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1. weak convergence

We say that a sequence (µk) of Radon measures on Rn converges weakly to a
limiting measure µ if

(1)
∫
f dµk →

∫
fdµ for all f ∈ Cc(Rn) as k →∞.

When this holds, we write µk ⇀ µ.
There are a number of variants of this notion, listed below. However, the

default definition for us will be that in (1), and we will always try to state clearly
when we are considering one of the following alternatives.

• One variant arises if consider sequences such that (1) holds, but with
Cc(Rn) replaced by the larger space f ∈ C0(Rn). This is a slightly stronger
notion of weak convergence, since we ask that (1) hold for a large class
of functions, and is applicable to sequences of measures with uniformly
bounded total variation.

• We can also define weak convergence of a sequence of signed measures, by
exactly the same formula (1) as for Radon measures.

• We can also define weak convergence for vector-valued measures. For
example, if µk = (µ1

k, . . . , µ
m
k ) is a sequence of Rm-valued measures, then

µk ⇀ µ is∫
F · dµk →

∫
F · dµ for all F ∈ Cc(Rn,Rm)

where ∫
F · dµ =

m∑
i=1

∫
F i · dµi, F = (F 1, . . . , Fm).

• more generally still, recall that if Y is a separable Banach space, then
we can think of continuous linear functionals on the space Cc(Rn, Y ) as
“Y ∗-valued measures on Rn”. We say that a sequence of linear functionals
λk ∈ Cc(Rn, Y )∗ converges weakly to a limit λ if

λk(F )→ λ(F ) for all F ∈ Cc(Rn, Y ).

When this holds, we will again write λk ⇀ λ.
There is also a closely related notion in which we impose the stronger

condition

λk(F )→ λ(F ) for all F ∈ C0(Rn, Y ).

Note that every example mentioned above is a special case of the last one(s).
Thus we will sometimes state and prove results in the setting of Cc(Rn, Y )∗, since
it includes all possible special cases of interest for us.

1.1. weak compactness.

Theorem 1. Assume Y is a separable Banach space, and that that λk is a sequence
of linear functionals on Cc(Rn;Y ) such that, for every compact K ⊂ Rn, there exists
some CK such that

(2) λk(F ) ≤ CK sup
x∈K
‖F (x)‖Y for all F ∈ Cc(Rn, Y ) with support in K.
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Then there exists a subsequence k` and some λ ∈ Cc(Rn, Y )∗ such that

(3) λk`
(F )→ λ(F ) as `→∞, for every F ∈ Cc(Rn, Y ).

Proof. Step 1. First we claim that Cc(Rn;Y ) is separable. To see this, fix
dense subsets D1 ⊂ Y and D2 ⊂ Cc(Rn), and define

D := { finite sums of the form
∑
fi(x)yi, with yi ∈ D1 and fi ∈ D2}.

Then D is countable, and it is not hard to check that it is dense in Cc(Rn;Y ).

Exercise 1. Prove that D is dense in Cc(Rn, Y ).

(A very similar issue arose in our proof of the representation theorem for ele-
ments of Cc(Rn, Y )∗. There I believe that I just asserted without proof, and without
asking you to check it, the related fact that was needed.)

Step 2. We may assume that the countable dense subset D ⊂ Cc(Rn, Y ) found
above is a vector space over Q, since if it is not, then we can replace it by a set,
still countable, with this property.

Let us write the elements of D as F1, F2, . . ..
The sequence λk(F1), k = 1, 2, . . . is a bounded sequence of real numbers, as a

result of (2), so there is a subsequence of the positive integers, which we can write
k1
` , ` = 1, 2, . . ., such that

λk1
`
(F1)→ a limit, say L1 as `→∞.

Repeating this argument and repeatedly passing to subsequences (so that, say,
(km+1
` )∞`=1 is a a subsequence of (km` )∞`=1, then finally taking a diagonal subsequence,

we can find a subsequence (k`)∞`=1 such that

λk`
(Fi)→ a limit Li as `→∞ for all i.

We can thus define a function L : D → R by L(Fi) = Li for every i. It follows from
the linearity of the λk`

and the assumption (2) that L is linear and that

(4) L(Fi) ≤ CK sup
x∈K
‖Fi(x)‖Y if supp(Fi) ⊂ K.

Step 3. Thus, L defines a continuous map from a dense subset of Cc(Rn, Y )
to R, and so has a unique extension to a continuous map λ : Cc(Rn, Y ) → R. For
every Fi ∈ D,

lim sup |λk`
(F )− λ(F )| ≤ lim sup

(
|λk`

(F − Fi)|+ |λk`
(Fi)− λ(Fi)|+ |λ(Fi − F )|

)
≤ lim sup |λk`

(F − Fi)|+ |λ(Fi − F )|.

Since D is dense, it follows from this, (2), and (4) that λ satisfies (3). �

The theorem may also be proved by simply citing a version of the Banach-
Alaoglu Theorem, which in fact is just a more general form of the same result
(without any assumption of separability, and requiring some form of the axiom of
choice in its proof.)
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1.2. other descriptions of weak convergence of Radon measures. We
now return to weak convergence of sequences of Radon measures.

Theorem 2. Assume that (µk) is a sequence of Radon measures on Rn. Then the
following are equivalent.

(1) µk ⇀ µ.
(2) For every open bounded O ⊂ Rn and compact K ⊂ Rn,

lim inf µk(O) ≥ µ(O), and lim supµk(K) ≤ µ(K).

(3) For every bounded Borel set A ⊂ Rn such that µ(∂A) = 0,

limµk(A) = µ(A).

Proof.

(1) ⇒ (2): Suppose that O ⊂ Rn is open. Then

µ(O) = sup{
∫
fdµ : 0 ≤ f ≤ 1, f ∈ Cc(O)}.

Since for any f with support in O and such that 0 ≤ f ≤ 1, ,∫
fdµ = lim

k

∫
fdµk ≤ lim inf

k
µk(O),

the first claim follows by taking the supremum over all such f . The second claim
is proved similarly, starting from the observation that for K compact,

µ(K) = inf{
∫
fdµ : 0 ≤ f ≤ 1, f ∈ Cc(Rn), f ≥ 1 on K}.

(2) ⇒ (3): If µ(∂A) = 0, then (writing A◦ for the interior of A)

µ(Ā) = µ(A◦) + µ(∂A) = µ(A◦).

Also, since µ(A◦) ≤ µ(A) ≤ µ(Ā), (and similarly for µn) it follows that

µ(A) = µ(Ā) ≥ lim supµn(Ā) ≥ lim inf µn(A◦) ≥ µ(A◦) = µ(A).

(3) ⇒ (1): Assume (3), and fix f ∈ Cc(Rn). We want to prove that

(5)
∫
fdµk →

∫
fdµ.

We may assume that f ≥ 0, since the general case follows easily.
Note that

(6) the set {t 6= 0 : µ
(
f−1{t}

)
> 0} is at most countable,

since for any countable set C of nonzero real numbers,

µ(supp (f)) ≥
∑
ti∈C

µ
(
f−1{ti}

)
,

whereas, if (6) failed, the sum on the right-hand side above could be made arbi-
trarily large by a suitable choice of C.

Now fix ε > 0 and choose 0 = t0 < t1 < . . . < tN (for some N) such that

(7) |ti − ti−1| < ε and µ
(
f−1{ti}

)
= 0 for all i, tN > sup

Rn

f.

Next, let
Bi := {x ∈ Rn : ti < f(x) ≤ ti+1}
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and define

fε :=
N∑
i=1

ti1Bi .

It follows from the choice of ti and the continuity of f that µ(∂Bi) = 0 for every
i ≥ 1, and hence from (2) that∫

fε dµk =
∑

tiµk(Bi)→
∑

tiµ(Bi) =
∫
f dµ

as k → ∞. In addition, the definitions imply that |f − fε| < ε1K , where K is the
support of f . Thus ∣∣∣∣∫ (f − fε)dµ

∣∣∣∣ ≤ εµ(K)

and

lim sup
∣∣∣∣∫ (f − fε)dµk

∣∣∣∣ ≤ ε lim supµk(K) ≤ εµ(K).

Since∫
fdµk −

∫
f dµ ≤

∣∣∣∣∫ (f − fε)dµk
∣∣∣∣+
∣∣∣∣∫ fεdµk −

∫
fε dµ

∣∣∣∣+
∣∣∣∣∫ (fε − f)dµ

∣∣∣∣
it easily follows that

lim sup
∣∣∣∣∫ fdµk −

∫
f dµ

∣∣∣∣ ≤ 2εµ(K)

and since ε is arbitrary, this implies (5). �

1.3. examples of weak convergence.

Example 1. Let (xk) be a sequence of points in Rn.
Let µk = δxk

. Thus,∫
f dµk = f(xk) for f ∈ Cc(Rn).

Then it is more or less immediate that

if xk → some limit x, then µk ⇀ µ := δx

as k →∞. Although this is sort of trivial, it illustrates the utility of weak conver-
gence. In particular, if xk → x and xk 6= x, then it is not the case that δxk

→ δx
in certain natural stronger topologies. In particular, under these hypotheses, for
every k we have

‖δxk
− δx‖C∗0 = sup{

∫
fd(δxk

− δx) : f ∈ C0(Rn), sup
x
|f(x)| ≤ 1}

= sup{f(xk)− f(x) : f ∈ C0(Rn), sup
x
|f(x)| ≤ 1}

= 2

Example 2. One similarly checks that

if xk →∞, then µk ⇀ 0.
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Example 3. Let ψ ∈ C∞c (Rn) be a function with support in the unit ball, and
such that

ψ ≥ 0,
∫

Rn

ψ(x) dx =
∫
B1

ψ(x) dx = 1

For ε > 0, define

ψε(x) :=
1
ε
ψ(
x

ε
), µε := Ln ψε.

Then µε ⇀ µ0 := δ0 as ε→ 0, or equivalently,∫
f dµε =

∫
f(x)ψε(x)dx→ f(0) =

∫
f(x)dµ0(x) as ε→ 0.

Indeed, a change of variables shows that∫
Bε(0)

ψε(x) dx =
∫
B1(0)

ψ(x) dx = 1.

Thus ∫
Rn

f(x)ψε(x)dx− f(0) =
∫
Bε(0)

(
f(x)− f(0)

)
ψε(x)dx

≤ sup
|x|<ε

|f(x)− f(0)|
∫
Bε(0)

|ψε(x)| dx

= sup
|x|<ε

|f(x)− f(0)| → 0 as ε→ 0

using the continuity of f .

Exercise 2. let us define µε as above, but consider the limit ε → ∞ rather than
ε → 0. Find all possible limits of any convergent subsequences of (µε) as ε → ∞.
(If there is only one possible limit, then of course the whole sequence converges.)

Example 4. The last example illustrates that a sequence of measures, each of which
is supported on an n-dimensional set, can converge weakly to a limting measure
supported on a lower-dimensional set.

Now we give an example to illustrate the opposite phenomenon.
Let µk be the measure on R defined by

µk =
1
k

k∑
i=1

δi/k.

Thus, ∫
f dµk =

1
k

k∑
i=1

f(
i

k
).

This is just a Riemann sum approximation to
∫ 1

0
f(x)dx, and if f is continuous,

it is certainly the case that the Riemann sums converge to the integral. It follows
that

µk ⇀ L1 [0, 1].

Example 5. Suppose that g : R→ R is a continuous periodic function with period
p, and for ε ∈ (0, 1], let gε(x) := g(xε ). Thus gε has period εp, so oscillates rapidly
as ε→ 0.



6

Let µε := L1 gε, so that∫
fdµε =

∫
R
f(x)g(

x

ε
)dx.

One can check that

µε ⇀ 〈g〉L1, where 〈g〉 =
1
p

∫ p

0

g(x)dx = average of g over one period.

Equivalently,

(8)
∫

R
f(x)g(

x

ε
)dx→ 〈g〉

∫
R
f(x)dx for f ∈ Cc(Rn).

This is a real analysis exercise.

Exercise 3. Prove that (8) holds.

Perhaps the easiest way to see that (8) holds is to note that

µε(I) ⇀ 〈g〉L1(I) as ε→ 0.

if I is any interval, and hence if I is any open set or any closed set. It is easy to
persuade yourself that this is true, and this implies the conclusion, by Theorem 2.
I do not know if this is the easiest way to go if you want to check all the details,
and in fact Theorem 2 as stated does not apply unless g(x) ≥ 0 for all x.

Suppose that I is an interval and that γ : I → Rn is a smooth curve. There
are two natural ways to associate a measure to γ.

First, we can define a Radon measure µγ by specifying that

(9)
∫
f dµγ =

∫
I

f(γ(s))|γ′(s)| ds for f ∈ Cc(Rn)

Second, we can define an Rn-valued measure νγ by specifying that

(10)
∫
F · dνγ :=

∫
I

F (γ(s)) · γ′(s) ds for F ∈ Cc(Rn; Rn)

Note that µγ depends only on the image of γ, and not on the parametrization,
in the sense that

µγ = µγ◦σ

if σ : I → I is a diffeomorphism (so that γ and γ ◦ σ are different parametrizations
of the same curve).

Similarly, but not quite the same, νγ = νγ◦σ whenever σ : I → I is an
orientation-preserving diffeomorphism (i.e., σ′ > 0 everywhere in I), in which case
γ and γ ◦ σ are different parametrizations of the same oriented curve.

These two different ways of encoding geometric information in a measure behave
differently with respect to weak convergence, as show in the following two examples.

Example 6. Suppose that n = 2.
For ε ∈ [0, 1), let γε(s) := (cos s, ε sin s), for s ∈ I := [0, 2π], and let us write

µε for µγε
and similarly νε for νγε

, defined in (9) and (10) respectively.
Then it follows just by continuity that∫

fdµε ⇀

∫
fdµ0
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and ∫
fdνε ⇀

∫
fdν0.

So this is not very dramatic. Note however that ν0 = 0 (that is,
∫
F · dν0 = 0 for

every F ) whereas ∫
fdµ0 = 2

∫ 1

−1

f(s, 0) ds.

So, rather naturally, cancellation can occur in weak limits of vector-valued measures,
but we do not see cancellation in weak limits of signed measures.

Example 7. A more interesting example in the same spirit arises from defining
γε : R→ R2 by

γε(s) = (s, ε sin
s

ε
)

for ε ∈ (0, 1]. This is a curve that stays within an ε-neighborhood of the x axis but
nonetheless oscillates a lot. As above we write µε for µγε

and similarly νε for νγε
.

Note that

γ′(s) = (1, cos
s

ε
), |γ′(s)| = (1 + cos2(

s

ε
))1/2.

Thus one sees that for f ∈ Cc(R2),∫
fdµε =

∫
R
f(γε(s))(1 + cos2(

s

ε
))1/2 ds

=
∫

R
f(s, 0)(1 + cos2(

s

ε
))1/2 ds

+
∫

R

[
f(s, ε sin(

s

ε
))− f(s, 0)

]
(1 + cos2(

s

ε
))1/2 ds.

A function f ∈ Cc(Rn) is uniformly continuous, which makes it easy to check that

(11)
∫

R

[
f(s, ε sin(

s

ε
))− f(s, 0)

]
(1 + cos2(

s

ε
))1/2 ds→ 0

as ε→ 0. And by Example 5 above,∫
R
f(s, 0)(1 + cos2(

s

ε
))1/2 ds→ 〈(1 + sin2)1/2〉

∫
R
f(s, 0) ds.

It follows that

dµε ⇀ µ0, where
∫
fdµ0 := 〈(1 + sin2)1/2〉

∫
R
f(s, 0) ds for f ∈ Cc(Rn).

The factor of 〈(1 + sin2)1/2〉 reflects the presence of oscillations in the curves γε.
Thus, a memory of these oscillations is recorded by the weak limit.

On the other hand, similar arguments show that for F = (F 1, F 2) ∈ Cc(R2,R2),∫
F · dνε =

∫
R
[F 1(γε(s)) + F 2(γε(s)) cos(

s

ε
)] ds

→
∫

R
F 1(s, 0) ds

=:
∫
Fdν0
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where ν0 = νγ0 for γ0(s) = (s, 0) = limε→0 γε(s). Thus the limit of the sequence of
vector-valued measures, in this example at least, does not remember the oscillations
in the sequence of curves γε.

2. differerntiability properties of Lipschitz functions

A function f : Rn → Rm is said to be Lipschitz continuous, or just Lipschitz, if
there exists some constant L such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ Rn. Clearly, the same definition can be formulated if Rn and Rm are
replaced by any two metric spaces.

The Lipschitz constant of f is

Lip(f) := sup
x, 6=y

|f(x)− f(y)|
|x− y|

.

We will show that every Lipschitz function is differentiable in two distinct
senses. We now introduce the first of these notions of differentiability.

2.1. weak derivatives. A function f : Rn → R is said to be weakly differen-
tiable if there exists a function v ∈ L1

loc(Rn; Rn) such that∫
f(x)∇ · ϕ(x) dx = −

∫
v(x) · ϕ(x)dx for all ϕ ∈ C1

c (Rn)

When this holds, we call v a “weak gradient” of f . Note that if v1 and v2 are two
weak gradients of f , then∫

(v1 − v2) · ϕ = 0 for all ϕ ∈ C1
c (Rn)

from which it follows that v1 = v2 a.e.. So in fact we can speak without ambiguity
(ignoring sets of measure zero) of the weak gradient.

We typically write Df to denote the weak gradient of f .
It follows from the divergence theorem that if f is C1, then f is weakly differ-

entiable, and Df = ∇f (where the right-hand side denotes the classical gradient of
f .)

We rewrite the definition of weak derivative using this notation:∫
f(x)∇ · ϕ(x) dx = −

∫
Df(x) · ϕ(x)dx for all ϕ ∈ C1

c (Rn)

Proposition 1. A Lipschitz continuous function f : Rn → R is weakly differen-
tiable, and the weak derivative Df satisfies

Df ∈ L∞(Rn; Rn).

Proof. Step 1. Assume that f : Rn → Rm is Lipschitz, and fix some ϕ ∈
C1
c (Rn; Rn). We will write ϕ as (ϕ1, . . . , ϕn).

We will use the notation

Dh
i g(x) :=

g(x+ hei)− g(x)
h

, Dh · ϕ :=
n∑
i=1

Dh
i ϕ

i.
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where ei is the standard unit vector in the ith coordinate direction. By the Domi-
nated Convergence Theorem,∫

f ∇ · ϕ dx = lim
h→0

∫
f Dh · ϕ dx.

And for every h, by a change of variables,∫
f Dh · ϕ dx =

1
h

(∫
f(x)ϕ(x+ hei)dx−

∫
f(x)ϕ(x)dx

)
=

1
h

(∫
f(x− hei)ϕ(x)dx−

∫
f(x)ϕ(x)dx

)
= −

∫
f(x− hei)− f(x)

−h
ϕ(x)dx

= −
∫

D−hf · ϕ dx

Thus

(12)
∫
f ∇ · ϕ dx = lim

h→0

∫
D−hf · ϕ dx for all ϕ ∈ C1

c (Rn,Rn).

Step 2. For every x ∈ Rn and h ∈ R,

|D−hf(x)|2 =
n∑
i=1

|D−hi f(x)|2 =
1
h2

n∑
i=1

|f(x+ hei)− f(x)|2 ≤ nLip(f)2.

(The left-hand side above denotes the square of the euclidean norm of the vector
(D−h1 f, . . . ,D−hn f).) Thus, the family of (vector-valued) functions (D−hf)h∈(0,1] is
uniformly bounded with respect to the L∞ norm. Thus it follows from standard
facts about weak compactness, stated and proved in Lemma 1 below, that there
is a subsequence hk → 0 as k → ∞, and a weak limit, which we can denote
Df ∈ L∞(Rn; Rn), such that∫

D−hf · ϕ→
∫
Df · ϕ for all ϕ ∈ C0

c (Rn,Rn).

In view of (12), it follows that f is weakly differentiable, and its weak derivative
belongs to L∞(Rn,Rn).

�

Lemma 1. Assume that (vh)h∈(0,1] is a family of functions such that

sup
h∈(0,1]

‖vh‖L∞ := M <∞.

Then there exists a sequence hk → 0 and a function v ∈ L∞(Rn; Rm) such that

(13)
∫
vh · ϕ→

∫
v · ϕ for all ϕ ∈ C0

c (Rn,Rm)

In fact, (13) still holds if we replace C0
c (Rn,Rm) by the larger space of functions

L1(Rn; Rm).
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Proof. For every h, we define a linear functional λh : Cc(Rn; Rm)→ R by

λh(ϕ) :=
∫
vh · ϕ dx.

Then |vh(x) · ϕ(x)| ≤ |vh(x)| |ϕ(x)| ≤M |ϕ(x)| for a.e. x, so

(14) |λh(ϕ)| ≤M
∫
|ϕ| dx ≤ M sup

x∈K
|ϕ(x)|Ln(K) if supp(ϕ) ⊂ K.

It therefore follows from Theorem 1 that there exists some λ : Cc(Rn; Rm) → R
such that

λh(ϕ)→ λ(ϕ) for all ϕ ∈ C0
c (Rn,Rm)

Then (14) implies that

|λ(ϕ)| ≤M
∫
|ϕ| dx for all ϕ ∈ C0

c (Rn,Rm)

As a result, Corollary 3 in the Week 3 notes implies that there exists some v ∈
L∞(Rn; Rm) such that

λ(ϕ) =
∫
v · ϕ dx for all ϕ ∈ C0

c (Rn,Rm).

The conclusion of the lemma follows by combining the above points. �

We will need another fact about weak differentiability. This may be interpreted
as showing that weak differentiability is not too weak.

Lemma 2. Assume that f : Rn → R is a continuous, weakly differentiable function,
and that Df = 0 a.e..

Then f is constant.

Proof. Fix a C∞ function ψ : Rn → R with the following properties:

supp(ψ) ⊂ B1(0), ψ(x) ≥ 0 for all x, .
∫

Rn

ψ dx =
∫
B1(0)

ψ dx = 1.

For ε > 0, we define ψε(x) := 1
εnψ(xε ), so that

supp(ψ) ⊂ Bε(0), ψ(x) ≥ 0 for all x, .
∫

Rn

ψε dx =
∫
Be(0)

ψε dx = 1.

Finally, for ε > 0 define
fε := ψε ∗ f

(here using the standard notation for the convolution integral

ψε ∗ f(x) :=
∫

Rn

ψε(x− y)f(y) dy =
∫

Rn

ψε(y)f(x− y) dy. )

We have essentially proved in Example 3 above that fε → f uniformly as ε → 0,
so it suffices to show that fε is constant for every ε > 0.

It follows from the smoothness of ψε and standard properties of convolutions
that

fε is smooth, and ∇fε = ∇(ψε ∗ f) = (∇ψε) ∗ f
Hence, to show that fε is constant, it suffices to show that ∇fε = 0.
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To do this, we use further standard properties of convolutions to compute, for
some arbitrary ϕ ∈ C1

c (Rn,Rn),

−
∫
∇fε · ϕ =

∫
fε∇ · ϕ =

∫
(ψε ∗ f)∇ · ϕ =

∫
f(ψε ∗ ∇ · ϕ)

=
∫
f ∇ · (ψε ∗ ϕ)

=
∫
Df · (ψε ∗ ϕ).

But Df = 0 a.e., and thus∫
∇fε · ϕ = 0 for all ϕ ∈ C1

c (Rn,Rn).

It easily follows that ∇fε = 0, which completes the proof of the lemma. �

Exercise 4. Persuade yourself that the following variants of Lemma 2 are true.
• if f : Rn → R is a locally (Lebesgue) integrable function such that Df = 0

a.e.., then f is constant a.e..
• if O ⊂ Rn is a connected open set, and Df = 0 a.e. in O, then f is

constant in O.

Exercise 5. Prove that if f : Rn → R is a weakly differentiable function and
Df ∈ L∞(Rn,Rn), then in fact f is Lipschitz continuous.

Hint: It suffices to show that f is the uniform limit of a sequence of functions
with uniformly bounded Lipschitz constants.

In combination with the facts we have proved above, this exercise shows that
a function Rn → R is Lipschitz if and only if if is weakly differentiable. with weak
derivative in L∞.

2.2. almost everywhere differentiability. A function f : Rn → R is said
to be differentiable at a point x if there exists a vector, denoted ∇f(x), such that

f(x+ hy)− f(x)
h

−∇f(x) · y → 0

as h→ 0, uniformly for y in the unit ball B1 ⊂ Rn.
For f : Rn → Rm, the definition of differentiable is exactly the same, except

that ∇f(x) is then a linear map from Rn → Rm, which we can write as a m × n
matrix.

Theorem 3 (Rademacher’s Theorem). A Lipschitz function f : Rn → Rm is
differentiable at Ln almost every x ∈ Rn.

Proof. We will prove the theorem for m = 1; the general case then follows
easily.

If f : Rn → R is Lipschitz, we will prove that f is differentiable, with ∇f(x) =
Df(x), at every point x at which

(15) lim
r→0
−
∫
Br(x)

|Df(z)−Df(x)| dz = 0.

Since we already know that (15) holds Ln almost everywhere, this will prove the
theorem.
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We henceforth fix some x satisfying (15). It is convenient to define

gh(y) :=
f(x+ hy)− f(x)

h
−Df(x) · y,

so that our goal is now to show that gh(y)→ 0 uniformly for y ∈ B1 as h→ 0.
Step 1. First note that for any y1, y2 ∈ Rn and any h > 0,

|gh(y1)− gh(y2)| ≤ |f(x− hy1)− f(x− hy2)|
h

+ |Df(x)| |y1 − y2|

≤
(
Lip(f) + |Df(x)|

)
|y1 − y2|.

Also, it is clear that gh(0) = 0 for all h, so

|gh(y)| = |gh(y)− gh(0)| ≤
(
Lip(f) + |Df(x)|

)
|y − 0|

≤ R
(
Lip(f) + |Df(x)|

)
if |y| ≤ R.

Thus the family of functions (gh)h∈(0,1] is uniformly bounded and equicontinuous
in any bounded subset of Rn, and in particular in the unit ball B1.

We can thus appeal to the Arzela-Ascoli Theorem to find that for any sequence
hk tending to zero, there is a further subsequence (which we will still denote hk`

and a limit g such that

(16) ghk`
→ g uniformly in B1 ⊂ Rn.

If f were not differentiable at x, one could find a subsequence ghk
such that

lim infk→∞ supx∈B1
|ghk

(x)| > 0. We could then pass to a further subsequence
for which (16) holds, and it would necessarily be the case that supx∈B1

|g(x)| > 0.
To rule out this possibility, it therefore suffices to show that any limit of a uniformly
convergent subsequence must equal zero.

Step 2. To finish the proof, we will now show that any limit g of a uniformly
convergent subsequence, which we will write1 as (ghk

) must equal zero.
Let g be such a limit. Note that g(0) = limk→∞ ghk

(0) = 0, so it suffices to
show that g is constant in B1(0). and for this it suffices (in view of Lemma 2 above,
or more precisely, a variant of Lemma 2 stated in Exercise 4) to show that g is
weakly differentiable, with Dg = 0 a.e. in B1. This will certainly follow if we can
show that

(17)
∫
B1

g∇ · ϕ = 0 for all ϕ ∈ C1
c (B1).

We will see that this follows from the fact that x is a Lebesgue point of Df (in the
strong sense of (15) above). Indeed, for ϕ ∈ C1

c (B1),

∫
B1

g(y)∇ · ϕ(y) dy = lim
k→∞

∫
B1

ghk
(y)∇ · ϕ(y) dy

(18)

= lim
k→∞

∫
B1

f(x+ hky)− f(x)−Df(x) · (hky)
hk

∇ · ϕ(y) dy.

For every k, we make a change of variables, defining z = x+ hky, so that y = z−x
hk

.
We define ϕk so that ϕ(y) = ϕk(z). Then by the chain rule,

∇y · ϕ(y) = hk∇zϕk(z).

1rather than ghk`
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Also, note that if y ∈ B1 then z ∈ Bhk
(x). So for every k,∫

B1

f(x+ hky)− f(x)−Df(x) · (hky)
hk

∇ · ϕ(y) dy

=
1
hnk

∫
Bhk

(x)

[
f(z)− f(x)−Df(x) · (z − x)

]
∇ · ϕk(z) dz

=
1
hnk

∫
Bhk

(x)

[
Df(z)−Df(x)

]
· ϕk(z) dz

using the fact that Df is a weak derivative of f .
In general, Ln(Bh(x)) = hnLn(B1), so

1
hn

∫
Bh(x)

· · · dx = Ln(B1)−
∫
Bh(x)

· · · dx.

Thus, noting that ‖ϕk‖∞ = ‖ϕ‖∞ for every k,∣∣∣∣∫
B1

ghk
(y)∇ · ϕ(y) dy

∣∣∣∣ ≤ Ln(B1)‖ϕ‖∞−
∫
Bhk

(x)

|Df(z)−Df(x)| dx.

Then (17) follows from this together with (15) and (18).
�

We also stated the following result.

Theorem 4. Assume that f : Rn → Rm is a Lipschitz continuous function. Then
for any ε > 0, there exists a C1 function g : Rn → Rm such that the set

G := {s ∈ Rn : f(x) = g(x), and ∇f(x) exists and equals ∇g(x)}
satisfies

Ln(Rn \G) < ε

In the lecture, we briefly discussed the proof, which relies on Rademacher’s
Theorem and the Whitney Extension Theorem.
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