
Mat 1501 lecture notes October 28 - November 1

1. last remarks about k-vectors and covectors

A unit simple k-vector is a simple k-vector v such that |v| = 1.
There is a one-to-one correspondence between unit simple k-vectors and ori-

ented k-planes in RN .
To understand this, we first have to remember what we mean by an oriented

k-plane.
Suppose that P is any k-plane in RN (or in any vector space) and that {vi}ki=1

and {wi}ki=1 are any two ordered bases for P .
Then there exists a k × k matrix (aij) such that wi =

∑
j a

j
ivj .

The two bases are said to have the same orientation if det(aji ) > 0 and the
opposite orientation otherwise.

Motivated by this, we say that an oriented k-plane is an equivalence class of
k-tuples of linearly indepdent vectors, where

{vi}ki=1 ∼ {wi}ki=1 if there exists a k × k matrix aji such that

wi =
∑
j a

j
ivj for all i, and det(aji ) > 0.

The correspondence between unit simple k-vectors and oriented k-planes is sum-
marized in the following fact:

(1) {vi}ki=1 and {wi}ki=1 represent the same oriented k-plane

⇐⇒ v1 ∧ . . . ∧ vk
|v1 ∧ . . . ∧ vk|

=
w1 ∧ . . . ∧ wk
|w1 ∧ . . . ∧ wk|

In fact, by using the alternating property of the exterior product, one can verify
that if wi =

∑
j a

j
ivj for all i, then

(2) w1 ∧ . . . ∧ wk = det(aji ) v1 ∧ . . . ∧ vk.

which makes the implication ⇒ in (1) above straightforward. To prove ⇐, one
must first check that if {vi}ki=1 and {wi}ki=1 are k-tuples of linearly independent
vectors and

(3) w1 ∧ . . . ∧ wk = c v1 ∧ . . . ∧ vk

for some c ∈ R (necessarily nonzero) then {vi} and {wi} span the same k-plane, or
equivalently, there exists some invertible k× k matrix (aji ) such that wi =

∑
j a

j
ivj

for all i. To prove this, we can extend {v1, . . . , vk} to a basis {v1, . . . , vN} for
RN . If we write w1, . . . , wk in terms of this basis, then (3) implies that in fact
only v1, . . . , vk will appear in the expression for each wi, which shows that indeed
we can write wi =

∑k
j=1 a

j
ivj for all i. Since span{wi}ki=1 is k-dimensional by

assumption, it is clear that (aij) is invertible. Then it is easy to complete the proof
of the implication ⇐ in (1) by again appealing to (2).

It is often convenient to choose an orthonormal basis for an oriented k-plane.
Such bases will often be denoted τ1, . . . , τk, and in terms of such a basis, the corre-
sponding k-vector is of course τ1 ∧ . . . ∧ τk.
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2. differential forms

For k ≥ 1, a k-form ω on RN is a function defined on RN such that ω(x) ∈
Λk(TxRN ) for every x.

We treat the case k = 0 differently: a 0-form is just a real-valued function on
RN . (Or for a definition that is more consistent with the k ≥ 1 definition, we can
insist on the convention that Λ0V and Λ0V are 1-dimensional vector spaces for
every V . We can then view a 0-form as a function f such that f(x) ∈ Λ0(TxRN )
for every x, and we can identify this with a real-valued function.)

We will often, but not always1, identify TxRN (for arbitrary x ∈ RN ) with RN ,
in the usual way, and then we can view a k-form as a function from RN into ΛkRN .

Example 1. If f is a smooth function = 0-form, then df is the 1-form defined by

〈df(x), v〉 = limh→0
1
h [f(x+ hv)− f(x)], for v ∈ TxRN ∼= RN .

In particular, for every i = 1, . . . , N , we will write dxi to denote the 1-forms defined
by

〈dxi, v〉 = vi for v = (v1, . . . , vN ) ∈ RN .
Here we are abusing notation in a standard way by

• writing xi as an of abbreviation for the function πi : RN → R defined by
πi(x1, . . . , xN ) = xi, and

• not explicitly recording the dependence of dxi on x, which however is kind
of trivial (once we identify TxRN with RN for all x.)

Thus {dx1, . . . , dxN} (evaluated at some point x) is the basis for Λ1RN
dual to the standard basis {e1, . . . , eN} (at the same point x), that ie, the
analog of the standard dual basus ωi from above.

If we introduce the notation

dxα = dxα1 ∧ . . . ∧ dxαk for α ∈ I(N, k)

(where the exterior product in Λ∗TxRN ∼= Λ∗RN is defined exactly as above) then
it follows that every k-form can be written

ω =
∑

α∈I(N,k)

aαdx
α

for certain functions aα : RN → R.
In particular, we have

df =
N∑
i=1

∂f

∂xi
dxi.

We say that a k-form is C∞ (C1, C2, etc) if aα is C∞ (C1, C2 etc) for every α,
in the above representation. When we say “smooth”, it generally will mean C∞.

If U is an open subset of RN then we will use the notation

Ek(U) := the set of smooth k-forms on U .

It is clear that Ek(U) is a vector space.

1we may allow ourselves to switch back and forth at will between two viewpoints, either
identifying TxRN with RN or not, as the situation requires. I hope that this will not cause any

confusion.
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2.1. some notational conventions.
• co-vectors such as the basis vectors ωα will always have superscripts, and
k-vectors such as eα will always have subscripts.

• as a result, k-forms (ie, functions taking values in spaces of covectors)
such as dxα will always have superscripts.

• One can also define k-vector-fields to be functions taking values in the
space ΛkTN , or (equivalently, up to the identification of TxRN with RN
for x ∈ RN ) functions whose value at x is an element of Λk(TxRN ). I
don’t know if we will write these down much, but if we do, they will have
subscripts.

• if we write a k-covector η in terms of the basis {ωα}α∈I(N,k), then the
component functions will always have subscripts. That is, we will always
write

η =
∑

α∈I(N,k)

aαω
α

with subscripts on the numbers aα.
This is rather natural, if one thinks about it correctly, because as

noted previously, we can find the coefficients aα by letting ω act on a
suitable k-vector:

aα = 〈η, eα〉.
So one can view aα as inheriting the subscript α from eα.

• similarly, we write a k-vector v ∈ ΛkRN in the form

v =
∑

α∈I(N,k)

aαeα

with superscripts on the coefficients.
• And similarly for k-forms and k-vector-fields. For example, a k-form is

always written
ω =

∑
α∈I(N,k)

aαdx
α.

where the coefficient functions have subscripts.
These conventions are the reason that, even if a point x ∈ RN is written

(x1, . . . , xN ), we write dxi instead of dxi.

2.2. pullback. Suppose that f : RN → RM is a smooth map.
Given a vector v ∈ TxRN , we will write f∗v to denote the vector in Tf(x)RM

defined by
f∗v = ∇f(x)(v).

Similarly, for a multivector v = v1 ∧ . . . vk ∈ ΛkTxRN , we will write f∗v to
denote the element of ΛkTf(x)RM defined by

f∗v = f∗v1 ∧ . . . f∗vk.

Next, given a k-form ω on RM , we write f∗ω to denote the k-form on RN defined
by

(4) 〈f∗ω(x), v〉 = 〈ω(f(x)), f∗v〉 for v ∈ ΛkTxRN ,

We call f∗ω the pullback of ω by f .
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It is straightforward to check that if y1, . . . , yM denote coordinates on RM , and
if

ω(y) =
∑

α∈I(M,k)

aα(y) dyα

and if f = (f1, . . . , fM ), then

f∗ω(x) =
∑

α∈I(M,k)

aα(f(x)) dfα1 ∧ . . . ∧ dfαk

This can be rewritten very explicitly as shown below, although the simpler expres-
sion given above is often preferable.

f∗ω(x) =
∑

α∈I(M,k)

aα(f(x))(
N∑
i1=1

∂fα1

∂xi1
dxi1) ∧ · · · ∧ (

N∑
ik=1

∂fαk

∂xik
∧ dxik)

=
∑

α∈I(M,k)

N∑
i1=1

· · ·
N∑
ik=1

aα(f(x))
∂fα1

∂xi1
· · · ∂f

αk

∂xik
dxi1 ∧ . . . ∧ dxik

=
∑

α∈I(M,k)

∑
β∈I(M,k)

aα(f(x)) det(
∂fαi

∂xβj

(x)) dxβ .

One can also check that

f∗(aω + bη) = af∗ω + bf∗η

and
f∗(ω ∧ η) = f∗ω ∧ f∗η.

2.3. exterior derivative. Assume that ω =
∑
α∈I(N,k) aαdx

α is a smooth
k-form on RN .

Then we define the exterior derivative dω of ω to be the (k + 1)-form

dω =
∑

α∈I(N,k)

N∑
i=1

∂aα
∂xi

dxi ∧ dxα

Note that this definition is consistent with the notation df for a 1-form introduced
above, when f is a 0-form.

Some basic properties of the exterior derivative are:

d(dω) = 0 for all k-forms ω, or more briefly, d2 = 0.

d(aω + bη) = adω + bdη.

if ω ∈ Ek(U) and η ∈ E`(U), then d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.
Finally, we remark that exterior differentiation commutes with pullback:

df∗ω = f∗dω for every ω ∈ Ek(U).

All the above assertions are straightforward to check.
We remark that although our definition if the exterior derivative apparently de-

pends on our choice of coordinates, in fact one can give a coordinate-free definition,
and from this it is clear that the operation of exterior differentiation is independent
of the choice of coordinates.
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2.4. integral of a k-form over a k-dmensional submanifold. An k-
dimensional oriented submanifold of RN is a submanifold M together with a map
τ : M → ΛkRN such that τ(x) is a unit simple vector orienting TxM , for every
x ∈ R.

If ω is a k-form, then we define

(5)
∫
M

ω :=
∫
M

〈ω(x), τ(x)〉dHk(x).

This agrees with the standard differential geometry definition of
∫
M
ω, which we

recall goes as follows: First, using partitions of unity, we see that it suffices to define∫
M
ω when ω is supported in a single coordinate chart. Thus, we may assume that

supp(ω) ∩ M ⊂ f(V ), where V is an open subset of Rk and f : V → M ⊂
RN is a map (at least C1) such that ∇f(x) has rank k for all x, and moreover
{f∗e1, . . . , f∗ek} is correctly oriented, so that

f∗e1 ∧ . . . ∧ f∗ek
|f∗e1 ∧ . . . ∧ f∗ek|

(x) = τ(f(x))

Recalling Lemma 7 from the previous set of notes, which characterizes the norm of
a simple k-vector as a Jacobian, this in fact can be rewritten

(6) f∗e1 ∧ . . . ∧ f∗ek(x) = τ(f(x)) Jf(x).

For such ω and f the classical differential geometry definition is∫
M

ω =
∫
f(V )

ω =:
∫
V

f∗ω.

For the right-hand side, recall from the definition of the integral of a k-form over
an open subset of Rk that∫

V

f∗ω :=
∫
V

〈f∗ω, e1 ∧ . . . ∧ ek〉dHk.

Thus ∫
V

f∗ω =
∫
V

〈f∗ω(x), e1 ∧ . . . ∧ ek〉dHk

(4)
=

∫
V

〈ω(f(x)), f∗e1 ∧ . . . ∧ f∗ek〉dHk

(6)
=

∫
V

〈ω(f(x)), τ(f(x))〉 Jf(x) dHk

=
∫
f(V )

〈ω(y), τ(y)〉 dHk(y)

by the area formula. Thus the two definitions are consistent. We will take (5) as
our basic definition, however, since it is easier to extend to integraton over less
smooth sets.

3. currents: basics

3.1. definition of a current. If U is an open subset of RN , we define

Dk(U) := {ω ∈ Ek(U) : ω has compact support in U}.
We define a topology on Dk(U) by specifying that ω` → ω if

there exists a compact K ⊂ U such that supp(ω`) ⊂ K for all `,
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and

(
∂

∂x1
)j1 · · · ( ∂

∂xN
)jNω`α → (

∂

∂x1
)j1 · · · ( ∂

∂xN
)jNωα

as `→∞, uniformly for every α ∈ I(N, k) and all nonnegative integers j1, . . . , jN .

Definition 1. A k-dimensional current on U is a continuous linear functional on
Dk(U)

The set of all such currents is denoted Dk(U).

IfM is an oriented k-dimensional submanifold of RN , then there is an associated
k-current JMK ∈ Dk(RN ), defined by

JMK(ω) =
∫
M

ω.

All the definitions that follow are designed to reduce to classical definitions when
considering currents of the form JMK above.

3.2. the boundary of a current. We next define the boundary of a current
T ∈ Dk(U) to be the current ∂T ∈ Dk−1(U) defined by

∂T (ω) = T (dω) for ω ∈ Dk−1(U)

if k ≥ 1. The standard convention is that ∂T = 0 for all T ∈ D0(U).
This is motivated by Stokes’ Theorem, which (together with the above defini-

tions) implies that if M is a oriented C1 manifold-with-boundary, then

(7) ∂JMK = J∂MK.

It is clear that

(8) ∂2 = 0, or more explicitly, ∂(∂T ) = 0 for all T ∈ Dk(U).

Exercise 1. To familiarize yourself with the definitions, let J(0, 1)K denote the 1-
current associated to the unit interval (0, 1) ⊂ R (with the standard orientation),
and for every p ∈ R let JpK denote the 0-current associated to the 0-dimensional
manifold {p} (again, with the standard orientation.)

Verify, by writing out explicitly what everything means, that

∂(J(0, 1)K) = J1K− J0K.

This is of course a special case of (7).

3.3. the mass of a current. Next, we define the mass of a current by

M(T ) := sup{T (ω) : ω ∈ Dk(U), ‖ω‖ ≤ 1}

where
‖ω‖ := sup

x∈U
|ω(x)| := sup

x∈U
(ω(x), ω(x))1/2.

More generally, if W is an open subset of U , then we define

MW (T ) := sup{T (ω) : ω ∈ Dk(U), ‖ω‖ ≤ 1, supp(ω) ⊂W}.

This definition has the property that if M is a smooth submanifold of U then

(9) MW (JMK) = Hk(M ∩W ),
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Remark 1. One should be aware that a slightly different definition of mass is often
used. Let us temporarily call this M̃. Then M̃ is, roughly speaking, the largest
possible notion of mass for which (9) still holds; this is sometimes a useful property.

M̃ and M are equivalent in the sense that there exists some constant C such
that M̃(T ) ≤M(T ) ≤ CM̃(T ) for all T ∈ Dk(U).

Due to (9), M̃(JMK) = M(JMK) whenever M is smooth. In fact the difference
between M̃ and M only becomes apparent when one considers currents that fail to
be rectifiable, in language we will introduce below.

A current is T said to have locally finite mass if MW (T ) < ∞ for every open
W such that W̄ is a compact subset of U .

Proposition 1. Assume that T is a k-current with locally finite mass in an open set
U ⊂ RN . Then there is a Radon measure µT on U and a µT -measurable function
~T : U → Λk(RN ) such that

(10) T (ω) =
∫
U

〈ω(x), ~T (x)〉 dµT (x) for all ω ∈ Dk(U).

In addition,
|~T (x)| = 1, µT almost everywhere

and
MW (T ) = µT (W ) whenever W is open.

Proof. This is a direct consequence of our theorem about representation of
linear functionals, once we note that any current T with locally finite mass de-
termines a bounded linear functional on Cc(U ; ΛkRN ). This is not hard to see,
because

• At the outset, T is a linear functional defined on Dk(U), which is a dense
subset of Cc(U ; ΛkRN ),

• The hypothesis of finite mass says exactly that T , as defined on Dk(U), is
continuous with respect to the topology of Cc(U ; ΛkRN ). Indeed, assume
that ω` is a sequence in Dk(U) such that ω` → ω in the Cc(U ; ΛkRN )
topology. This means that there is a compact set K such that supp(ω`) ⊂
K for all `, and in addition ‖ω`−ω‖ → 0. Then by the definition of mass,

|T (ω`)− T (ω)| = |T (ω` − ω)| ≤ ‖ω` − ω‖MK(T ) → 0 as `→∞.

• Since T is a linear functional defined on a dense subset of Cc(U ; ΛkRN )
and is continuous with respect to the Cc(U ; ΛkRN ) topology, it has a
unique extension to a continuous linear functional Cc(U ; ΛkRN ) → R,
which we still denote T .

Applying the representation theorem to the linear functional T : Cc(U ; ΛkRN )→ R
directly yields the conclusions of the proposition. �

It follows from the Proposition, and the fact that 0-forms are just functions,
that a 0-current with locally finite mass can be identified with a signed Radon
measure.

Note also that if µ is any Radon measure on U ⊂ RN and ~T : U → ΛkRN
is any µ-measurable function, then the map T : Dk(U) → R defined by (10) is a
k-current.
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A current is said to be representable by integration if it admits a representation
of the form (10). The above discussion may be summarized by saying that a current
is represntable by integration if and only if it has locally finite mass.

Example 2. Assume that
• M ⊂ RN is a locally k-rectifiable set,
• θ : M → N is a locally Hn M integrable function
• τ : M → ΛkRN is a measurable function such that for a.e. x, τ(x) orients
TxM , by which we mean that τ(x) can be written in the form τ1∧ . . .∧τk,
where {τi}ki=1 is an orthonormal basis for the approximate tangent space
TxM .

Then there is an associated current, defined by

T (ω) :=
∫
M

〈ω, τ〉θ dHk.

Currents of this form are called integer multiplicity rectifiable currents.

Example 3. As a special case of the above, note that a locally 0-rectifiable set
is just a locally finite set of points in RN , say {pi}. Locally finite means that
#{i : |pi| < R} <∞ for every R > 0.

Thus a integer multiplicity rectifiable 0-current in RN is one of the form

T (f) =
∑
i

τiθif(pi) f ∈ D0(RN ) ∼= C∞c (RN ),

where τi ∈ {±1} and θi ∈ N. Equivalently, such a current can be written in the
form

T =
∑
i

aiJpiK for ai := τiθi ∈ Z.

Example 4. Assume now that
• M ⊂ RN is a countably k-rectifiable set,
• θ : RN → [0,∞) is locally Hn-integrable and M = {x ∈ RN : θ(x) > 0},
• τ : M → ΛkRN is a measurable function such that for a.e. x, τ(x) orients
TxM (the approximate tangent plane at x, with multiplicity θ(x), of the
measure Hn θ).

Then there is an associated current, defined by

T (ω) :=
∫
M

〈ω, τ〉θ dHk.

Currents of this form are called rectifiable currents.

3.4. support and push-forward of a current. The support of a current
T ∈ Dk(U) is defined as

supp(T ) := {x ∈ U : for every neighborhood O of x,

there exists ω ∈ Dk(U) such that supp(ω) ⊂ O and T (ω) 6= 0.}.

Thus, T (ω) = 0 for any k-form ω that vanishes in supp(T ).

Assume that T ∈ Dk(U) and that f : U → V is a smooth map, for U ⊂ RN
and V ⊂ RM open.
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Assume also that f is proper, by which we mean that f−1(K) is a compact
subset of U whenever K is a compact subset of V . Then we define f∗T ∈ Dk(U)
by

f∗T (ω) = T (f∗ω) for all ω ∈ Dk(V ).

In fact, one can extend the definition to the case when the restriction of f to
supp(T ) is proper, or equivalently, f−1(K)∩ supp(T ) is compact for every compact
K ⊂ V . (For example, a situation that arises rather often is when T has compact
support and f is a projection of RN onto a lower-dimensional space, which is not
a proper map.) In this situation we define

(11) f∗T (ω) = T (χf∗ω) for all ω ∈ Dk(V ) with supp(ω) ⊂ K.

where χ is a compactly supported function such that χ = 1 in a neighborhood of
f−1(K) ∩ supp(T ) .

Exercise 2. Verify that (11) is independent of the choice of χ, so that f∗T is in
fact well-defined.

Warning! We will sometimes write “T (f∗ω)” as an abbreviation for “T (χf∗ω),
where χ is a compactly supported function etc etc....”

It is easy to verify that

(12) ∂f∗T = f∗∂T.

This is dual to the fact that exterior differentiation commutes with pullback.
The definition of push-forward is arranged so that if M is a smooth submanifold

and f is a diffeomorphism, say, then

f∗JMK = Jf(M)K.

3.5. weak convergence of currents. A sequence (T`) ⊂ Dk(U) is said to
converge weakly if

T`(ω)→ T (ω) for all ω ∈ Dk(U).

when this holds we write
T` ⇀ T as `→∞.

Exercise 3. Prove that if (T`) is a sequence of currents such that

sup
`

MW (T`) <∞ for every bounded open W

and if T` ⇀ T as `→∞, then T has locally finite mass in U , and

(13) MW (T ) ≤ lim inf
`→∞

MW (T`).

Exercise 4. Give an example of a sequence (T`) of k-currents with locally finite
mass in U ⊂ RN (you get to choose k and N), and a limiting current T such that

T` ⇀ T as `→∞, and MW (T ) < lim inf
`→∞

MW (T`).

The following useful result is more or less a direct consequence of our earlier
criteria for weak compactness of sequences of measures.
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Proposition 2. Assume that (T`) is a sequence of currents with locally finite mass
in an open set U ⊂ RN , and that for every compact K ⊂ U , there exists some CK
such that

sup
`

MK(T`) ≤ CK .

Then there is a subsequence (T`′) and a current T such that

T`′ ⇀ T as `′ →∞.

Using the results we have proved so far, we can deduce a very weak existence
theorem for currents of minimal mass spanning a given boundary.

Proposition 3. Assume that T ∈ Dk(RN ) and that there exists some S ∈ Dk+1(RN )
such that

T = ∂R, M(R) <∞
Then there exists a current S ∈ Dk+1(RN ) such that

T = ∂S, M(S) = inf{M(R) : R ∈ Dk+1(U), ∂R = T}.

The reason this is a very weak theorem is that it doesn’t tell us anything that
would make us confident that the minimizing current S has any sort of reasonable
geometric structure at all – it is merely a k+1-current with finite mass and boundary
equal to a given k-current T .

Proof. Let Sk be a sequence of currents such that

∂Sk = T, M(Sk)→ inf{M(R) : R ∈ Dk+1(U), ∂R = T} <∞

as k →∞.
Then it follows from Proposition 2 that there is a subsequence k′ that converges

weakly to a limit S.
By definition of weak convergence,

∂S(ω) = S(dω) = lim
k′
Sk′(dω) = lim

k′
∂Sk′(ω) = lim

k′
T (ω) = T (ω)

for all ω ∈ Dk(RN ). Thus ∂S = T .
Also, it follows from (13) that

M(S) ≤ lim inf
k′

M(Sk′) = inf{M(R) : R ∈ Dk+1(U), ∂R = T}.

On the other hand, since ∂S = T , it is clear that

M(S) ≥ inf{M(R) : R ∈ Dk+1(U), ∂R = T}.

�

One of our main goals is to prove a similar but stronger theorem, that will
assert the existence of a mass-minimizer in the set of integer multiplicity rectifiable
currents that span a given boundary. Since these currents have a decent, if not
exactly good, geometric structure, such a theorem will be a much more satisfactory
result about existence of minimal surfaces. (It is also a starting-point for further
results which show that a minimizing current is a smooth submanifold away from
a closed, lower-dimensional set.)
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The proof, when we eventually give it, will follow exactly the same easy argu-
ment as the proof of Proposition 3. But to give this easy argument, we will need to
an analog of Proposition 2 for integer multiplicity rectifiable currents. So we will
devote a lot of effort to such a compactness theorem.
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