Mat 1501 lecture notes, penultimate installment

1. bounded variation: functions of a single variable (optional)

I believe that we will not actually use the material in this section — the point is
mainly to motivate the definition we will later introduce of BV functions R” — R
and to recall some results, perhaps familiar, that we will see extend in a natural
way to BV functions of several variables.

(so if you have limited amounts of time, then I recommend that you read other
parts of these notes first.)

Definition 1. We will say that a function f : R — R is has bounded variation if

oo
(1) sup > | f(@i) = f(wio1)| < oo,
1=—00
where the supremum is taken over all sequences ... < x; < ;41 < ... such that

x; — oo as i — *oo. The quantity appearing on the left in is called the total
variation of f and is denoted TV (f).

Here are some facts about functions of bounded variation that may be familiar
from analysis classes:
e Any function of bounded variation may be written as the difference of
bounded monotone functions. That is, if f has bounded variation, there
exist bounded nondecreasing functions f, fo such that

(2) f=h—f
Moreover, this can be done in such a way that
(3) TV(f) =TV (fi) +TV(f2).
e As a result
(4) flro) :==limy ~ f(y) and f(r4) :=limy\, f(y) both exist

for every z € R.
e If (f*) is a sequence of functions such that

sup TV (fY) = M < oo, and  sup|f(x)] < oo,
¢

L,z

then there is a subsequence ¢’ and a function f such that f* — f a.e. and
in L', and TV (f) < M.

Exercise 1. Prove this. One way to do this is to first prove it is true if
each f* is nondecreasing, and then deduce the general case from , .
e if f € C! then
) V() = [ 1 @) dz,
R

so that a C! function has bounded variation if and only if this integral is
finite.

Exercise 2. Prove . (In fact it can be deduced in about one sentence
from the fundamental theorem of calculus.)
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Very closely related to the above definition, we have:

Definition 2. We will say that f: R — R is a BV function if there exists a signed
Radon measure p such that

(6) /f dzf/é ) dpu(z for all ¢ € C}(R)

and
lul(R) < oo.
When ([6) holds, we will write f € BV (R), and we will write f’ to denote the
signed measure p in

Note that if f is C*, then

/f dx—/qb dx for all ¢ € CH(R).

Motivated by this, we interpret @ as asserting that the (weak) derivative of f is a
signed measure. Hence the notation f’ for the measure in
The relationship between the two definitions is given by

Lemma 1. If f : R — R has bounded variation, then f € BV (R).
Moreover, for any interval (a,b), the measure f' satisfies

(7) W'((a,b)) = f(b-) — f(ay).
Conversely, if f € BV(R), then there exists a function f of bounded variation such
that f = f a.e..

PRrROOF. 1. First, we will prove @ under the assumption that f is a bounded,

nondecreasing function.
Assume that this holds, and define A : C}(R) — R

—Afewm»m

By the dominated convergence theorem and a change of variables,

mn/f mm/f J@ =@ =h) oy gy

The fact that f is nondecreasmg implies that
(8) A¢) >0 if ¢ > 0.

Hence A\(¢) < A(v) if ¢(x) < 9(z) for all .
In particular, if ||¢||sup < 1 and supp (¢) (a,b), then

) < lim / I ) 1(a,b)($) dx

AN

1 b
= lim — ( f(z)dz + f(x)dx)

a—h b—h
— F(b.) — flao),
It follows that A is continuous with respect to the topology of C.(R). Since its

domain of definition is a dense subset of C.(R), we conclude that A has a unique
extension to a continuous linear functional A : C.(R) — R. Such a functional can
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be represented by a Radon measure p. (since \ is positive in the sense of , and
clearly A inherits this property.) In particular, @ holds for this pu.

2. If f has bounded variation, we can write it as a difference of nondecreasing
functions f1 — f2 and apply Step 1 to both of these, to obtain a measure y satisfying

3. We remark that if f has bounded variation, then @ continues to hold if
¢ is merely Lipschitz continuous. This can be deduced by approximating ¢ by
smooth functions in a standard way and applying @ (in the smooth case) to each
approximant.

Now for a < b and 0 < € < 3(b— a), let

0 if x & (a,b)
p(z) =<1 ifre(ateb—e¢)
linear if z € [a,a+e]U[b—e¢,b].

Then using @,
(@) = tim [ 0.(2) du(o)
= lim f/]Rf(x)qﬁs(x)

e\.0

. 1 a+te 1 b
:61{1%J <_5/a f(x)dz+8/b€f(x)dx>
— f(b) ~ flay).

Hence holds.

4 Now assume that f € BV (R).

Without giving all the details, there are a couple of ways to show that f coin-
cides a.e. with a function f on bounded variation.

Let us define g(z) by

g(x) := p((—o0,x))

One can then check that g has bounded variation, and that (f — ¢)’ = 0 in the
sense that

/(f —9)¢ dz =0 for all ¢ € C}(R).

One can further check that, as a consequence, there exists some constant ¢ such
that f — g = ¢ a.e.. Then the conclusions follow, with f = g + c.

Alternatively, one can write f. := . * f, where 1. is a standard mollifier. Then
for every e > 0, one can check that

TV(f.) = / (@) de < [l (R).

Then it follows from Exercise [I] that there exists a subsequence that converges a.e.
to a function f of bounded variation. On the other hand, we know that f. — f
in L', and hence (upon passing to a subsequence) almost everywhere. Thus f = f
a.e..
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We will be interested in generalizations of the above definitions to spaces of
functions RY — R”, for example, or more generally RY — E, where F is a metric
space.

2. bounded variation : functions of several variables

We say that a function u : R™ — R is a BV function if v € L!(R"), and there
exists some C' > 0 such that

[ 6) ¥y <Clcle forall ¢ € CHEN R,
If this holds, we will write u € BV (RY). For such a function u, the map

(€ CLRMRY) s — / u(y) V- C(y) dy

n

is a linear functional that is continuous with respect to the topology of Cy(R™,R"™)
and hence extends to a bounded linear functional A, € Co(R™,R™)*.

Then a version of the Riesz Representation Theorem asserts that there exists a
Radon measure on R”, which we will denote |Du|, and a |Du|-measurable function
o :R™ — R"”, such that

(€)= / ¢ - o d|Dul for all ¢ € Co(R™,R™)
We will also sometimes write u;, to denote the signed measure defined by
Uy, (A) = /Aai d|Dul, A Borel
and Du to denote the vector-valued measure (ug,,...,u;, ) = |Du|L o. Then we

can identify Du as the gradient of u in the weak sense.
For this reason, one often says that u € BV (R"™) if and only if Du is a measure.

We recall that the Riesz Representation Theorem also guarantees that

Dul() =swp{ [ wV-caen ¢ e CHRNR.supp(0) € O, cl < 1

for any open O C R™.
Note that Du,o and |Du| are characterized by the identity

(9) —/an-Cdﬁnz/Rng-od|Du|:/Rn(-dDu

(We have just combined and earlier identities, with partially new notation.)

‘We will use the notation
lullpy == / Ju + | Dul (R").

We collect some basic facts about BV functions.

Lemma 2. Ifu € CY(R") N L'(R") and [, |Vu|dz < co, then u € BV (R") and
Dy = L"L Vu.
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Proor. This follows directly by conparing @D with the formula
—/ uV-(dL" = ¢-VudL"
n RTL
for ¢ € C}(R™,R"), which follows for u € C*! from the divergence theorem. O

The previous lemma implies that if u € C1, then |Du| = £" L |Vu| and that
o(x) = |g—zl(x). Although ¢ is undefined where Vu = 0, this does not concern us,
since the set {x € R™ : Vu(z) = 0} has |Dul-measure 0, and o : R” — R" is only
required to be |Dul-measurable.

The next result is rather straightforward exercise (especially if you have ever
seen any similar arguments, which you should have seen by now....)

Lemma 3. weak lower semicontinuity: Assume that (ug) is a sequence of BV
functions, and that
sup |Dug|(R™) < 00
¢
and that wpg — u in L. Then
Duy — Du weakly as measures, and
|Du|(R™) < limeinf | Dug| (R™)

Lemma 4. weak density of smooth functions. Assume that u € BV (R™), and let
Ue = the * u, where V. (x) = 2 (L) for some fiwed 1 € C°(R™) such that

supp(¢) C B(0,1), ¥ 20, v=1
Rn
Then ue — u in L'(R™), and
|DZT:719DJT } weakly as measures, and  |Duc|(R") — [Dul(R™).

PROOF. It is a standard fact that if u € L'(R™) then 9. * u — u in L! as
e — 0. (This can be deduced for example from the density of continuous functions
in L', which is a consequence of Lusin’s Theorem.)

Then in view of the above lemma, we already know that Du. — Du weakly as
measures, and also that

(10) |Du|(0O) < lim iélf | Duc|(O) for all open O C R™.

So to prove that |Du.| — |Du| weakly as measures, we only need to show that

|Du|(F) > limsup | Du,|(F) for all closed F' C R"™.
e—0

This will follow once we verify that
(11) [Du|(R") = lim [ Duc[(R™),
E—

since then if F' is closed, writing O := R™ \ F, we have
|Du|(F) = |Du|(R™) — |Du|(O) > lim |Du,|(R™) — lim inf | Du.|(O)
g g
= lim sup |Du.|(F).

So to complete the proof, we must only check .



To do this, let ¢ € CL(R™;R™) be any vector field with compact support in R,
and such that |||/ < 1. Then for any € > 0, using basic properties of convolutions,

/uav-gdﬁnz/w*uv-gdﬁ"
=/u¢€*(v-<)dcn
:/uv-(w*g)d,cn.

It follows from basic properties of convolutions that ||1° * (|lcc < ¢l < 1, and
hence that the right-hand side is bounded by |Du|(R™). Since this is true for all ¢,
we conclude that

|Du.|(R™) < |Du|(R™) for every € > 0.
By combining this with (for O = R") we obtain ([TI).

Lemma 5. if u € BV(R") and v € R", then

(12) ITvu — ul| L1 wey < |v| [Dul(R™), for myu(x) := u(x — v)
As a result, if (¢c) is a standard mollifier, then

(13) [ *u —ullpr < e [Du|(R™).

PRrROOF. In view of Lemma it suffices to prove for u € C*(R")NBV (R™).
(This is an exercise — see below.)
And if w € C' N BV, then

1
/ |u(x—v)—u(x)|:/ |/ iu(x—sv) ds|dx
/ / Vu(z — sv) - v ds|dzx
R"'L
le|v|/ / [Vu(z — sv)||dz ds
— bl [ 194l
Rn

= [v] [Dul(R"™).
It follows rather directly that
[+ u —ul|pr < / Ve(y) lu(z —y) —u(z)| de dy <e|Du|(R").
B(0,¢) JR®

O

Exercise 3. Show that if holds for every u € C1(R™) N BV (R™), then in fact
it holds for every u € BV(R"™).

Lemma 6. compactness. Assume that (ug) is a sequence of BV functions and that

sup lwell By < oo.

Then there exists a subsequence {' that converges to a limit u in L} (R™). That is,
for every bounded open W, |lug — ull oy — 0 as £ — oo..
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PRrooF. For every ¢, let ug . 1= 1. * ug.
It is a standard fact that wu, . is smooth, and

IVueelloo = Vthe * uelloo < IV [loolluells < Ce™FV sup [[ull gy
£

Similarly

e elloo = llthe * uelloo < [[Yelloolluelly < Ce™ sup lull By

Thus for every fixed € > 0, the sequence {uy}7°, is bounded and equicontinuous.
By the Arzela-Ascoli Theorem and a diagonalization argument, it follows that there
is a subsequence {ug .} that converges uniformly on compact sets, and and hence
also in Lj,, to a limit e .

Note also that for every bounded open set W, using ,

lttoe.e = el vy < limind (Jhtoe,e = wercllswy + e = uerllzawy

+ |luer — wer s||Lrowy + [|we e — Uoo,5||L1(W))
< (e + §) sup | Dug|(R™).
¢

Since L' is complete, it follows that u := L' lim._,¢ s - exists and that

||U’_UOO,EHL1(]R") = sup ”U_uoo,sHLl(W) < Ce.
W bounded, open

Then for every bounded open W and every ¢ > 0,

lim sup ||u — we ||L1(W) < li;n sup (||u - Uoo,sHLl(W) + [[too,e — U/[/’EHLI(W)
/_)m

' —o00

+ ||Ug/7€ — ué’”Ll(W)) < Ce

where we have again used . Since ¢ is arbitrary, this completes the proof. [

For u € BV (R"™), we will use the notation
Du|(B
M Du(z) := sup |Dul(B(w,r))
r>0 anpr”

where «,, := L"(B(0,1)). Thus, M Du is the maximal function associated to the
total variation measure | Dul.

It follows from rather standard arguments, using the Vitali covering lemma,
that c

L"({x € R" : MDu(x) < \}) < §|Du|(R").

In particular, M Du < oo L™ almost everywhere.

We will need the following fact.

Exercise 4. Assume that v € BV(R"), and define u. := 9. * u as in Lemma
Prove that

MDue(x) - MDu(z) ase— 0, for every x € R".

Lemma 7. Assume that u € BV (R™). If z,y are Lebesgue points of u then
(14) u(z) —u(y)| < Cnle —y| (MDu(x) — MDu(y))



PRrROOF. 1. We claim that if = is a Lebesgue point of u, then
(15) ]Z [e@) = w4 < v Du(a),
B(z,r) ‘l’ - y|

We first prove this for u € BV N CY(R"). It clearly suffices to prove it for z = 0.
Thus we compute, using Fubini’s Theorem and a change of variables,

- 1 Y14
[ WOl L,
B(0,r) ] an™ Jpo.m |Jo |yl ds

1 1
n/ / |Vu(sy)| ds dy
anT JB0,r) Jo

1o
/ — |Vu(z)|dz ds
o Qnr™s" B(0,rs)

1
_ [ 0,

o an(rs)"
< MDu(0).

dy

IA

This is .

For arbitrary u € BV, we define u = 1. *u as in Lemma 4| Then applies

to every u. for every €. Also, it is rather standard, and not hard to check, that
u. — u at every Lebesgue point of u, so follows from Exercise

2. Next, we define § = 6(n) € (0, 1) by requiring that if z1, 22 are any distinct
points in R", and 7 := |xo — 1], then

L"(B(z1,7) N B(xa,T))

"

=36

The point is that the numerator depends only on 7 := |z — x1| and scales like 7",
so that such a number exists.
Now fix any two Lebesgue points x1, z2 of u, and let A := B(z1,7) N B(xa,T),

for r:= |zo — x1|. We claim that for i = 1,2,

u(zi) —u(z)] _ 1 1
1 " A —————2 > ~MDu(z; ~L"(A).
(16) L ({ZG i 7] >3 u(z;)} <3£ (A)

Indeed, for any k > 0, Chebyshev’s inequality implies that

kﬁ”({zeA:Mxi)ww>k}></AWdz

|z — 2|
<[ e -ual,
B(xz;,r) |xl - Z|

< a,r" M Du(z;)
_£M(4)
30

M Du(x;)

Setting k = £ M Du(z;), we deduce (16)).
3. It follows from that there exists z € A such that if we define C), := %,
then
() = u(z)] < CpoMDu(z;) fori=1,2

|z; — 2|
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Since |x; — z| < r:=|x1 — o for z € A, it follows that
[u(z1)—u(ze)| < |u(zr)—u(2)|[+|u(z)—u(z2)| < Cplre—21[(M Du(z1)+M Du(zs)).
O

Corollary 1. If u € BV(R"), then the set {(z,u(x)) : z € R"} C R"*! (that is,
the graph of u) is countably n-rectifiable.

Exercise 5. Supply the (short) proof.
Finally we prove

Lemma 8. Assume that p is a signed Radon measure on R™ with finite total
variation, and that

V-Cdp <Cll  forall¢ € CHR™R").
Rn

Then p < L™, and d%b is a BV function.
As a consequence, if L is a bounded linear functional on C2°(R™) such that

IL(9)] < Cllglloc for all ¢ € Ce(R™),  |L(V - )| < C[¢llos for all ¢ € Ce(R™),
then there is a function w € BV (R™) such that L(¢) = [u¢ dx for all $ € C.(R™).

PrROOF. Let u. := 1 * u, where 1), is a standard mollifier, so that

%uyzjﬁux—wdmw.

Then it is straightforward to check that u. is a BV function, and moreover (arguing
as in the proof of in Lemma that

[uellpr < [u[(R™),  [Duc|(R") < Sup{/V Cdp:¢ e Co(R™R™), |I¢]loe < 1}

for all € > 0. Thus there exists a subseqnece ¢’ and a function v € BV such that
uer — win LL (R™). Then for any ¢ € C.(R™),

loc
/ u ¢ dL” = lim Uer ¢ dL™

g’'—0 R

lim Yer x ¢d MU
e’'—0 R

= od mu.
RTL
This implies that 4 < L™, and then it follows that « € BV. The final conclusion
of the lemma then is a consequence of the Riesz Representation Theorem. (]
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