in the following two examples.

Example 6. Suppose that n = 2.

For € € [0,1), let v.(s) := (cos s,esins), for s € I := [0, 2], and let us write
pe for pu, and similarly v, for v,_, defined in (9) and respectively.

Then it follows just by continuity that

/fdug A/fduo
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/ fdve — / fdv.

So this is not very dramatic. Note however that vy = 0 (that is, [ F - dyy = 0 for

every F) whereas
1
/fd,u,o = 2/ f(s,0) ds.
—1

So, rather naturally, cancellation can occur in weak limits of vector-valued measures,
but we do not see cancellation in weak limits of signed measures.

and

Example 7. A more interesting example in the same spirit arises from defining
Y : R — R? by

Ye(8) = (s,esin g)

for £ € (0,1]. This is a curve that stays within an e-neighborhood of the x axis but
nonetheless oscillates a lot. As above we write j. for p1,_ and similarly v, for v,,_.
Note that

V()= (Loeos ), ()] = (1 -+ cos*(3)) 12

Thus one sees that for f € C.(R?),
[ tdne = [ o) eost ()2 s
R
= [ 7001+ cost(5)? ds
R 5
A 2,5\y1/2
+ [f(s,ssm( ) — f(5,0)| (1 +cos™(=))"= ds.
R € €

A function f € C.(R™) is uniformly continuous, which makes it easy to check that

(11) /R [F(sesin(2)) = £5,0)] (1+ cos?(2)1/2 ds = 0
as € — 0. And by Example [§] above,
/ F(5,0)(1 + cos?(2))/2 ds — ((1 + sin?)/2) / £(s,0) ds.
R € R
It follows that

dpte — po, where /fd,uo ={(1 —I—sin2)1/2>/ f(s,0) ds for f € C.(R™).
R

The factor of ((1 + sin?®)!/2) reflects the presence of oscillations in the curves ..
Thus, a memory of these oscillations is recorded by the weak limit.
On the other hand, similar arguments show that for F' = (F!, F?) € C.(R?,R?),

[ Fean = [P 0us) + P cos()] ds
—>/F1(S,O) ds
R

=: /Fdl/o
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where vy = v, for yo(s) = (s,0) = lim._.7-(s). Thus the limit of the sequence of
vector-valued measures, in this example at least, does not remember the oscillations
in the sequence of curves 7.

2. differerntiability properties of Lipschitz functions

A function f: R™ — R™ is said to be Lipschitz continuous, or just Lipschitz, if
there exists some constant L such that

[f(x) = f(y)l < L]z -yl

for all z,y € R™. Clearly, the same definition can be formulated if R" and R™ are
replaced by any two metric spaces.
The Lipschitz constant of f is

: [f (@) = f(y)l
Lip(f) := sup ————~.
@, £y |z —yl
We will show that every Lipschitz function is differentiable in two distinct
senses. We now introduce the first of these notions of differentiability.

2.1. weak derivatives. A function f: R"™ — R is said to be weakly differen-
tiable if there exists a function v € L}, (R™;R") such that

loc

/f(m)V cpo(z) de = —/v(x) ~(x)dx for all p € Ccl (R™)

When this holds, we call v a “weak gradient” of f. Note that if v; and vo are two
weak gradients of f, then

/(vl—vz)-ga:() for all p € CL(R™)

from which it follows that v; = v2 a.e.. So in fact we can speak without ambiguity
(ignoring sets of measure zero) of the weak gradient.

We typically write D f to denote the weak gradient of f.

It follows from the divergence theorem that if f is C*, then f is weakly differ-
entiable, and Df = V f (where the right-hand side denotes the classical gradient of
1)

We rewrite the definition of weak derivative using this notation:

/f(:z:)V co(x) de = —/Df(a:) ~o(z)dx for all p € CL(R™)

Proposition 1. A Lipschitz continuous function f : R™ — R is weakly differen-
tiable, and the weak derivative Df satisfies

Df € L®(R";R").

ProoF. Step 1. Assume that f : R™ — R™ is Lipschitz, and fix some ¢ €
CHR™;R™). We will write ¢ as (p!,...,0").
We will use the notation

x4+ he;) — gz = ;
Dig(a) = L ) —9l@) D" p:=> DIy
i=1

h
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where e; is the standard unit vector in the ith coordinate direction. By the Domi-
nated Convergence Theorem,

/fV-godac = }lbin%)/th~g0dx.

And for every h, by a change of variables,

/f D" .o dx = 1 (/ f(x)p(z + he;)dx — /f(:c)ap(x)dx)
1 ([ 1= nepptarts - [ flarpterae)

/f hez 7f(x)g0($)d1‘

—7/ D™"f.pdx

Thus

(12) /f V.pdr = }lbir%/ D7hf.pdx for all ¢ € CL(R™ R™).

Step 2. For every z € R™ and h € R,

n

D" f(x) ZlD " () Z|f<x+hei)ff<x>\2 < nLip(f)>

i=1

(The left-hand side above denotes the square of the euclidean norm of the vector
(D7"f,...,D;"f).) Thus, the family of (vector-valued) functions (D™" f)reo,1) is
uniformly bounded with respect to the L norm. Thus it follows from standard
facts about weak compactness, stated and proved in Lemma [l| below, that there

is a subsequence hy — 0 as k — oo, and a weak limit, which we can denote
Df € L*(R™;R™), such that

/D*hf-go—>/Df~<p for all p € CO(R™, R™).
In view of , it follows that f is weakly differentiable, and its weak derivative
belongs to L (R™, R™).
([l
Lemma 1. Assume that (vn)ne(o,1] @5 a family of functions such that
sup ||vp|lpe = M < 0.
€(0,1]

Then there exists a sequence hy, — 0 and a function v € L (R™;R™) such that

(13) /v;,go%/va for all p € CO(R™,R™)

In fact, still holds if we replace C?(R™, R™) by the larger space of functions
LY(R™;R™).
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PROOF. For every h, we define a linear functional A : C.(R™; R™) — R by

o) = [t

Then |vp(z) - o(z)] < Jop(x)] |o(x)] < Mlp(z)| for a.e. x, so
(14) ) <M [ lpldn < Msup lol@)|€(K) it supp() © K.

It therefore follows from Theorem [1| that there exists some A : C.(R™;R™) — R
such that
An(p) — Alp) for all ¢ € CO(R™,R™)

Then implies that
MOl <M [lelds  forall p € CHRME™)

As a result, Corollary 3 in the Week 3 notes implies that there exists some v €
L>(R™;R™) such that

M) = /v - dx for all p € CO(R™,R™).
The conclusion of the lemma follows by combining the above points. ([l

We will need another fact about weak differentiability. This may be interpreted
as showing that weak differentiability is not too weak.

Lemma 2. Assume that f : R™ — R is a continuous, weakly differentiable function,
and that Df =0 a.e..

Then f is constant.

PRrROOF. Fix a C* function ¥ : R™ — R with the following properties:
supp(¥) C B1(0), Y(x) >0 for all z, . Ydx = / PYdr =1.
Rn B1(0)
For € > 0, we define 9. (z) := L 4(%), so that

supp(¢) C B:(0), P(z) >0 for all z,. Yedr = / Yedr =1.
R® B.(0)

Finally, for € > 0 define
fer=tex f

(here using the standard notation for the convolution integral

Ve * f(z) = Rnwe(x—y)f(y)dy = Rn@bs(y)f(x—y)dy )

We have essentially proved in Example [3| above that f. — f uniformly as e — 0,
so it suffices to show that f. is constant for every & > 0.
It follows from the smoothness of 1. and standard properties of convolutions
that
fe is smooth, and Vf. = V(i) * f) = (Vibe) * f

Hence, to show that f. is constant, it suffices to show that V f. = 0.
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To do this, we use further standard properties of convolutions to compute, for
some arbitrary ¢ € C}(R",R"),

Vi = [150 = [wernVee = [V
[ 9 @ero
— [ Df o)

But Df =0 a.e., and thus
/Vfg-ap =0 for all p € CH(R™,R™).
It easily follows that V f. = 0, which completes the proof of the lemma. O

Exercise 4. Persuade yourself that the following variants of Lemma [2] are true.

e if f:R” — Ris alocally (Lebesgue) integrable function such that Df = 0
a.e.., then f is constant a.e..

e if O C R” is a connected open set, and Df = 0 a.e. in O, then f is
constant in O.

Exercise 5. Prove that if f : R® — R is a weakly differentiable function and
Df € L*>®(R™ R™), then in fact f is Lipschitz continuous.

Hint: Tt suffices to show that f is the uniform limit of a sequence of functions
with uniformly bounded Lipschitz constants.

In combination with the facts we have proved above, this exercise shows that
a function R™ — R is Lipschitz if and only if if is weakly differentiable. with weak
derivative in L.

2.2. almost everywhere differentiability. A function f : R" — R is said
to be differentiable at a point x if there exists a vector, denoted V f(x), such that

flx+hy) — f(x)
h
as h — 0, uniformly for y in the unit ball B; C R™.
For f : R® — R™, the definition of differentiable is exactly the same, except
that Vf(x) is then a linear map from R™ — R™, which we can write as a m x n
matrix.

~=Vf(x)-y—0

Theorem 3 (Rademacher’s Theorem). A Lipschitz function f : R* — R™ is
differentiable at L™ almost every x € R™.

PrROOF. We will prove the theorem for m = 1; the general case then follows
easily.

If f:R™ — R is Lipschitz, we will prove that f is differentiable, with V f(z) =
Df(z), at every point = at which

(15) lim |Df(z) — Df(x)|dz = 0.
r—0 Br(z)

Since we already know that holds L™ almost everywhere, this will prove the
theorem.
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We henceforth fix some x satisfying (L5)). It is convenient to define

gn(y) == flot hz;l) — @) _ Df(x) -y,

so that our goal is now to show that g5 (y) — 0 uniformly for y € By as h — 0.
Step 1. First note that for any y;,y2 € R™ and any h > 0,

() — an(o)] < LEZIIC I 1y, —

< (Lip(f) + [Df(@)]) lyr — el.
Also, it is clear that g, (0) = 0 for all A, so

@) = lon() — 9n(0)] < (Lin(f) + D)) y— 0]
< R(Lip(f) +|Df(@)])  if |yl < R.

Thus the family of functions (gn)ne(o,1] is uniformly bounded and equicontinuous
in any bounded subset of R™, and in particular in the unit ball Bj.

We can thus appeal to the Arzela-Ascoli Theorem to find that for any sequence
hi tending to zero, there is a further subsequence (which we will still denote hy,
and a limit g such that

(16) Ghy, — 9 uniformly in By C R”.

If f were not differentiable at z, one could find a subsequence gy, such that
liminfg oo SUp,ep, |9, (7)] > 0. We could then pass to a further subsequence
for which holds, and it would necessarily be the case that sup,cp, [g(z)| > 0.
To rule out this possibility, it therefore suffices to show that any limit of a uniformly
convergent subsequence must equal zero.

Step 2. To finish the proof, we will now show that any limit g of a uniformly
convergent subsequence, which we will writdﬂ as (gn, ) must equal zero.

Let g be such a limit. Note that ¢(0) = limy_.o gn, (0) = 0, so it suffices to
show that g is constant in B1(0). and for this it suffices (in view of Lemma[2]above,
or more precisely, a variant of Lemma |2| stated in Exercise M4]) to show that g is
weakly differentiable, with Dg = 0 a.e. in Bj. This will certainly follow if we can
show that

(17) / gV -9=0 for all p € CH(By).
By

We will see that this follows from the fact that x is a Lebesgue point of D f (in the
strong sense of above). Indeed, for ¢ € C1(By),

(18)
/ gV - p(y) dy = lim 9n, W)V - o(y) dy
Bl Bl

k—oo
i [ Ty = J@) = D) ()
k—oo By hk

V- o(y) dy.

Z—T

For every k, we make a change of variables, defining z = = + hyy, so that y = T
We define @y, so that ¢(y) = pi(2). Then by the chain rule,

Vy - o(y) = hiV.or(2).

1
rather than Ihy,
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Also, note that if y € By then z € By, (x). So for every k,

fl@+hyy) — f(z) — Df(z) - (hyy)
By I

= [ s~ 1@ - Di@) (- )] V() dz

Wi J B, (@)

V- o(y) dy

1
B @ /B;Lk(z) [Df(Z) - Df(x)] prle)

using the fact that Df is a weak derivative of f.
In general, L™(By(z)) = h"L"(B1), so

1
— cdr = E”(Bl)][ oo dx.
) Bi(x)

Thus, noting that |k |lcc = [|¢]|co for every k,
[ ¥ e < CElelad D) - Df)] ds
1

Bh,, (%)

Then follows from this together with and .

We also stated the following result.

Theorem 4. Assume that f : R™ — R™ s a Lipschitz continuous function. Then
for any € > 0, there exists a C' function g : R™ — R™ such that the set
G:={seR": f(x)=g(z), and Vf(x) exists and equals Vg(z)}
satisfies
LR\ G)<e

In the lecture, we briefly discussed the proof, which relies on Rademacher’s
Theorem and the Whitney Extension Theorem.
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