
Mat 1501 lecture notes, October 7-17, 2013

Area and coarea

Throughout the following discussion we assume that n,N are positive integers
and that n ≤ N . We will generally be interested in the case n < N .

Our goal is to obtain
• a formula of the form

Hn(f(A)) =
∫
A

(· · · ) dx

for f : Rn → RN Lipschitz and injective and A ⊂ Rn Lebesgue measur-
able.

• A dual formula for Lipschitz maps f : RN → Rn.
These will be called the “area formula” and “coarea formula” respectively. We

will also prove more general results, where for example we drop the asssumption of
injectivity (in the “area” case)

In fact, the integrand on the right-hand side of the area formula will be es-
sentially the “volume element” or “area element” for an n-dimensional manifold
embedded in RN , which may be familiar from some calculus class. So the signifi-
cance of the area formula is

• two ways that we have of measuring the size of smooth n-dimensional
submanifolds – using Hausdorff measure or using calculus – are completely
consistent with each other; and

• this continues to be true when we consider “submanifolds” that are parametrized
by Lipschitz maps rather than smooth maps.

1. linear maps

1.1. some linear algebra.

Definition 1. A linear map O : Rn → RN is orthogonal if

Ox ·Ox̃ = x · x̃ for all x, x̃ ∈ Rn.

We recall that if L : Rn → Rm is linear (for any n,m) then L∗ : Rm → Rn is
the linear map defined by requiring that

Lx · y = x · L∗y for all x ∈ Rn, y ∈ Rm.
If we write L as an m×n matrix with respect to the standard bases of Rn and Rm,
then the matrix corresponsing to L∗ is the transpose of L.

Lemma 1. Let O : Rn → RN be a linear map. The following are equivalent.
(1) O is orthogonal.
(2) O∗ ◦O = Idn (that is, the n× n identity matrix).
(3) O is an isometric embedding of Rn into RN , ie

|Ox−Ox̃|RN = |x− x̃|Rn for all x, x̃ ∈ Rn.
(4) if we write O as a N×n matrix, then the columns of O form an orthonor-

mal set.
(5) If v1, . . . , vn is any orthonornal basis for Rn, then {Ovi}ni=1 is an or-

thonormal subset of RN .
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(6) O can be written in the form

O = Q ◦ iRn→RN

where Rn→RN i : Rn → RN is defined by iRn→RNx = (x, 0, . . . , 0) (with
N − n zeros) and Q : RN → RN is orthogonal, i.e. Q∗ ◦Q = IdN

lem.orth

Exercise 1. Prove some or all of the above Lemma. In the final conclusion, note
that Q is not unique as long as N > n ; that is, there is more than one possible
choice of Q such that O = Q ◦ iRn→RN .

Lemma 2. Let L : Rn → RN be a linear map.
Then there exists S : Rn → Rn, symmetric and nonnegative definite, and

O : Rn → RN orthogonal, such that

L = O ◦ S.

polard

The lemma implies that O = L ◦ S−1 if S is invertible. If S is not invertible,
as the proof will show, then O is in general not unique.

Proof. Step 1. Let A = L∗ ◦ L, Then Ax · x = |Lx|2 for all x ∈ Rn, and
x is clearly symmetric, so there exist nonnegative numbers λ1, . . . λn and vectors
v1, . . . , vn ∈ Rn such that

Avi = λivi, i = 1, . . . , n, and vi · vj = δij .

Thus {vi}ni=1 form an orthonormal basis for Rn.
To define any linear map, it therefore suffices to specify how is acts on v1, . . . , vn.
We define

Svi =
√
λivi

and

Ovi =

{
λ
−1/2
i Lvi if λi 6= 0
wi ∈ RN , to be determined later if λi = 0.

Step 2. We first claim that L = O ◦ S (regardless of the choice of vectors wi
in the definition of O.)

It suffices to check that Lvi = O(Svi) for every i.
This is obvious if λi 6= 0.
If λi = 0, then O(Svi) = 0. In addition, |Lvi|2 = Avi · vi = 0, so Lvi = 0 and

the desired identity holds.
Step 3. We now note that

{Ovi : λi 6= 0}

forms an orthonormal set. Indeed, if λi, λj 6= 0, then

Ovi ·Ovj = (λiλj)−1/2Lvi · Lvj = (λiλj)−1/2Avi · vj =
λi

(λiλj)1/2
vi · vj = δij .

Step 4. For i such that λi = 0, we may thus choose wi in the definition of
O in such a way that {Ovi}ni=1 is an orthonormal set, and then (according to the
previous Lemma) O is an orthogonal map. �
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Lemma 3. If L : RN → Rn is a linear map, then L can be written

L = S ◦ PRN→Rn ◦Q

where Q : RN → RN is orthogonal, PRN→Rn is the canonical projection of RN onto
Rn (that is, P (x1, . . . , xN ) = (x1, . . . , xn) and S : Rn → Rn is symmetric.adjointpd

Proof. By applying Lemma 2 to L∗ : Rn → RN , we find that

L∗ = O ◦ S.

Thus L = S ◦ O∗. Moreover, by the final conclusion of Lemma 1, we know that
O = Q ◦ iRn→RN , so that O∗ = (iRn→RN )∗ ◦Q∗. Thus

L = S ◦ (iRn→RN )∗ ◦Q∗.

Since Q∗ : RN → RN is orthogonal whenever Q is, it suffices to check that
(iRn→RN )∗ = PRN→Rn , and this follows directly from the definitions. �

1.2. area formula for linear maps. We now prove the area and coarea
formulas for linear maps. We will use the notation

for linear L : Rn → RN , JL :=
√

det(L∗ ◦ L).

for linear L : RN → Rn, JL :=
√

det(L ◦ L∗).
(Here “det” means the determinant of the associated matrix.) Thus, in both cases,
JL = detS, where S is the symmetric matrix appearing in the polar decomposition.

The notation JL will be explained a bit later.
First, the area formula:

Proposition 1. Assume that L : Rn → RN is linear, and assume (as always) that
N ≥ n. Then for every measurable A ⊂ Rn,

Hn(L(A)) = JL · Ln(A) =
∫
A

JL dx.

area.linear

Exercise 2. The proposition relies on the fact that if O : Rn → RN is orthogonal
and A is any subset of Rn, then Hn(O(A)) = Hn(A).

Prove that this holds. Note that it is not necessary to assume that A is mea-
surable.ex.orthH

Exercise 3. Here is a two-sentence proof that if A is any Lebesgue measurable
subset of Rn, then O(A) is a Hn measurable subset of RN :

If A is Lebesgue measurable, then it is a countable union of compact sets,
together with a set of Ln measure zero. Thus O(A) is a countable union of compact
sets, together with a set of Hn measure zero (by the previous exercise) and is hence
Hn measurable.

Is there a one-sentence proof? I can’t think of one at the moment, but perhaps
it should exist. (“This is obvious” is not allowed.)ex.meas

Proof of Proposition 1. Fix L linear and A measurable, and write L =
O ◦ S as in Lemma 2. Then by exercise 2 and the fact that Hn = Ln in Rn,

Hn(L(A)) = Hn(O(S(A)) = Hn(S(A)) = Ln(S(A)).
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Since JL = detS, it therefore suffices to show that

cvbasiccvbasic (1) Ln(S(A)) = detS Ln(A).

Let us assume that we already know, from earlier in our lives, that this holds if
S is diagonal (or see Exercise 4 below). In the general case it follows by writing
S = Q∗DQ, where Q : Rn → Rn is orthogonal and D : Rn → Rn is diagonal, and
then using Exercise 2 again (or more simply, in this case, the invariance of Ln with
respect to rotations of Rn). �

Exercise 4. Prove (1) if S is diagonal and nonnegative definite.
hint 1: It is clear if detS = 0.
hint 2: If S is both diagonal and invertible and A is any subset of Rn, then

|S(R)| = detS · |R| for every rectangle R, and

A ⊂ ∪iRi if and only if S(A) ⊂ ∪iS(Ri).

As usual, we follow the convention that a “rectangle” is one whose sides are parallel
to the coordinate axes, or in other words, a product of intervals.ex.cvbasic

1.3. coarea formula for linear maps. Now we prove

Proposition 2. Assume that L : RN → Rn is linear, with N ≥ n. Then for every
measurable A ⊂ RN ,

coarealinearcoarealinear (2) JL · LN (A) =
∫
A

JL dx =
∫

Rn

HN−n(A ∩ L−1{y}) dy

The proof will use

Lemma 4. Assume that f : Rn → Rn is integrable and that S : Rn → Rn is an
invertible linear map with detS > 0.

Then ∫
f(y)Ln(dy) = detS

∫
f ◦ S(z) Ln(dz).

cvlinear

(terse) proof. If f is the characteristic function of a measurable set, then
this just reduces to the N = n case of Proposition 1, or equivalently identity (1),
established above.

It then follows for finite linear combinations of characteristic functions of mea-
surable sets, and then by a standard approximation argument for general integrable
functions.

�

The proposition just follows from Fubini’s Theorem and a change of variables.

Proof of Proposition 2. Let us write L = S ◦ P ◦ Q as in Lemma 3, but
writing P instead of PRN→Rn for simplicity.

Step 1. First, note that JL = 0 if and only if detS = 0, and if this holds,
the image of L is contained in a subspace of Rn of dimension at most n− 1. Thus
A∩L−1{y} is empty at Ln a.e. y. It follows that (2) holds in this case, since both
sides equal zero.

Step 2 We henceforth assume that JL > 0, so that S is invertible.
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We may then use Lemma 4 to change variables in the integral on the right-hand
side of (2). Since detS = JL > 0, this yields

lca.int1lca.int1 (3)
∫

Rn

HN−n(A ∩ L−1{y}) dy = JL

∫
Rn

HN−n(A ∩ L−1{Sz}) dz.

For every y ∈ Rn, since L−1 = Q−1 ◦ P−1 ◦ S−1,

A ∩ L−1{Sz} = A ∩Q−1(P−1{z}) = Q−1
(
Q(A) ∩ P−1{z}

)
.

It follows from the rotational invariance of Hausdorff measure that

HN−n(A ∩ L−1{Sz}) = HN−n
(
Q(A) ∩ P−1{z}

)
for every z ∈ Rn.

Step 3. By Fubini’s Theorem z 7→ HN−n
(
Q(A) ∩ P−1{z}

)
is Ln measurable,

and ∫
Rn

HN−n
(
Q(A) ∩ P−1{z}

)
= LN (Q(A)) = LN (A).

(We have used again the rotational invariance of Lebesgue measure.) Combining
this with (3), we obtain the conclusion of the Proposition. �

2. the area formula

In this section we will state without proof the area formula and some corollaries.
The proof is rather similar in spirit to that of the coarea formula, which we provide
in detail in the next section.

Theorem 1 (Area Formula). Assume that n ≤ N , and let f : Rn → RN be a
Lipschitz map and A ⊂ Rn a Lenesgue measurable set.

Let
Jf(x) :=

√
det(∇f∗(x)∇f(x))

If f is injective, then∫
A

Jf(x)dHn(x) = Hn(f(A)).

More generally, ∫
A

Jf(x)dHn(x) =
∫

RN

H0
(
A ∩ f−1{y}

)
dHn(y)

We will sometimes use the notation

N(f,A, y) := H0
(
A ∩ f−1{y}

)
for the number of point in the intersection of A with the preimage of f . Note that
N(f,A, y) 6= 0 if and only if y ∈ f(A).

As a corollary, we have a change of variables formula. We state it in the general
case (ie, when f is not injective). The formulas become much more transparent if
f is injective.

Theorem 2. Assume that n ≤ N , and let f : Rn → RN be a Lipschitz map and
A ⊂ Rn a Lenesgue measurable set, and defie the Jacobian Jf as above.

If u : Rn → [0,∞] is Lebesgue measurable, then

y ∈ RN 7→
∑

x∈f−1(y)

u(x)
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is Hn measurable, and

∫
Rn

u(x) Jf(x) dHn(x) =
∫

RN

 ∑
x∈f−1(y)

u(x)

 dHn(y).

As a result, if v : RN → [0,∞] and A ⊂ Rn are Hn measurable, then∫
A

v ◦ f(x) Jf(x) dHn(x) =
∫

RN

v(y)N(f,A, y)dHn(y).

Example 1. If n = 1 and f : R → RN is a Lipschitz curve, then Jf(x) = |f ′(x)|
a.e., and the area formula implies that, for an interval I,

H1(f(I)) =
∫
I

|f ′(x)| dx if f is injective,

The case when f is not injective is illustrated by the example f(x) = (cosx, sinx).
If we take I to be the interval [0, 3π], then

3π =
∫
I

|f ′(x)|dx =
∫

R2
N(f, I, y) dH1(y)

where the “multiplicity function N(f, I, y) is

N(f, I, y) =


0 if y is not in the unit circle
1 if y = (y1, y2) belongs to the unit circle, and y2 < 0
2 if y = (y1, y2) belongs to the unit circle, and y2 ≥ 0

Example 2. Given a Lipschitz function f : Rn → R, let us define F (x) = (x, f(x)).
Then F : Rn → Rn+1 is Lipschitz, and one can check that JF (x) = (1 + |∇f |2)1/2.
Thus for any measurable A ⊂ Rn,

Hn({(x, f(x)) : x ∈ A}) =
∫
A

(1 + |∇f |2)1/2dx.

Some version of this formula is probably familiar for smooth functions.area.ex2

We will see more examples later.

Exercise 5. If one actually has to compute a Jacobian Jf(x), by hand, compu-
tations can often be simplified by working in a coordinate system in which ∇f(x)
has a simple form.

Use this observation to check quickly that in the situation described in Example
2, it is in fact the case that JF (x) = (1 + |∇f(x)|2)1/2, as asserted above.

For a bit more of a challenge, assume that f : R3 → R2 is Lipschitz, define
F : R3 → R5 by F (x) = (x, f(x)), and check that

JF (x)2 = 1 + |∇f1|2 + |∇f2|2 + |∇f1 ×∇f2|2

where (f1, f2) are the components of f . This can be done in a few minutes by
choosing a good basis for R3 at the point x.
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3. the coarea formula

Theorem 3 (Coarea formula). Assume that N ≥ n and let f : RN → Rn be a
Lipschitz map.

Define
Jf(x) :=

√
det(∇f(x)∇f∗(x)).

Then for every measurable A ⊂ RN ,

coarea1coarea1 (4)
∫
A

Jf(x) dx =
∫

Rn

HN−n
(
A ∩ f−1{y}

)
dHn(y).

And for every measurable g : RN → [0,∞],

coarea2coarea2 (5)
∫

RN

g(x) Jf(x) dx =
∫

Rn

(∫
f−1{y}

g(x)dHN−n(x)

)
dHn(y).

We will omit the proof of (5). The idea is that (4) shows that it holds if
g is the characteristic function of a measurable set, and it follows for finite linear
combinations of characteristic functions. It is then deduced for arbitrary measurable
g by an approximation argument.

Before giving the full proof, we give an

outline of the proof of the coarea formula. Step 1. f(A) is a mea-
surable subset of Rn. This will be left as an exercise.

Step 2. For any measure µ on Rn and function g : Rn → R, not necessarily
µ-measurable, define

intstarintstar (6)
∫ ∗

Rn

g(x)dµ(y) := inf
{∫

Rn

h(y)dµ(y) : h is µ-meas., g ≤ h µ a.e.
}
.

Then ∫ ∗
Rn

HN−n(A ∩ f−1{y})dHn ≤ ωN−nωn
ωN

(Lip(f))nHN (A).

Step 3. y ∈ Rn 7→ HN−n(A ∩ f−1{y}) is Hn measurable, and thus∫
Rn

HN−n(A ∩ f−1{y})dHn ≤ ωN−nωn
ωN

(Lip(f))nHN (A).

Step 4. reduction to the case when f is C1.

Step 5. proof of the coarea formula if f is C1 and Jf(x) > 0 in A.

Step 6. proof of the coarea formula if f is C1 and Jf(x) = 0 in A. �

Here are some remarks about how this is done, working backwards through the
argument.

• The idea of the final two steps is to approximate f by linear functions,
for which we already know the formula. These rely, among other things,
on the measurability proved in Step 3 (which is not any easier for f ∈ C1

than for Lipschitz f .
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• The case Jf = 0 is a little harder in some ways, and is handled by, in effect,
perturbing f to get a function whose Jacobian is everywhere positive,
using the previous case, and then taking limits as the perturbation tends
to zero.

• The reduction to the case of C1 maps relies on a Lusin-type theorem for
Lipschitz maps, which says that given a Lipschitz map f , one can find
a C1 map that agrees with f (and such that the gradients also agree)
outside a set of arbitrarily small measure.

In order to control the approximations, however, we need the pre-
liminary upper bound of

∫
Rn HN−n(A ∩ f−1{y}) proved in Steps 2 and

3.
• Measurability is proved by first considering the case when A is compact.

For general A, it is proved by an approximation argument. The prelimi-
nary estimate of

∫ ∗
Rn HN−n(A∩ f−1{y}) is needed to control the errors in

the approximation.
• Step 2 is proved by a smart argument that directly uses the definition of

Hausdorff measure. The idea is that a cover of A, suitable for estimating
the HN (A), also yields covers of A∩ f−1{y} that can be used to estimate
HN−n(A ∩ f−1{y}) for every y.

We remark that one often sees arguments with the above structure: in order
to prove some inequality, we first prove a weaker version of it, which can be used
to show, for example, that sets of measure zero are harmless. In fact, we have
already seen this in the proof that Hn = Ln in Rn. Here the crucial point is
that subsets of RN of LN measure zero have a negligible impact on the function
y 7→ HN−n(A ∩ f−1{y}).

With those preliminaries, here is the complete proof:

Proof. Step 1.

Exercise 6. Prove that under the assumptions of the theorem, f(A) is a Ln-
measurable of Rn. (Consult the discussion in exercise 3 above.)

Step 2. We will use the following fact.

Lemma 5. If A ⊂ Rn, then

Hn(A) = HnS(A),

where HsS(A) (“spherical Hausdorff measure”) is defined by

HsS(A) = lim
δ↘0
HsS,δ(A),

with

HsS,δ(A) = inf{
∑

ωs(diamBi)s : A ⊂ ∪iBi, every Bi a ball of diameter less than δ}

Exercise 7. Sketch a proof that the lemma holds. I do not recommend trying to
do this from scratch, so to speak – it’s much easier and more sensible to cite some
theorem that will take care of much of the proof.

It is not in general true for s < n that Hs = HsS in Rn.
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In view of the lemma, for every j > 0 we can find a collection of balls {Bji }∞i=1

such that

A ⊂ ∪iBji ,
∑
i

ωN (diamBji )
N ≤ HN (A) +

1
j
, diamBji <

1
j

for all i.

These balls clearly cover A ∩ f−1{y} for every y, so that for every y,

HN−n1/j (A ∩ f−1{y}) ≤
∞∑
i=1

[
ωN−n(diamBji )

N−n1y∈f(Bj
i )

]
We define gji (y) to be the term in square brackets [· · · ] on the right-hand side above.
Then

HN−n(A ∩ f−1{y}) ≤ lim inf
j→∞

∑
i

gji (y) =: g(y) for every y.

Note also that gji is Hn-measurable for every i, j, so that g = lim infj→∞
∑
i g
j
i is

also Hn-measurable. Thus∫ ∗
Rn

HN−n(A ∩ f−1{y})dHn ≤
∫ ∗

Rn

g(y)dHn(y) =
∫

Rn

g(y) dHn(y).

since it is easy to see that
∫ ∗
gdHn =

∫
g dHn is g is measurable. And by Fatou’s

Lemma, ∫
Rn

g(y) dHn(y) =
∫

Rn

lim inf
j→∞

∑
i

gji dH
n(y)

≤ lim inf
j→∞

∫
Rn

∑
i

gji dH
n(y)

= lim inf
j→∞

∑
i

ωN−n(diamBji )
N−nHn(f(Bji )).

By the isodiamteric inequality,

Hn(f(Bji )) ≤ ωn(diam f(Bji ))
n ≤ ωnLip(f)n diam(Bji )

n.

Inserting this into the above, we find that∫ ∗
Rn

HN−n(A ∩ f−1{y})dHn ≤ lim inf
j→∞

ωN−nωnLip(f)n
∑
i

diam(Bji )
N .

So by the choice of the balls Bji we conclude that

step2step2 (7)
∫ ∗

Rn

HN−n(A ∩ f−1{y})dHn ≤ ωN−nωn
ωN

Lip(f)nHN (A).

Step 3. We now prove that

step3step3 (8) y ∈ Rn 7→ HN−n(A ∩ f−1{y}) is Hn measurable.

Since
∫ ∗
g =

∫ g when g is measurable, this will allow us to replace
∫ ∗ by

∫
in (7)

above.
We consider several cases.
Case 1: A is compact.
Since

HN−n(A ∩ f−1{y}) = lim
δ→0
HN−nδ (A ∩ f−1{y})
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it suffices to prove that y 7→ HN−nδ (A ∩ f−1{y}) is measurable for every δ > 0. To
do this, we will show that for every δ, this function is upper semicontinuous. Thus,
we fix some y ∈ Rn, and some sequence yk → y, and we will show that

step3astep3a (9) lim sup
k→∞

HN−nδ (A ∩ f−1{yk}) ≤ HN−nδ (A ∩ f−1{y}).

To do this, fix ε > 0, and fix open sets Ci such that diamCi < δ for all i,

A ∩ f−1{y} ⊂ ∪Ci, and
∑

ωN−n(diamCi)N−n ≤ HN−nδ (A ∩ f−1{y}) + ε.

Then the compactness of A implies that f−1{yk}∩A ⊂ ∪Ci for all sufficiently large
k. To see this, suppose toward a contradiction that there exists some subsequence
(still labelled (xk)) such that

xk ∈ f−1{yk} ∩A, xk 6∈ ∪iCi
for every k. Since A is compact, we can pass to a further subsequence (which
however we still label (xk)) that converges to a limit x ∈ A. It is then clear that
x ∈ f−1{y} ∩ A, and hence that x ∈ Ci for some i. Thus all sufficiently large xk
also belong to Ci, which is a contradiction.

Since f−1{yk} ∩ A ⊂ ∪Ci for all sufficiently large k, it follows from the choice
of (Ci) that

lim sup
k→∞

HN−nδ

(
A ∩ f−1{yk}

)
≤ HN−n

(
A ∩ f−1{y}

)
+ ε

for every ε > 0, which clearly implies (9).

Exercise 8. In the lecture the claim was made, and then retracted, that y 7→
HN−n(f−1{y} ∩A) is upper semicontinuous if A is compact.

Construct an example to show that this claim is in fact false forHN−n (although
as proved above it is true for HN−nδ for every positive δ.)

That is, explicitly define a function f : RN → Rn for some N > n, a compact
set A ⊂ RN and some y ∈ Rn such that

lim sup
z→y

HN−n(A ∩ f−1{z}) > HN−n(A ∩ f−1{y}).

Recall also that we have drawn a picture to give a argument (in retrospect, a
misleading argument) that the opposite inequality is plausible. Presumably the
example you construct should look rather unlike that picture.

returning to the proof.....

Case 2: A is measurable.
Then there is an increasing sequence K1 ⊂ K2 ⊂ . . . of compact sets such that

A \ ∪∞i=1Ki has Lebesgue measure zero. For simplicity, we will write E := ∪∞i=1Ki.
Then for every y,

step3bstep3b (10) HN−n(A ∩ f−1{y}) = HN−n(E ∩ f−1{y}) +HN−n((A \ E) ∩ f−1{y}).

Since HN−n(E ∩ f−1{y}) = limi→∞HN−n(Ki ∩ f−1{y}), it follows from Case 1
above that it is Borel measurable as a function of y ∈ Rn.

And since Ln(A \ E) = 0, we see from (7) that∫ ∗
Rn

HN−n((A \ E) ∩ f−1{y}) dy = 0
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which implies that HN−n((A \ E) ∩ f−1{y}) = 0 a.e.. Then the measurability of
HN−n(A ∩ f−1{·}) follows from (10).

Step 4. Reduction to the case when f is C1.
Say we are given f : RN → Rn Lipschitz and measurable A ⊂ RN .
For each ε > 0, by a Lusin-type theorem1 for Lipschitz functions, there exists

a C1 function fε and a measurable set Gε such that

f = fε and ∇f = ∇fε in Gε, LN (RN \Gε) < ε.

Let Aε := A ∩ Gε. It is straightforward to verify from the definition of the
Jacobian that 0 ≤ Jf(x) ≤ C Lip(f) for LN a.e. x, for some constant C depending
on N,n and Lip(f), so

reduction1reduction1 (11)
∣∣∣∣∫
A

Jf(x) dx−
∫
Aε

Jf(x) dx
∣∣∣∣ =

∫
A\Aε

Jf(x) dx ≤ εC

And by Step 2,

reduction2reduction2 (12)
∣∣∣∣∫

Rn

HN−n(A ∩ f−1{y}) dy −
∫

Rn

HN−n(Aε ∩ f−1{y}) dy
∣∣∣∣

=
∫

Rn

HN−n((A \Aε) ∩ f−1{y}) dy

≤ CLn(A \Aε) = Cε

for a (possibly different) constant C depending on N,n and Lip(f). If the coarea
formula holds for C1 functions, then∫

Aε

Jf(x) dx =
∫

Rn

HN−n(Aε ∩ f−1{y}) dy

for every ε, and the coarea formula for Lipschitz functions then follows from (11)
and (12).

Step 5. We now prove the coarea formula under the assumptions that f ∈
C1(RN ,Rn) and Jf(x) > 0 in A.

Step 5.1 Fix t > 1. (We will eventually let t↘ 1.)
We claim that for each ξ ∈ A, there exists an open set Dξ, an invertible map

hξ ∈ C1(Dξ,RN ) and a linear map Lξ : RN → Rn such that

step5.1step5.1 (13) f = Lξ ◦ hξ on Dξ, Lip(hξ) ≤ t in Dξ, Lip(h−1
ξ ) ≤ t in h(Dξ).

Thus, on each set, f is the composition of a linear map (to which we can apply the
coarea formula) and an approximate isometry.

To see this, let

I(N,N − n) := {α ∈ ZN−n : 1 ≤ α1 < . . . < αN−n ≤ N},

and for α ∈ I(N,N − n), define pα : RN → RN−n by

pα(x) = (xα1 , . . . , xαN−n
).

1We stated this result, and briefly discussed its proof, some time ago. We recall that the
basic point was to combine Rademacher’s Theorem with Lusin’s Theorem (applied to ∇f) and

the Whitney Extension Theorem.
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Then define Fα : RN → RN by

Fα(x) = (f(x), pα(x)).

For every α, note that f = π ◦ Fα, where π(x1, . . . , xN ) = (x1, . . . , xn).
Fix an arbitrary ξ ∈ A. Since Jf(ξ) > 0, the matrix ∇f(ξ) must have rank n,

and it follows that ∇Fα(ξ) is invertible for some α = α(ξ). For such an index α
(which may not be unique), let hξ := (∇Fα(ξ))−1 ◦Fα, and Lξ = π ◦∇Fα(ξ). Then

Lξ ◦ hξ = π ◦ ∇Fα(ξ) ◦ (∇Fα(ξ))−1 ◦ Fα = π ◦ Fα = f

as desired. Moreover, ∇hξ(ξ) = IdN by construction. So the inverse function theo-
rem implies that hα is invertible in a neighborhood of ξ, and that ∇(h−1

ξ )(h(ξ)) =
IdN . Then a Taylor series expansions of both hξ and h−1

ξ implies that one can find
an open neighborhood Dξ of ξ so small that the remaining conclusions of (13) hold.

Step 5.2.
We next claim that there exist Borel sets Dk, invertible maps hk ∈ C1(Dk,RN ),

and linear maps Lk : RN → Rn such that

step5.2astep5.2a (14) A = tkDk ie, a disjoint union

and
step5.2step5.2 (15)

f = Lk ◦ hk on Dk, Lip(hk) ≤ t in Dk, Lip(h−1
k ) ≤ t in hk(Dk).

To see this, note that the sets {Dξ}ξ∈A found above form an open cover of A, and
hence there is a countable subcover, associated to a countable sequence {ξ1, ξ2, . . .}
of points in A. Then (14) and (15) hold if we define Lk = Lξk

, hk = hξk
, and

D1 := Dξ1 , D2 := Dξ2 \D1, . . . , Dk := Dξk+1 \ (∪kj=1Dj).

Step 5.3. Next we claim that for every k,

step5.3step5.3 (16) t−nJLk ≤ Jf(x) ≤ tnJLk in Dk.

Fix x ∈ Dk, and note that

nabhkbdnabhkbd (17) ‖∇hk(x)‖ = ‖∇h∗k(x)‖ ≤ t in Dk,

where ‖M‖ denotes the operator norm of a matrix M , where we recall

‖M‖ := sup{|Mv| : |v| ≤ 1} = sup{Mv · w : |v| ≤ 1, |w| ≤ 1}
= sup{v ·M∗w : |v| ≤ 1, |w| ≤ 1} = ‖M∗‖.

Estimate (17) follows directly from the fact that Lip(hk) ≤ t and the characteriza-
tion of ∇hk(x)v as a limit of difference quotients.

By definition,

Jf(x)2 = det(∇f(x) ◦ ∇f∗(x)) = det(Lk ◦ ∇hk(x) ◦ ∇h∗k(x) ◦ L∗k).

Clearly ∇hk(x)◦∇h∗k(x) is a symmetric, positive definite N×N matrix. As such it
can be written in the form ∇hk(x)◦∇h∗k(x) = Q∗ ◦D ◦Q, where Q∗ ◦Q = IdN and
D is diagonal, with all eigenvalues of D bounded by t2. (This follows from (17).)

We can also write Lk = S◦O∗, with O : Rn → RN orthogonal and S : Rn → Rn
symmetric. Thus

Jf(x)2 = det(S ◦ Õ∗ ◦D ◦ Õ ◦ S∗), Õ := Q ◦O orthogonal.
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Moreover, O∗ ◦D ◦ Õ is a n× n matrix with all eigenvalues less than t2, so

Jf(x)2 = detS det(O∗ ◦D ◦ Õ) detS∗ = t2n detS2 = t2n(JLk)2.

This proves one of the inequalities in (16). The proof used only the fact that
∇f(x) = Lk ◦ ∇hk(x), and the bounds (17), so the opposite inequality follows
by the same argument from the fact that Lk = ∇f(x) ◦ ∇hk(x)−1, with ∇hk(x)
satisfying (17).

Step 5.4 To complete the proof we will use the following lemma, whose proof
is an easy execise.

Lemma 6. Assume that h : RN → RN is a Lipschitz function. Then for any
A ⊂ RN and any s > 0,

step5.4step5.4 (18) Hs(h(A)) ≤ (Lip(h))sHs(A).

Exercise 9. prove the lemma.

Applying the Lemma to both hk and h−1
k , we deduce that

step5.4astep5.4a (19) t−NHN (hk(Dk)) ≤ HN (Dk) ≤ tNHN (hk(Dk)).

Moreover, since hk(Dk ∩f−1{y}) = hk(Dk)∩L−1
k {y}, the Lemma also implies that

step5.4bstep5.4b (20) tn−NHN−n(hk(Dk) ∩ L−1
k {y}) ≤ H

N−n(Dk ∩ f−1{y})
≤ tN−nHN−n(hk(Dk) ∩ L−1

k {y})

Step 5.5. We now use the above information to compute:∫
Dk

Jf(x) dHN (x)
(16)

≤ tn JLk HN (Dk)

(19)

≤ tn+N JLk HN (hk(Dk))
(2)
= tn+N

∫
Rn

HN−n(hk(Dk) ∩ L−1
k {y}) dH

n(y)

(20)

≤ t2N
∫

Rn

HN−n(Dk ∩ f−1{y}) dHn(y).

And using the opposite inequalities,∫
Dk

Jf(x) dHN (x) ≥ tn JLk HN (Dk)

≥ tn+N JLk HN (hk(Dk))

= tn+N

∫
Rn

HN−n(hk(Dk) ∩ L−1
k {y}) dH

n(y)

≥ t2N
∫

Rn

HN−n(Dk ∩ f−1{y}) dHn(y).

We sum over k to find that

t−2N

∫
A

Jf(x) dHN (x) ≤
∫

Rn

HN−n(A∩f−1{y}) dHn(y) ≤ t2N
∫
A

Jf(x) dHN (x).

Finally, we obtain the coarea formula (in Jf > 0 in A) by letting t↘ 1.
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Step 6. Finally, assume that f is C1 and Jf(x) = 0 in A, and that Ln(A) <∞,
and we prove the coarea formula. Clearly, we have to show that the right-hand side
of the formula vanishes.

This will complete the proof, since for f ∈ C1(RN ,Rn) and measurable A ⊂
RN , we can write A as the disjoint union of {x ∈ A : Jf(x) > 0} and sets of finite
measure on which Jf = 0.

We will argue by reducing this case to the previous case. To do this, fix ε > 0
and define g : RN × Rn → Rn and π̂ : RN × Rn → Rn by

g(x, y) = f(x) + εy, π̂(x, y) = y.

Then one computes that

∇g(x, y) = (∇f(x), ε Idn), ∇g(x, y)∇∗g(x, y) = ∇f(x)∇∗f(x) + Idn.

By writing ∇g∇∗g in a basis in which ∇f∇∗f is diagonal (with at least one zero
eigenvalue and all eigenvalues bounded by Lip(f)2) we see that

εn ≤ Jg(x, y) ≤ Cε, for C = Lip(f)n−1

for all x ∈ A and y ∈ Rn. (Here and below we are assuming that ε � 1, so that
εn � ε.)

Note that for every z ∈ Rn, a simple change of variables implies that∫
Rn

HN−n(A ∩ f−1{y})dHn(y) =
∫

Rn

HN−n(A ∩ f−1{y − εz})dHn(y).

If we fix some measurable E ⊂ Rn with Ln(E) = 1, it follows that∫
Rn

HN−n(A ∩ f−1{y})dHn(y)

=
∫
E

(∫
Rn

HN−n(A ∩ f−1{y − εz})dHn(y)
)
dHn(z).

Now let A := A × E ⊂ RN+n. Straightforward manipulations of the definitions
show that

A ∩ g−1{y} ∩ π̂−1{z} =

{
(A ∩ f−1{y + εz})× {z} if w ∈ E
∅ if not.

So
HN−n(A ∩ f−1{y − εz})1w∈E = HN−n(A ∩ g−1{y} ∩ π̂−1{z}).

Thus∫
E

(∫
Rn

HN−n(A ∩ f−1{y − εz})dHn(y)
)
dHn(z)

=
∫

Rn

∫
Rn

HN−n(A ∩ g−1{y} ∩ π̂−1{z})dHn(z) dHn(y)

We will argue below that for every Borel B ⊂ RN+n (and in particular for B =
A ∩ g−1{y})

Fubini?Fubini? (21)
∫

Rn

HN−n(B ∩ π̂−1{z})dHn(z) ≤ CHN (B)
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for some constant C. We accept this for the time being and continue. Since Jg > 0
everywhere, we can combine the previous few statements and apply the previous
case of the coarea formula to conclude that∫

Rn

HN−n(A ∩ f−1{y}) dHn(y) ≤
∫

Rn

HN (A ∩ g−1{y})dHn(y)

=
∫
A

Jg dHN+n

≤ εCHN+n(A) = εCHN (A).

Since ε is arbitrary, we conclude that∫
Rn

HN−n(A ∩ f−1{y}) dHn(y) = 0 =
∫
A

Jf(x) dHN (x).

This concludes the proof, modulo estimate (21) above. This can be established by
the argument that we used to prove (7) above. This yields the inequality

step6zstep6z (22)
∫ ∗

Rn

HN−n(B ∩ π−1{z}) dHn(z) ≤ ωN−nωn
ωN

Lip(f)nHN (B),

which is the same formula as above, with the difference that this version concerns
an N -dimesional subset of RN+n, whereas in the previous version we had an N -
dimensional subset of RN .

Exercise 10. Check that the proof of (7) indeed shows that (22) holds.

In view of the fact that
∫ ∗ rather than

∫
appears in (22), to be really correct

we should strictly replace
∫

by
∫ ∗ in several places at the very end of the proof.

�

Exercise 11. The book Cartesian Currents in the Calculus of Variations, vol. 1
by Giaquinta, Modica and Souček states (in Step 6 of its discussion of the coarea
formula, in Section 2.1.3) that for every Borel B ⊂ RN+n (and in particular for
B = A ∩ g−1{y})

Fubini-wrongFubini-wrong (23)
∫

Rn

HN−n(B ∩ π̂−1{z})dHn(z) = HN (B)

by Fubini’s Theorem, where B is a subset of RN+n.
Given an example to show that (23) is not always correct.

Giaquinta et al deduce from the incorrect statement (23) that, using notation
from Step 6 of the above proof,∫

Rn

HN−n(A ∩ f−1{y}) dHn(y) =
∫
A

Jg dHN+n.

Since the right-hand side of this alleged identity depends on ε — recalling the way
in which g depends on ε, we see that it lies in the interval [εnHN (A), CεHN (A)]
— and the left-hand side does not, this is clearly false.

Now we state some consequences of the coarea formula.

Corollary 1. Assume that g : RN → R is integrable. Then∫
RN

g(x) dHN (x) =
∫ ∞

0

(∫
{x∈RN :|x|=r}

g dHN−1

)
dr.
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Proof. This is a special case of the change-of-variables formula (5), with
f(x) = |x|. For this choice of f one can check that Jf(x) = 1 almost every-
where. �

We remark that in general, the definition more or less immediately implies that

Jf(x) = |∇f(x)| for f : RN → R (ie, in the case when n = 1),

Thus for a Lipchitz function,∫
A

|∇f | dHN =
∫ ∞
−∞
HN−1({x ∈ A : f(x) = y}) dy.

Another corollary is

Corollary 2 (“C1 Sard-type Theorem”). Suppose f : RN → Rn is C1 and A ⊂ RN
is open.

Then for Hn a.e. y ∈ Rn, f−1{y} is the union of a (N − n)-dimensional C1

submanifold of RN and a set of HN−n measure zero. Precisely, if we define

C := {x ∈ A : Jf(x) = 0} = {x ∈ A : rank(∇f(x)) < n}
then HN−n(f−1{y} ∩C) = 0 for a.e. y, and f−1{y} \C is a (N − n)-dimensional
C1 submanifold of RN .

Recall that Sard’s Theorem states that if f is CN−n+1, then f−1{y} ∩ C is in
fact empty for Hn a.e. y. Here we get weaker, but still nontrivial, conclusions with
weaker hypotheses.

Proof. The fact that HN−n(f−1{y} ∩ C) = 0 for a.e. y follows directly from
the coarea formula:∫

Rn

HN−n(f−1{y} ∩ C) dHn(y) =
∫
C

Jf(x) dHN (x) = 0.

The fact that f−1{y} \ C is a C1 submanifold is a consequence of the Implicit
Function Theorem. �
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