Mat 1501 lecture notes November 4-8

1. the flat norm

The flat norm of a current $T \in \mathcal{D}_k(\mathbb{R}^N)$, denoted $\mathbf{F}(T)$, is defined by

(1)
$$\mathbf{F}(T) := \sup\{T(\omega) : \omega \in \mathcal{D}^k(\mathbb{R}^N), \max\{\|\omega\|, \|d\omega\|\} \le 1\}$$

where we recall that $\|\omega\| := \sup(\omega(x), \omega(x))^{1/2}$.

Remark 1. One can erify that the flat norm is in fact a norm on the space

$${T \in \mathcal{D}_k(\mathbb{R}^N) : \mathbf{F}(T) < \infty}$$

The flat norm admits a geometric interpretation:

Lemma 1. If $T \in \mathcal{D}_k(\mathbb{R}^N)$, then (2) $\mathbf{F}(T) = \inf\{\mathbf{M}(T - \partial S) + \mathbf{M}(S) : S \in \mathcal{D}_{k+1}(\mathbb{R}^N)\}.$

The proof involves a clever use of the Hahn-Banach Theorem.

PROOF. First, if $\omega \in \mathcal{D}^k(\mathbb{R}^N)$ is a k-form such that $\max\{\|\omega\|, \|d\omega\|\} \leq 1$, then for any $S \in \mathcal{D}_{k+1}(\mathbb{R}^N)$,

$$T(\omega) = (T - \partial S)(\omega) + \partial S(\omega) = (T - \partial S)(\omega) + S(d\omega) \le \mathbf{M}(T - \partial S) + \mathbf{M}(S).$$

So we only have to find some S such that equality holds.

To do this, we introduce the space

$$X := \mathcal{D}^k(\mathbb{R}^N) \times \mathcal{D}^{k+1}(\mathbb{R}^N),$$

equipped with the norm

$$\|(\omega, \eta)\|_X := \max\{\|\omega\|, \|\eta\|\}.$$

We also define the linear subspace

$$Y := \{(\omega, \eta) \in X : \eta = d\omega\} = \{(\omega, d\omega) : \omega \in \mathcal{D}^k(\mathbb{R}^N)\}.$$

equipped with the norm inherited from X, and a linear functional $L: Y \to \mathbb{R}$:

$$L(\omega, d\omega) = T(\omega).$$

Then the operator norm of L is

$$|L||_{Y \to \mathbb{R}} = \sup\{L(\omega, d\omega) : ||(\omega, d\omega)||_Y \le 1\}$$

= sup{T(\omega) : max{||\omega|, ||d\omega|} = **F**(T).

By the Hahn-Banach Theorem, there exists a linear functional $\overline{L} : X \to \mathbb{R}$ such that \overline{L} agrees with L in Y, and whose norm is no larger than that of L:

$$\|\bar{L}\|_{X\to\mathbb{R}} = \|L\|_{Y\to\mathbb{R}}.$$

Now we define

$$R(\omega) = \bar{L}(\omega, 0) \quad \text{for } \omega \in \mathcal{D}^k(\mathbb{R}^N),$$
$$S(\eta) = \bar{L}(0, \eta) \quad \text{for } \eta \in \mathcal{D}^{k+1}(\mathbb{R}^N).$$

Then R is a k-current and S is a k + 1-current. We claim that

(3)
$$T = R + \partial S, \qquad \mathbf{M}(R) + \mathbf{M}(S) = \mathbf{F}(T).$$

Note that this will complete the proof of the lemma. To prove (3), first note that since $L = \overline{L}$ in Y,

$$T(\omega) = \bar{L}(\omega, d\omega) = R(\omega) + S(d\omega) = (R + \partial S)(\omega).$$

Also,

$$\begin{aligned} \mathbf{F}(T) &= \|\bar{L}\|_{X \to \mathbb{R}} \\ &= \sup\{\bar{L}(\omega, \eta) : \|(\omega, \eta)\|_X \le 1\} \\ &= \sup\{R(\omega) + S(\eta) : \|(\omega\| \le 1, \|\eta \le 1\} \\ &= \mathbf{M}(R) + \mathbf{M}(S). \end{aligned}$$

A variant that is sometimes useful is the homogeneous flat norm, which we will write $\dot{\mathbf{F}}(T)$, defined by

(4)
$$\dot{\mathbf{F}}(T) := \sup\{T(\omega) : \omega \in \mathcal{D}^k(\mathbb{R}^N), \ \|d\omega\| \le 1\}.$$

This too admits a geometric interpretation:

Lemma 2. If
$$T \in \mathcal{D}_k(\mathbb{R}^N)$$
, then
(5) $\dot{\mathbf{F}}(T) = \inf{\{\mathbf{M}(S) : S \in \mathcal{D}_{k+1}(\mathbb{R}^N), \partial S = T\}}$

In particular, (5) implies that $\dot{\mathbf{F}}(T) = +\infty$ unless $T = \partial S$ for some S.

Exercise 1. Prove Lemma 2.

2. products and homotopy of currents

Next we introduce a couple of useful constructions that will enable us to prove, for example, that if $T \in \mathcal{D}_k(\mathbb{R}^N)$ is a current such that $\partial T = 0$, then there exists some $S \in \mathcal{D}_{k+1}(\mathbb{R}^N)$ such that $\partial S = T$.

2.1. the product of currents. First, we define the product of currents $S \in \mathcal{D}_k(U)$ and $T \in \mathcal{D}_\ell(V)$. Let us assume that (x_1, \ldots, x_N) are coordinates on U, and (y_1, \ldots, y_M) are coordinates on V. A smooth $k + \ell$ -form ω on $U \times V$ can be written

$$\omega = \sum_{\substack{k',\ell' \ge 0, \\ k'+\ell' = k+\ell}} \sum_{\alpha \in I(N,k')} \sum_{\beta \in I(M,\ell')} a_{\alpha\beta}(x,y) dx^{\alpha} \wedge dy^{\beta}$$

where $a_{\alpha\beta}$ is a smooth function on $U \times V$. For ω as above, we define

$$(S \times T)(\omega) = S\left(\sum_{\alpha \in I(N,k)} T\left(\sum_{\beta \in I(M,\ell)} a_{\alpha\beta}(x,y) dy^{\beta}\right) dx^{\alpha}\right).$$

Exercise 2. Check that for S, T as above,

$$\partial (S \times T) = \partial S \times T + (-1)^k T \times \partial S.$$

Example 1. Suppose that $T \in \mathcal{D}_k(U)$, and let $\llbracket (0,1) \rrbracket$ denote current associated to the interval $(0,1) \subset \mathbb{R}$.

Then

$$\partial(\llbracket(0,1)\rrbracket\times T) = (\llbracket 1\rrbracket - \llbracket 0\rrbracket) \times T - \llbracket(0,1)\rrbracket \times \partial T.$$

2.2. the homotopy formula.

Lemma 3. Assume that U, V are subsets of Euclidean spaces, and that $h : [0, 1] \times U \rightarrow V$ is a smooth map.

Let f(x) = h(x, 0) and g(x) = h(x, 1), so that h may be described as a homotopy between f and g.

If $T \in \mathcal{D}_k(U)$ and the restriction of h to $supp(\llbracket (0,1) \rrbracket \times T)$, is proper, then

(6)
$$g_*T - f_*T = h_*(\llbracket (0,1) \rrbracket \times \partial T) - \partial h_*(\llbracket (0,1) \rrbracket \times T).$$

Equation (6) is known as the homotpoy formula

PROOF. First note that the hypothesis imply that all the currents appearing in (6) are well-defined.

To prove the formula, we simply compute

$$\partial h_*(\llbracket (0,1) \rrbracket \times T) = h_* \partial(\llbracket (0,1) \rrbracket \times T)$$

= $h_*(\llbracket 1 \rrbracket \times T - \llbracket 0 \rrbracket \times T - \llbracket (0,1) \rrbracket \times \partial T)$
= $g_*T - f_*T - h_*(\llbracket (0,1) \rrbracket \times \partial T)$

We deduce (6) by rearranging this.

Exercise 3. Verify in detail the fact, already used in the above proof, that under the hypotheses of the above lemma,

$$h_*(\llbracket 1 \rrbracket \times T) = g_*T.$$

(The proof that $h_*(\llbracket 0 \rrbracket \times T) = f_*T$ is identical.)

Since the right-hand side of the homotopy formula has the form $R + \partial S$, it is natural to use it to bound the distance in the flat norm between f_*T and g_*T .

Lemma 4. Assume that $T \in \mathcal{D}_k(U)$ is a current such that $\mathbf{M}(T) + \mathbf{M}(\partial T) < \infty$, and that $h : [0,1] \times U \to V$ is smooth, with $Lip(h) < \infty$. Let f(x) = h(0,x) and g(x) = h(1,x) as above. Then

(7)
$$\mathbf{F}(f_*T - g_*T) \leq \sup_{(t,x)\in[0,1]\times supp(T)} \left(\left| \frac{\partial h}{\partial t} \right| |\nabla_x h|^k \right) \mathbf{M}(T) + \sup_{(t,x)\in[0,1]\times supp(T)} \left(\left| \frac{\partial h}{\partial t} \right| |\nabla_x h|^{k-1} \right) \mathbf{M}(\partial T)$$

where $|\nabla_x h| := \sup_{|v| \le 1} |(\nabla_x h)v|.$

This will most often be applied to the function h(t, x) = tg(x) + (1 - t)f(x), which is known as the *affine homotopy* between f and g. In this case, $|\partial_t h(t, x)| = |f(x) - g(x)|$.

PROOF. The homotopy formula and Lemma 1 imply that

$$\mathbf{F}(f_*T - g_*T) \le \mathbf{M}(R) + \mathbf{M}(S)$$

for

$$R := h_*([(0,1)] \times \partial T) \qquad S := h_*([(0,1)] \times T)$$

So we just have to bound $\mathbf{M}(R)$, $\mathbf{M}(S)$ in terms of $\mathbf{M}(\partial T)$, $\mathbf{M}(T)$, together with properties of Lip(h). To do this, we explicitly represent R, S as integration against certain measures.

Considering first S (in fact the argument for R will be essentially identical) we first recall that T can be represented by integration:

$$T(\omega) = \int_U \langle \omega(x), \vec{T}(x) \ d\mu_T(x).$$

where $|\vec{T}| = 1, \mu_T$ a.e.. In this case, we can write

$$\llbracket (0,1) \rrbracket \times T(\eta) = \int_{[0,1] \times U} \langle \eta, e_t \wedge \vec{T} \rangle d(\mathcal{L}^1 \times \mu_T) \qquad \text{for } \eta \in \mathcal{D}^{k+1}(\mathbb{R} \times U)$$

where e_t denotes the positively oriented unit vector that spans \mathbb{R} . (This can be verified from the definitions.) It follows that for $\eta \in \mathcal{D}^{k+1}(V)$,

$$S(\eta) = \left(\llbracket (0,1) \rrbracket \times T \right) (h^* \eta) = \int_{[0,1] \times U} \langle h^* \eta, e_t \wedge \vec{T} \rangle d(\mathcal{L}^1 \times \mu_T)$$

For $\mathcal{L}^1 \times \mu_T$ a.e. (t, x)

$$\langle h^*\eta, e_t \wedge \vec{T} \rangle(t, x) = \langle \eta, h_*(e_t \wedge \vec{T}) \rangle(h(t, x)) = \langle \eta, h_*e_t \wedge h_*\vec{T} \rangle(h(t, x)),$$

and it follows from this that

$$|\langle h^*\eta, e_t \wedge \vec{T} \rangle| \le |\eta \circ h| \ |h_*e_t| \ |h_*\vec{T}|.$$

and one can check that

(8)
$$|h_*e_t| = |\frac{\partial h}{\partial t}|, \qquad |h_*\vec{T}| \le |\nabla_x h|^k$$

It follows that if $\|\eta\| \leq 1$, then

$$|S(\eta)| \leq \int_{[0,1]\times U} \left|\frac{\partial h}{\partial t}\right| |\nabla_x h|^k d(\mathcal{L}^1 \times \mu_T)$$

$$\leq \sup_{(t,x)\in[0,1]\times \text{supp}(T)} \left(\left|\frac{\partial h}{\partial t}\right| |\nabla_x h|^k\right) \mathbf{M}(T).$$

By taking the supremum over η such that $\|\eta\| \leq 1$, we find that

$$\mathbf{M}(S) \leq \sup_{(t,x)\in[0,1]\times\mathrm{supp}(\mathrm{T})} \left(\left| \frac{\partial h}{\partial t} \right| \, |\nabla_x h|^k \right) \mathbf{M}(T).$$

Exactly the same considerations apply to R (with k replaced by k-1), so we deduce (7).

Exercise 4. Verify that (8) holds.

2.3. applications of the homotopy formula.

Proposition 1. Assume that $T \in \mathcal{D}_k(\mathbb{R}^N)$ for some $k \ge 1$, and that $\partial T = 0$. Then there exists $S \in \mathcal{D}_{k+1}(\mathbb{R}^N)$ such that

$$T = \partial S$$

PROOF. Let h(t, x) = tx, and let $S = -h_*(\llbracket (0, 1) \rrbracket \times T)$ Then

- g(x) = h(1, x) = x, so that $g_*T = T$.
- f(x) = h(0, x) = 0, so that $f_*T = 0$.
- Since $\partial T = 0$, clearly $h_*(\llbracket (0,1) \rrbracket \times \partial T) = 0$.

So the homotopy formula implies that $\partial S = T$.

Exercise 5. Verify that the above proposition is not true for k = 0. Where does the proof go wrong?

Of course the proof is still valid if $T \in \mathcal{D}_n(U)$ for some star-shaped $U \subset \mathbb{R}^N$, and more generally if U is contractible in the sense that there exists some smooth $h: [0,1] \times U \to U$ such that h(0,x) is constant and h(1,x) = x.

Another use of the homotopy formula is that it allows us to extend the definition of the push-forward of a current. For example, the following result says, in effect, that under suitable hypotheses, to define f_*T , we only need to know the behavior of f on supp(T).

Lemma 5. Assume that $T \in \mathcal{D}_k(U)$ and that T and ∂T have locally finite mass in U.

If $f, g : U \to V$ are smooth and f = g on supp(T), and if moreover the restriction of f (and hence of g) to supp(T) is proper, then

$$f_*T = g_*T$$

PROOF. The h(t,x) = tg(x) + (1-t)f(x) be the natural affine homotopy between f and g. Then our hypotheses imply that $\partial_t h = 0$ on the support of T, so it follows from (7) that

$$\mathbf{F}(f_*T - g_*T) = 0.$$

The next result, in a similar spirit, allows us to define f_*T if f is merely Lipschitz, again subject to some additional natural assumptions. The strategy is to approximate f by smooth functions. Toward this end, we will write ψ_{ε} to denote a nonnegative function of the form

$$\psi_{\varepsilon}(x) = \frac{1}{\varepsilon^N} \psi(\frac{x}{\varepsilon}), \quad \text{where} \quad \psi \in C_c^{\infty}(\mathbb{R}^N), \quad \text{supp}\psi \subset B(0,1), \quad \int \psi = 1.$$

Lemma 6. Assume that $T \in \mathcal{D}_k(U)$ and that T and ∂T have locally finite mass in U.

Assume that $f: U \to V$ is Lipschitz and that the restriction of f to supp(T) is proper.

Let $\psi \in C_c^{\infty}(\mathbb{R}^N)$ be a fixed nonnegative function such that $supp(\psi) \subset B(0,1)$ and $\int \psi = 1$, and let

$$\psi_{\varepsilon}(x) := \frac{1}{\varepsilon^N} \psi(\frac{x}{\varepsilon}), \qquad f_{\varepsilon} := \psi_{\varepsilon} * f.$$

Then

$$f_*T := \lim_{\varepsilon \to o} f_{\varepsilon *}T \qquad exists$$

and

(9) $supp(f_*T) \subset f(supp(T)), \quad \mathbf{M}_W(f_*T) \leq (Lip(f))^k \mathbf{M}_{f^{-1}(W)}(T)$

for all open W such that \overline{W} is a compact subset of V.

SKETCH OF PROOF. Fix $\varepsilon, \varepsilon' > 0$ and let h be the affine homotopy between f_{ε} and $f_{\varepsilon'}$, that is

$$h(t,x) := tf_{\varepsilon}(x) + (1-t)f_{\varepsilon'}(x).$$

One can check (this is an exercise, see below for some hints) that

(10)
$$|h_t(x)| = |f_{\varepsilon}(x) - f_{\varepsilon'}(x)| \le \operatorname{Lip}(f)(\varepsilon + \varepsilon'),$$

and

 $\mathbf{6}$

(11)
$$|\nabla_x h(x)| \le \operatorname{Lip}(f)$$

for all x. It then follows from Lemma 4 that for any $\omega \in \mathcal{D}^k(U)$,

$$|f_{\varepsilon*}T(\omega) - f_{\varepsilon'*}T(\omega)| \le (\varepsilon + \varepsilon')(\mathbf{M}(T) + \mathbf{M}(\partial T))\operatorname{Lip}(f)^{k+1}(\max \|\omega\|, \|d\omega\|)$$

It follows that $\lim_{\varepsilon \to 0} f_{\varepsilon*}T(\omega)$ exists. Both claims in (9) are proved by first considering smooth f_{ε} and then letting $\varepsilon \to 0$ (necessarily, since this is how we define f_*T .) For the inequality involving $\mathbf{M}_W(f_*T)$, it suffices to check that

$$\mathbf{M}_{W'}(f_*T) \le (\operatorname{Lip}(f))^k \mathbf{M}_{f^{-1}(W)}(T)$$

for any open W' such that \overline{W} is a compact subset of W, and this is easier than working directly with W on the left-hand side. We omit the details.

Exercise 6. Check that (10), (11) hold.

To prove (10) since $|f_{\varepsilon} - f_{\varepsilon'}| \leq |f_{\varepsilon} - f| + |f - f_{\varepsilon'}|$, it suffices to check that $|f_{\varepsilon}(x) - f(x)| \leq \operatorname{Lip}(f)\varepsilon$.

For the proof of (11), it may be helpful to note that

$$h(t,x) := (t\psi_{\varepsilon} + (1-t)\psi_{\varepsilon'}) * f.$$

and to recall elementary properties of convolution, including Young's inequality.

3. Some theorems and some examples

Here are some central results about currents. We will prove as much of these as we can in what is left of this term.

Theorem 1 (Closure theorem). Let T_j be a sequence of integer multiplicity rectifiable k-currents in \mathbb{R}^N such that

(12) $\sup_{j} \left(\mathbf{M}_{W}(T_{j}) + \mathbf{M}_{W}(\partial T_{j}) \right) < \infty$ for every bounded open $W \subset \mathbb{R}^{N}$.

Then there is a subsequence j' and an integer multiplicity rectifiable $T \in \mathcal{D}_k(\mathbb{R}^N)$ such that

$$T_{j'} \rightharpoonup T$$
 as $j' \rightarrow \infty$.

Theorem 2 (Boundary rectifiability theorem). Assume that T is an integer multiplicity rectifiable k-current in \mathbb{R}^N for $k \ge 1$. If $\mathbf{M}(\partial T) < \infty$, then ∂T is integer multiplicity rectifiable.

To illustrate the content of the Closure Theorem we give a number of examples illustrating ways in which, if the hypothesis are not satisfied, a sequence of i.m. rectifiable currents may converge to a current that fails to be rectifiable.

In all the examples, we will use the notation: for $p = (p_1, p_2) \in \mathbb{R}^2$ and r > 0,

$$I(p,r) := [p_1, p_1 + r] \times \{p_2\}$$

Thus I(p, r) is an interval of length r, parallel to the x axis and with its left endpoint at p.

We will always take I(p,r) to be oriented by the tangent vector $e_1 = (1,0)$. We will always write a generic 1-form ω as $\omega = \omega_1 dx^1 + \omega_2 dx^2$. Then of course $\langle \omega, e_1 \rangle = \omega_1$. **Example 2.** Let $T_j = j \llbracket I(0, \frac{1}{j}) \rrbracket$, so that

$$T_j(\omega) = j \int_{I(0,\frac{1}{j})} \omega_1 d\mathcal{H}^1 = j \int_0^{\frac{1}{j}} \omega_1(s,0) \, ds.$$

Then it is easy to verify that $T_j \rightharpoonup T$ as $X_j \rightarrow \infty$, for

$$T(\omega) = \omega_1(0).$$

This is not a 1-dimensional i.m. rect current because it is too concentrated – it involves integration over a 0-dimensional set rather than a 1-d set. (It is also of course not a i.m. rect 0-current, because it is not a 0-current – it is a linear functional on 1-forms rather than 0-forms.)

Example 3. Let

$$T_j = \sum_{0 \le p_1, p_2 \le j-1} [[(I(\frac{p}{k}, \frac{1}{j^2})]], \qquad p = (p_1, p_2).$$

Then

$$T_{j}(\omega) = \sum_{0 \le p_{1}, p_{2} \le j-1} \int_{I(\frac{p}{k}, \frac{1}{j^{2}})} \omega_{1} \, d\mathcal{H}^{1},$$

and from this one can check that

$$T_j \rightharpoonup T, \qquad T(\omega) = \int_0^1 \int_0^1 \omega_1(x_1, x_2) dx_1 dx_2.$$

This is not a 1-dimensional i.m. rect current because it is too spread out – it involves integration over a 2-dimensional set rather than a 1-d set.

Example 4. Let

$$T_j := \sum_{0 \le p \le j-1} [\![I((0, \frac{p}{j}), \frac{1}{j})]\!]$$

Then

$$T_j(\omega) = \sum_{p=0}^{j-1} \int_{I((0,\frac{p}{j}),\frac{1}{j})} \omega d\mathcal{H}^1$$

from which one can check that

$$T_j \rightharpoonup T, \qquad T(\omega) = \int_0^1 \omega_1(0, y) dy = \int_{\{0\} \times [0, 1]} \langle \omega, e_1 \rangle d\mathcal{H}^1.$$

This is not a rectifiable current, since the vector e_1 is nowhere tangent to the set $\{0\} \times [0, 1]$ over which we integrate.

4. slicing

4.1. introduction to slicing. Many of our arguments, including the proofs of Theorems 1 and 1, will rely on the notion of slicing. Before giving a complete treatment of it, we first give a slightly formal discussion, in which we will attempt to convey some main ideas without supplying all technical details.

Assume that T is a k-dimensional current in \mathbb{R}^N , and let $f : \mathbb{R}^N \to \mathbb{R}^n$ be a Lipschitz function, with $0 < n \leq k$.

Under suitable hypotheses on T, we will define the *slices of* T by *level sets of* f, which will be k - n-currents, denoted

$$\langle T, f, y \rangle$$
 for $y \in \mathbb{R}^n$.

We will do this in such a way that if M is a smooth oriented k-dimensional submanifold and f is smooth, then

(13)
$$\langle \llbracket M \rrbracket, f, y \rangle = \llbracket M \cap f^{-1} \{y\} \rrbracket \quad \text{for } a.e. \ y \in \mathbb{R}^n,$$

where, to make sense of the right-hand side, we will need to have some way of determining an orientation of $M \cap f^{-1}(y)$ from the orientation of M and properties of f.

The most important example occurs when f is just projection onto an n-dimensional subspace, in which case $f^{-1}\{y\}$ is a codimension n plane for every y.

The definition we give is slightly opaque: we will require that for $y \in \mathbb{R}^n$, the slices $\langle T, f, y \rangle$ satisfy

(14)
$$\operatorname{supp}(\langle T, f, y \rangle) \subset f^{-1}\{y\}$$

and (15)

15)

$$\int_{\mathbb{R}^n} \langle T, f, y \rangle(\phi) \ \eta = T(f^*\eta \wedge \phi) \quad \text{for every } \phi \in \mathcal{D}^{k-n}(\mathbb{R}^N) \text{ and } \eta \in \mathcal{D}^n(\mathbb{R}^n).$$

We will prove later on that such slices exist, and are almost uniquely determined for \mathcal{L}^n a.e. $y \in \mathbb{R}^n$.

First, to attempt to motivate condition (15), we show in the following lemma that it is consistent with (13) in an easy special case.

Lemma 7. Let A be a bounded, open subset of \mathbb{R}^N with smooth boundary. Define $\pi : \mathbb{R}^n \to \mathbb{R}^n$ by

$$\pi(x_1,\ldots,x_N)=(x_1,\ldots,x_n),$$

and for $y \in \mathbb{R}^n$, let

$$A_y := A \cap \pi^{-1}\{y\}$$

oriented by the tangent multivector $\tau := e_{n+1} \wedge \ldots \wedge e_N$. Then for every $\phi \in \mathcal{D}^{N-n}(\mathbb{R}^N)$ and every $\eta \in \mathcal{D}^n(\mathbb{R}^n)$,

(16)
$$\llbracket A \rrbracket (\pi^* \eta \land \phi) = \int_{y \in \mathbb{R}^n} \llbracket A_y \rrbracket (\phi) \eta$$

Similarly, for every $\phi \in \mathcal{D}^{N-n-1}(\mathbb{R}^N)$ and every $\eta \in \mathcal{D}^n(\mathbb{R}^n)$,

(17)
$$[\![\partial A]\!](\pi^*\eta \wedge \phi) = (-1)^n \int_{y \in \mathbb{R}^n} [\![\partial A_y]\!](\phi) \eta$$

Remark 2. On the right-hand side of (16), $y \mapsto \llbracket A_y \rrbracket (\phi)$ is a function of y which we will see is measurable, and η is an *n*-form. So their product is again an *n*-form, and hence something that we know how to integrate over \mathbb{R}^n . On the right-hand side, $\pi^*\eta$ is a *n*-form and ϕ a k - n-form, so $\pi^*\eta \wedge \phi$ is a *k*-form, and $\llbracket A \rrbracket (\pi^*\eta \wedge \phi)$ makes sense. Similar considerations of course apply to (17).

Remark 3. Comparing the definition of slices (14), (15), we see that the lemma shows that

 $\langle \llbracket A \rrbracket, \pi, y \rangle = \llbracket A_y \rrbracket, \qquad \langle \llbracket \partial A \rrbracket, \pi, y \rangle = (-1)^n \llbracket \partial A_y \rrbracket$

for a.e. y.

PROOF. Fix $\phi \in \mathcal{D}^{k-n}(\mathbb{R}^N)$ and $\eta \in \mathcal{D}^n(\mathbb{R}^n)$. We can write η in the form $\eta = \eta_0(y)dy$, where $\eta_0(y)$ is a smooth, compactly supported function and $dy = dy^1 \wedge \ldots \wedge dy^n$. Then

$$\pi^*\eta(x) = \eta_0(x_1, \dots, x_n)dx^1 \wedge \dots \wedge dx^n = \eta(\pi(x))dx^1 \wedge \dots \wedge dx^n.$$

It follows that

(18)
$$\pi^*\eta \wedge \phi = \eta \circ \pi \ \langle \phi, \tau \rangle dx^1 \wedge \ldots \wedge dx^N,$$

as one can check by writing both sides out in components. Then by Fubini's Theorem,

$$\begin{split} \llbracket A \rrbracket(\pi^* \eta \land \phi) &= \int_A \eta \circ \pi(x) \ \langle \phi, e_{\alpha_*} \rangle d\mathcal{H}^N \\ &= \int_{\mathbb{R}^n} \eta(y) \left(\int_{A_y} \ \langle \phi, e_{\alpha_*} \rangle d\mathcal{H}^{N-n} \right) \ d\mathcal{L}^n(y) \\ &= \int_{\mathbb{R}^n} \ \llbracket A_y \rrbracket(\phi) \ \eta(y) \ d\mathcal{L}^n(y). \end{split}$$

This proves (16). To prove (17), we note that $d\pi^*\eta = \pi^* d\eta = 0$, since $d\eta$ is a n + 1-form on \mathbb{R}^n , and hence necessarily vanishes. Thus (16) implies that

$$\begin{split} \partial \llbracket A \rrbracket (\pi^* \eta \land \phi) &:= \llbracket A \rrbracket (d(\pi^* \eta \land \phi)) \\ &= (-1)^n \llbracket A \rrbracket (\pi^* \eta \land d\phi)) \\ &= (-1)^n \int_{\mathbb{R}^n} \llbracket A_y \rrbracket (d\phi) \ \eta(y) \ d\mathcal{L}^n(y) \\ &= (-1)^n \int_{\mathbb{R}^n} \partial \llbracket A_y \rrbracket (\phi) \ \eta(y) \ d\mathcal{L}^n(y) \end{split}$$

Also, for a.e. y, our hypotheses imply that A_y is a N-1-dimensional submanifold of \mathbb{R}^N with smooth boundary, and for such y, Stokes' Theorem implies that $\partial \llbracket A_y \rrbracket = \llbracket \partial A_y \rrbracket$.

Next, we prove a more general version of the above lemma, in which we consider slicing by level sets of an arbitrary Lipschitz function, rather than a projection.

The outline of the computation is similar, with Fubini's Theorem replaced by the coarea formula. A new technical point is that specifying the orientation of the slices becomes more complicated – compare (18) above, which is a straightforward verification, with (20) below, the proof of which requires a certain amount of multilinear algebra.

Lemma 8. Let A be a bounded, open subset of \mathbb{R}^N with smooth boundary. Let $f : \mathbb{R}^N \to \mathbb{R}^n$ be Lipschitz, and for $y \in \mathbb{R}^n$, let

$$A_y := A \cap f^{-1}\{y\}.$$

Then A_y is also locally N – n-rectifiable for \mathcal{L}^n a.e. $y \in \mathbb{R}^n$, and can be oriented in such a way that

(19)
$$\llbracket A \rrbracket (f^* \eta \land \phi) = \int_{y \in \mathbb{R}^n} \llbracket A_y \rrbracket (\phi) \ \eta$$

PROOF. 1. Define

$$\begin{aligned} A^{+} &:= \{ x \in A : f \text{ is differentiable at } x, \text{ and } Jf(x) > 0 \}, \\ A^{0} &:= A \setminus A^{+}, \\ A^{+}_{y} &:= A^{+} \cap f^{-1}\{y\}, \\ A^{0}_{y} &:= A^{0} \cap f^{-1}\{y\}. \end{aligned}$$

The definition of differentiability implies that the kernel of $\nabla f(x)$ is an N - ndimensional approximate tangent plane for $A_{f(x)}^+$ at every point in A^+ . Thus an N - n-dimensional approximate tangent plane exists at every point of A_y^+ , for every $y \in \mathbb{R}^n$. Also, it follows from the coarea formula that $\mathcal{H}^{N-n}(A_y^0) = 0$ and that $\mathcal{H}^{N-n}(A_y^+) < \infty$ for \mathcal{L}^n a.e. y. These facts establish that A_y is locally N - nrectifiable for \mathcal{L}^n a.e. $y \in \mathbb{R}^n$.

2. We next claim that there exists a measurable function $\tau : A^+ \to \Lambda_{N-n} \mathbb{R}^N$ such that $\tau(x)$ orients $T_x A_{f(x)}$, and

(20)
$$f^*\eta \wedge \phi = \eta_0 \circ f \ Jf \ \langle \phi, \tau \rangle dx^1 \wedge \ldots \wedge dx^N,$$

in A^+ , for every $\phi \in \mathcal{D}^{N-n}(\mathbb{R}^N)$ and every $\eta = \eta_0(y)dy \in \mathcal{D}^n(\mathbb{R}^n)$. (Here and below, we use the notation $dy = dy^1 \wedge \ldots \wedge dy^n$.)

To prove this, we note that at every $x \in A^+$,

$$f^*\eta = \eta_0 \circ f \, df^1 \wedge \ldots \wedge df^n = \eta_0 \circ f \, \frac{df^1 \wedge \ldots \wedge df^n}{|df^1 \wedge \ldots \wedge df^n|} \, Jf$$

So we need to show that there exists a unique $\tau = \tau(x) \in \Lambda_{N-n} \mathbb{R}^N$ that satisfies (21)

$$|\tau| = 1, \qquad \frac{df^1 \wedge \ldots \wedge df^n}{|df^1 \wedge \ldots \wedge df^n|} \wedge \phi = \langle \tau, \phi \rangle dx^1 \wedge \ldots dx^N \quad \text{for all } \phi \in \Lambda^{N-n}(\mathbb{R}^N),$$

and which orients $T_x A_{f(x)} = \ker(\nabla f(x))$.

To see this, fix $x \in A^+$, and fix an orthonormal basis $\{\omega^i\}_{i=1}^N$ for $\Lambda^1 T_x \mathbb{R}^N$ such that

(22)
$$\omega^1 \wedge \ldots \wedge \omega^n = \frac{df^1 \wedge \ldots \wedge df^n}{|df^1 \wedge \ldots \wedge df^n|}(x).$$

Let $\{e_i\}_{i=1}^N$ denote the dual basis for $\Lambda_1 T_x \mathbb{R}^N = T_x \mathbb{R}^N$, defined as usual by requiring that

(23)
$$\langle \omega^i, e_j \rangle = \delta^i_j$$

Recall that $\{e_i\}_{i=1}^N$ is also orthonormal. We claim that

$$\tau := e_{n+1} \wedge \ldots \wedge e_N$$

satisfies (21) and orients $T_x A_{f(x)}$. Indeed, it is clear that $|\tau| = 1$, and the other identity in (21) is verified by writing out both sides in terms of the bases $\{\omega^i\}, \{e_i\}$. Finally, it follows from (22) that $\{\omega^1\}_{i=1}^n$ and $\{df^i(x)\}_{i=1}^n$ span the same *n*-plane in $\Lambda_1 T_x \mathbb{R}^N$, and then (23) implies that $\langle df^i(x), e_j \rangle = 0$ for every $i \leq n$ and j > n. This means that $e_j \in \ker(\nabla f(x))$ for every j > n. Since $\ker(\nabla f(x))$ is (N - n)dimensional and $\{e_j\}_{j>n}$ is a set of N - n linearly independent vectors, it follows that $\{e_j\}_{j>n}$ spans $\ker(\nabla f(x))$, and hence that τ orients $\ker(\nabla f(x))$.

10

4. SLICING

3.To conclude the proof, we first remark that at points in A^0 where f is differentiable, Jf(x) = 0, and hence the set $\{df^i(x)\}_{i=1}^n$ is linearly dependent, and so

$$f^*\eta = \eta_0 \circ f \, df^1 \wedge \ldots \wedge df^n = 0$$

Thus

$$\llbracket A \rrbracket (f^* \eta \land \phi) = \int_A f^* \eta \land \phi = \int_{A^+} f^* \eta \land \phi$$

$$\stackrel{(20)}{=} \int_A \eta_0 \circ f(x) \ J f(x) \ \langle \phi, \tau \rangle d\mathcal{L}^N(x)$$

$$= \int_{\mathbb{R}^n} \eta_0(y) \left(\int_{A_y} \langle \phi, \tau \rangle d\mathcal{H}^{N-n} \right) \ d\mathcal{L}^n(y)$$

$$= \int_{\mathbb{R}^n} \llbracket A_y \rrbracket (\phi) \ \eta.$$
(10)

This proves (19).

4.2. an interesting calculation. Assume that T is a 1-current in \mathbb{R}^N such that $\mathbf{M}(T) + \mathbf{M}(\partial T) < \infty$,

Let us consider slices of T by $\pi : \mathbb{R}^N \to \mathbb{R}$ defined by

$$\pi(x_1,\ldots,x_N)=x_1.$$

Assume that $\langle T, \pi, y \rangle \in \mathcal{D}_0(\mathbb{R}^N)$ exist for \mathcal{L}^1 a.e. $y \in \mathbb{R}$. (We continue to defer the proof of this, but we will get around to it later.) Rewriting the defining property (15) of slices in this specific setting, we obtain

(24)
$$\int_{\mathbb{R}} \langle T, \pi, y \rangle(\phi) \, \eta(y) \, dy = T(\phi \, \eta \circ \pi \, dx^1)$$

for all $\eta \in C_c^{\infty}(\mathbb{R})$ and $\phi \in \mathcal{D}^0(\mathbb{R}^N) \cong C_c^{\infty}(\mathbb{R}^N)$. (Note that a wedge product of a function and a 1-form is just ordinary multiplication.)

Let us consider η of the form $\eta = \zeta'$ for $\zeta \in C_c^{\infty}(\mathbb{R})$. Then

$$\phi \eta \circ \pi \ dx^{1} = \phi \ \zeta' \circ \pi \ dx^{1}$$
$$= \phi d(\zeta' \circ \pi)$$
$$= d[\phi \ \zeta \circ \pi] - \zeta \circ \pi \ d\phi$$

Thus

$$T(\phi \ \eta \circ \pi \ dx^1) = \partial T(\phi \ \zeta \circ \pi) - T(\zeta \circ \pi \ d\phi).$$

Combining this with (24), we deduce that (25)

$$\left| \int_{\mathbb{R}}^{\infty} \langle T, \pi, y \rangle(\phi) \, \zeta'(y) \, dy \right| \leq \max\{ \|\phi\|, \|d\phi\|\} \left(\int \zeta(x_1) d\mu_T(x) + \int \zeta(x_1) d\mu_{\partial T}(x) \right)$$

for all $\phi \in \mathcal{D}^0(\mathbb{R}^N) \cong C^{\infty}(\mathbb{R}^N)$ and $\zeta \in C^{\infty}(\mathbb{R}).$

for all $\phi \in \mathcal{D}^0(\mathbb{R}^N) \cong C_c^{\infty}(\mathbb{R}^N)$ and $\zeta \in C_c^{\infty}(\mathbb{R})$. By an approximation argument, one can check that (25) remains valid if ζ is merely Lipschitz, with compact support.

We now claim that for every $a \in \mathbb{R}^n$ and $\phi \in C_c^{\infty}(\mathbb{R}^N)$,

(26)
$$\langle T, \pi, a_{-} \rangle := \lim_{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_{a-\varepsilon}^{a} \langle T, \pi, y \rangle \, dy$$
 exists for every $a \in \mathbb{R}$.

This is an exercise (with hints, see below). If you do the exercise, you will show that the limit may be understood with respect to the flat norm.

Now fix a < b, and for $\varepsilon < b - a$, define

$$\zeta_{\varepsilon}(y) := \begin{cases} 0 & \text{if } y \leq a - \varepsilon \text{ or } y \geq b \\ 1 & \text{if } a \leq y \leq b - \varepsilon \\ \text{linear} & \text{if } a - \varepsilon \leq y \leq a \text{ or } b - \varepsilon \leq y \leq b. \end{cases}$$

If we substitute ζ_{ε} in (25), the left-hand side can be written

$$\frac{1}{\varepsilon} \int_{a-\varepsilon}^{a} \langle T, \pi, y \rangle(\phi) \, dy - \frac{1}{\varepsilon} \int_{b-\varepsilon}^{b} \langle T, \pi, y \rangle(\phi) \, dy \, \bigg| \, .$$

Thus, using (25), letting $\varepsilon \to 0$, and using (26), we deduce that

$$\left| \left(\langle T, \pi, a_{-} \rangle - \langle T, \pi, b_{-} \rangle \right) (\phi) \right| \le \max\{ \|\phi\|, \|d\phi\|\} \left(\mathbf{M}_{\pi^{-1}[a,b)}(T) + \mathbf{M}_{\pi^{-1}[a,b)}(\partial T) \right).$$

Equivalently

$$(27) \qquad \mathbf{F}\left(/T - c\right) \quad /T - b \right) \leq \mathbf{F}$$

(27)
$$\mathbf{F}\Big(\langle T, \pi, a_{-} \rangle - \langle T, \pi, b_{-} \rangle\Big) \leq \mathbf{M}_{\pi^{-1}[a,b)}(T) + \mathbf{M}_{\pi^{-1}[a,b)}(\partial T).$$

Now, for any increasing sequence $\cdots < a_{-1} < a_0 < a_1 < \cdots$ such that

t $a_j \rightarrow$ $\pm\infty$ as $j \to \pm\infty$, by applying (27) on each interval $[a_i, a_{i+1})$ and adding up the results, we find that

$$\sum_{n=-\infty}^{\infty} \mathbf{F}\Big(\langle T, \pi, a_{i-} \rangle - \langle T, \pi, a_{(i+1)-} \rangle\Big) \le \mathbf{M}(T) + \mathbf{M}(\partial T)$$

Since this bound holds for any partition, we conclude that

$y \mapsto \langle T, \pi, y_- \rangle$ is a function of bounded variation from \mathbb{R} into

the space $\{S \in \mathcal{D}_0(\mathbb{R}^N) : \mathbf{F}(S) < \infty\}$ equipped with the flat norm!

This fact admits a very natural geometric interpretation, which we will discuss later.

Exercise 7. Prove (26).

i

longish hint: This can be done by an argument very similar to the one that was used to deduce (27) from (25) (modulo (26).) The point is that if $0 < \varepsilon' < \varepsilon$, then one can write

$$\frac{1}{\varepsilon} \int_{a-\varepsilon}^{a} \langle T, \pi, y \rangle(\phi) \, dy - \frac{1}{\varepsilon'} \int_{a-\varepsilon'}^{a} \langle T, \pi, y \rangle(\phi) \, dy$$

in the form

$$\int_{\mathbb{R}} \langle T, \pi, y \rangle(\phi) \, \zeta'(y) \, dy$$

for a particular Lipschitz continuous function with support in $[a - \varepsilon, a]$. Then (25) can be used to prove an inequality of the form

$$\mathbf{F}\left(\frac{1}{\varepsilon}\int_{a-\varepsilon}^{a}\langle T,\pi,y\rangle\,dy-\frac{1}{\varepsilon'}\int_{a-\varepsilon'}^{a}\langle T,\pi,y\rangle\,dy\right)\leq???$$

and this can be used to prove (26).