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The Change of Variables Theorem.

In these notes, I try to make more explicit some parts of Spivak’s proof of the
Change of Variable Theorem, and to supply most of the missing details of points that
I think he glosses over too quickly. Our goal is:

Theorem 1. Suppose that A is an open subset of Rn and that g : A → Rn is a
diffeomorphism onto its image.

Then for every integrable f : g(A)→ R, the function (f ◦g)| det g′| is an integrable
function A→ R, and

(1)

∫
A

f ◦ g| det g′| =

∫
g(A)

f.

The following terminology will be convenient.

Definition 1. Given a diffeomorphism g : A→ g(A) as above, and a subset V ⊂ A,
we will say that “g has the change of variables property on V ” if the conclusions of
the theorem hold, with A replaced by V , for every integrable f : g(V )→ R.

1. properties of diffeomorphisms

We need several general properties of diffeomorphisms. The first is a basic fact
that is used very often.

Theorem 2. Suppose that A is an open subset of Rn and that g : A → Rn is a
diffeomorphism onto its image. If Z is a subset of A with measure 0, then g(Z) also
has measure 0.

Proof. 1. First, for every point x ∈ A, let Rx be an open rectangle containing x, and
such that the closure1 of R̄x is contained in A. These clearly exist, since A is open.

Recall that A can be written as a countable union of compact sets. (In fact
A = ∪∞k=1{x ∈ A : |x| ≤ k, dist(x, ∂A) ≥ 1/k}.) Each of these compact sets is
covered by finitely many of the open rectangles Rx, by compactness, and so it follows
that we can write A as a countable union of closed rectangles A = ∪∞i=1R̄xi

.

1Recall that the closure of a set S ⊂ Rn is the union of its boundary and its interior, or equiva-
lently, the complement of its exterior. Since the exterior is always open, it is clear that the closure
is closed, as the name suggests.
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Now for every i, let Zi := Z ∩ R̄xi
. Then g(Z) ⊂ ∪∞i=1g(Zi). Since a countable

union of sets of measure 0 again has measure 0, it suffices to show that g(Zi) has
measure 0 for every i, and for this, it suffices to show that if S is a closed rectangle
contained in A, then g(Z ∩ S) has measure 0.

2. Let S be a closed rectangle contained in A. We claim that there exists some
number M1 (possibly depending on S) such that

(2) |g(x)− g(y)| ≤M1|x− y|

for all x, y ∈ S. To see this, note that since g is continuously differentiable, every
partial derivative Dig

j is a continuous function, and hence2 there exists some number
M0 such that |Dig

j(x)| ≤ M0 for every x ∈ S. Then the claim (2) follows from
Lemma 2-10 in Spivak, with M1 = n2M0.

3. We next claim that there exists some number M2, possibly depending on S,
such that if Q is any cube, then

(3) there exists a cube Q′ such that g(Q ∩ S) ⊂ Q′ and v(Q′) ≤M2 v(Q).

Indeed, let ` denote the side-length of Q. Then it is easy to check that |x− y| ≤
√
n`

for any x, y ∈ Q, so (2) implies that |g(x)− g(y)| ≤
√
nM1` for any x, y ∈ Q ∩ S. So

if we fix some x ∈ Q ∩ S, then

g(Q ∩ S) ⊂ {z : |z − g(x)| ≤
√
nM1`}

⊂ cube with centre g(x) and side-length 2
√
nM1` =: Q′.

Then (3) follows, with M2 = (2
√
nM1)

n.

4. Let Z ′ = Z ∩ S, and fix ε > 0. We next claim that there exists a countable
family of closed cubes Qj such that

(4) Z ′ ⊂ ∪∞j=1Qj,
∞∑

j=1

v(Qj) < ε.

The point is that we can use cubes rather than rectangles in the definition of a set of
measure 0. This is true since, given any closed rectangle R, we can clearly find a finite
collection of closed cubes Q1, . . . Qk such that R ⊂ ∪k

i=1Qi and
∑k

i=1 v(Qi) ≤ 2v(R).
(If this is not clear, consider it as an exercise.) So we may first cover Z ′ by rectangles
whose volumes sum to less than ε/2, and then cover each such rectangle by a finite
number of cubes whose volumes add up to at most twice the volume of the rectangle.
The collection of cubes obtained in this way satisfies (4).

2The image of a compact set via a continuous function is compact, and hence bounded.
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5. Let {Qj} be a family of cubes satisfying (4), and for each j let Q′j be a cube
related to Qj as in (3). Then it follows immediately that

g(Z ′) = g(Z ∩ S) ⊂ g(∪∞j=1(Qj ∩ S)) = ∪∞j=1g(Qj ∩ S) ⊂ ∪∞j=1Q
′
j

and
∞∑

j=1

v(Q′j) ≤
∞∑

j=1

M2v(Qj) < M2ε.

Since M2ε can be made arbitrarily small, this proves that g(Z ′) has measure 0, and
hence by Step 1 completes the proof of the theorem. �

The above theorem is the main point in the proof of the following:

Lemma 1. Suppose that A is an open subset of Rn and that g : A → Rn is a
diffeomorphism onto its image.

If f : g(A) → R is locally integrable (ie, on every compact subset K of g(A), f is
bounded, with a discontinuity set of measure 0) then f ◦ g| det g′| is locally integrable
on g.

In particular, f ◦ g| det g′| is Riemann integrable (that is, the supremum of the
lower sums equals the infimum of the upper sums) on any compact, Jordan-measurable
subset of A.

Proof. Assume that f : g(A)→ R is locally integrable, and fix any compact K ⊂ A.

1. The continuous image of a compact set is compact, so g(K) is a compact subset
of g(A). Thus there exists some M such that f(x)| ≤ M for all x ∈ g(K), and it
follows that |f ◦ g(y)| = |f(g(y)| ≤M for all y ∈ K. Since | det g′| is continuous (and
hence bounded on compact subsets) it follows that (f ◦ g)| det g′| is bounded on K.

2. Next, note that if f is continuous at some point g(y) for some y ∈ K, then
(f ◦g)| det g′| is continuous at y (since g and g′ are continuous everywhere). It follows
that

{y ∈ K : (f ◦ g)| det g′| is discontinuous at y} ⊂ g−1(Z)

for
Z := {x ∈ g(K) : f is discontinuous at x}.

But Z has measure 0 by hypothesis, and g−1 is a differomorphism, so it follows from
Theorem 2 that g−1(Z) has measure 0. this proves that (f ◦ g)| det g′| is integrable
on K. Since K was an arbitrary compact subset of A, it follows that (f ◦ g)| det g′| is
locally integrable on A.

3. The final conclusion now follows from 3-8 in Spivak, (the characterization of in-
tegrable functions on a rectangle) together with the definition of a Jordan-measurable
set. �



4

We will again use Theorem 2 in the proof of the following lemma.

Lemma 2. Suppose that A is an open subset of Rn and that g : A → Rn is a
diffeomorphism onto its image.

If K is a compact, Jordan-measurable subset of A, then g(K) is also compact and
Jordan-measurable.

Proof. If K is compact, then (since a diffeomorphism is certainly continuous, and the
continuous image of a compact set is always compact) it follows that g(K) is compact.

Also, we claim that the fact that g is a diffeomorphism implies that

(5) boundary g(K) = g(boundaryK).

Indeed, suppose that x ∈ boundary g(K), and let y = g−1(x). For any open ball B
containing y, the set g(B) is an open set (since g−1 is continuous) that contains x.
Thus, since x ∈ boundary g(K), g(B) must contain both points of g(K) and points
of g(K)c. But since g is one-to-one,

z ∈ K ⇐⇒ g(z) ∈ g(K).

and so it follows that B contains both points of K and points of Kc. Since B
was an arbitrary ball containing y, we conclude that y ∈ boundaryK, and hence
that boundary g(K) ⊂ g(boundaryK). The opposite inclusion follows by exactly the
same argument.

Since K is Jordan measurable, boundaryK has measure 0, and hence it follows
from (5) and Theorem 2 that boundary g(K) has measure 0. Thus g(K) is Jordan
measurable.

�

2. reductions and preliminary results

Lemma 3. If g : Rn → Rn is a linear function, then

(6)

∫
S

| det g′| =

∫
g(S)

1 for every closed rectangle S ⊂ U .

This lemma may be seen as the underlying reason that determinants appear in the
change of variables formula.

Proof. Fix a linear function g : Rn → Rn and let N be the matrix representing g,
so that g(x) = Nx for every x ∈ Rn (where elements of Rn are viewed as column
vectors.) Then the lemma asserts that

(7) v(g(S)) = | detN |v(S)
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for every rectangle S.

This is an exercise in Spivak. I also sketched an alternate proof in the lecture,
which is given below. (Note, I have not written out the details of the proof sketched
in Spivak’s exercise, but it is probably easier than the proof given here, especially
since i have omitted some details from a key induction argument.)

Note that if g does not have full rank (i.e. if detN = 0), then both sides of (7)
equal 0. Thus (7) clearly holds in this case, so we assume for the duration of the
proof that detN 6= 0.

Claim 1. There exist n × n matrices Q and T such that Q is orthogonal (that
is, QQT = QTQ = I, where I denotes the identity matrix) and T is upper triangular
(that is, Tij = 0 if i > j), and N = QT .

In fact, as I showed, we can construct such a matrix Q as follows: Let v1, . . . , vn

denote the columns of N . Inductively choose orthonormal (column) vectors q1, . . . , qn
such that

(8) {v1, . . . , vi} ⊂ span(q1, . . . , qi),

and let Q be the matrix whose columns are q1, . . . , qn (in that order).

Then the fact that the vectors {qi}ni=1 are orthonormal implies that QTQ = QQT =
I, and (8) implies that QTN := T is upper triangular. Then the identity N = QT
follows.

Claim 2. Then it follows from the fact properties of determinants that

1 = det I = det(QQT ) = detQ detQT = (detQ)2

so that | detQ| = | detQT |1, and then that

| detT | = | detQTN | = | detQT | | detN | = | detN |.

Claim 3. Now consider a rectangle

S = [a1, a1 + `1]× · · · × [an, an + `n] = {a+
n∑

i=1

θi`iei : 0 ≤ θi ≤ 1}

where a := (a1, . . . , an)T and e1, . . . , en are the standard basis vectors (and we identify
points in Rn with column vectors). Then since Nei = vi = the ith column of N ,

g(S) = {g(a) +
n∑

i=1

θi`ivi : 0 ≤ θi ≤ 1}.

We compute the volume of this using the fact that

k-dim volume of a k-dim parallelpiped = (k − 1-dim volume of the base)× height
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for every k. The point is that the equation N = QT states that (recalling that {vi}
are the columns of N and that T is upper triangular)

vk =
k∑

j=1

qjTjk for every k, where {Tjk} are the entries of T ,

so that the height of the vector `kvk above the k− 1-plane spanned by v1, . . . vk−1 (or
equivalently, spanned by q1, . . . , qk−1 is `kTkk. This is also the height of the k-dim
parallelepiped

{g(a) +
k∑

i=1

θi`ivi : 0 ≤ θi ≤ 1}.

over its base

{g(a) +
k−1∑
i=1

θi`ivi : 0 ≤ θi ≤ 1}.

Then a straightforward induction argument leads to the conclusion that

v(g(S)) =
n∏

i=1

|`iTii| = v(R) | detT | = v(R)| detN |.

which is what we had to show �

Lemma 4. Suppose that A is an open subset of Rn and that g : A → Rn is a
diffeomorphism onto its image.

Assume that A has an open cover O such that g has the change of variables property
on U for every U ∈ O.

Then g has the change of variables property on A.

Proof. This is reduction (1) in Spivak, pages 67-68 �

Lemma 5. Suppose that A is an open subset of Rn and that g : A → Rn is a
diffeomorphism onto its image.

Assume that U is an open, Jordan-measurable subset of A, and that

(9)

∫
K

| det g′| =

∫
g(K)

1 for every compact Jordan-measurable K ⊂ U .

Then g has the change of variables property on U .
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Proof. This is essentially reduction (2) in Spivak, pages 68. More precisely, Spivak’s
argument shows that g has the change of variables property in U if
(10)∫

K

| det g′| =

∫
g(K)

1 whenever K = g−1(R) for some closed rectangle R ⊂ g(U).

Since every rectangle is certainly Jordan-measurable, it follows from Lemma 2 that
every set of the form K = g−1(R), R a closed rectangle, is also Jordan-measurable,
so our hypothesis (9) implies the condition (10) needed for Spivak’s proof. �

Lemma 6. Suppose that A is an open subset of Rn and that g : A → Rn is a
diffeomorphism onto its image.

Assume that U is an open subset of A, and that

(11)

∫
S

| det g′| =

∫
g(S)

1 for every closed rectangle S ⊂ U .

Then (9) holds, and hence g has the change of variables property on U .

This seems to me to be missing from Spivak’s discussion. He suggests (in his
discussion of reduction (4) on page 69) that it follows from reductions (1) and (2) on
pages 67-68 (i.e., essentially lemmas 4 and 5 above) but this seems to me to be a bit
of a stretch.

Proof. Fix a compact, Jordan-measurable K ⊂ U .

Fix a rectangle R containing K, and note that since K is Jordan measurable and
det g′ is continuous,∫

K

| det g′| =

∫
R

χK | det g′| = sup
partitions P

L(χK | det g′|, P )

= inf
partitions P

U(χK | det g′|, P ).(12)

where χK(x) = 1 if x ∈ K and 0 otherwise.

Next, for any partition P , if S is any subrectangle then it follows from the defini-
tions that

mS(χK | det g′|) =

{
mS(| det g′|) if S ⊂ K

0 if not
,

and

MS(χK | det g′|) =

{
MS(| det g′|) if S ∩K 6= ∅
0 if not
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Also, because K is compact and U is open, there exist partitions of R such that every
subrectangle S that intersects K is contained in U . Thus, for every subrectangle S
of such a partition, using hypothesis (11),

mS(χK | det g′|)v(S) ≤

{∫
S
| det g′| =

∫
g(S)

1, if S ⊂ K

0 if not.

Since the sets {g(S) : S ⊂ K} have disjoint interiors and are contained in g(K), we
conclude by summing that

L(χK | det g′|, P ) ≤
∫

g(K)

1.

for every partition. Similarly

U(χK | det g′|, P ) ≤
∫

g(K)

1

for every partition P . Then (11) follows from combining the last two inequalities with
(12). �

Note that it follows immediately from Lemma 6 and Lemma 6 that

Lemma 7. Every invertible linear function Rn → Rn has the change of variables
property on every open set.

Our final reduction is easier:

Lemma 8. Assume that g : A → Rn and h : g(A) → Rn are diffeomorphisms, and
that g and h both have the change of variables property on their respective domains.
Then h ◦ g has the change of variables property on A.

Proof. Consider any integrable f : h ◦ g(A)→ R. Since h has the change of variables
property, (f ◦ h)| deth′| is integrable and∫

h(g(A))

f =

∫
g(A)

(f ◦ h)| deth′|.

Then, since g has the change of variables property,∫
g(A)

(f ◦ h)| deth′| =

∫
A

((f ◦ h)| deth′|) ◦ g | det g′|

and in particular ((f ◦ h)| deth′|) ◦ g | det g′| is integrable And

((f ◦ h)| deth′|)◦g | det g′| = (f ◦h◦g)| deth′(g)| | det g′| = = (f ◦h◦g)| det(h◦g)′|
by the chain rule and the fact that if M,N are matrices then detMN = detM detN .
Since f was an arbitrary integrable function on h ◦ g(A), it follows that h ◦ g has the
change of variables property. �
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3. proof of theorem

Now we can complete the proof of the theorem.

Proof. We will prove the theorem by induction on n.

the case n = 1.

Suppose that A is an open subset of R, and g : A→ R is continuously differentiable
and one-to-one, with g′ 6= 0 in A.

If U ⊂ A is an open interval, then we know from the fundamental theorem of
calculus that for any interval [a, b] ⊂ U ,∫

[a,b]

|g′| =
∫

g([a,b])

1, since both sides equal
(

max{g(a), g(b)} −min{g(a), g(b)}
)
.

Then it follows from Lemma 6 that g has the change of variables property on U , and
hence from Lemma 4 that g has the change of variables property on A. This proves
the theorem for n = 1. (Note that we could not just argue as in Spivak, pages 66-
67, since the argument given there applies only to a continuous function on a single
interval, whereas the theorem considers functions that are merely integrable on a set
A that may be a countable union of open intervals.)

the induction step.

Now assume that the theorem holds for all integers j ∈ {1, . . . , n− 1}.

Claim 1: Assume that U is an open subset of Rn and that h : U → Rn is a
diffeomorphism between U and h(U). Assume further that h has the form

h(x) = (h1(x), . . . , hn−1(x), xn).

Then h has the change of variables property in U .

proof of Claim 1. By Lemmas 6 and 4, it suffices to show that

(13)

∫
S

| deth′| =

∫
h(S)

1 for every closed rectangle S ⊂ U .

Fix such a closed rectangle S. We will write S = S ′×[an, bn], where S ′ is a rectangle in
Rn−1, and we will write points in S in the form x = (y, z) with y ∈ S ′ and z ∈ [an, bn].
Then for each z ∈ [an, bn], we define the function hz : S ′ → Rn−1 by

hz(y) = (h1(y, z), . . . , hn−1(y, z)).

Thus h(y, z) = (hz(y), z).
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Note that h′ has the form

h′(y, z) =


D1h

1 · · · Dn−1h
1 Dnh

1

...
...

...
...

D1h
n−1 · · · Dn−1h

n−1 Dnh
n−1

0 · · · 0 1

 (y, z)

whereas h′z(y) has the form equals

h′z(y) =

 D1h
1 · · · Dn−1h

1

...
...

...
D1h

n−1 · · · Dn−1h
n−1

 (y, z)

From these, if we know anything about computing determinants, we easily deduce
that

(14) deth′(y, z) = deth′z(y).

So we can use Fubini’s Theorem and the induction hypothesis to compute∫
S

| deth′| =

∫ bn

an

(

∫
S′
| deth′(y, z)|dy) dz

=

∫ bn

an

(

∫
S′
| deth′z(y)|dy) dz

=

∫ bn

an

(

∫
hz(S′)

1 dy) dz(15)

Note however that, due to the form of h,

{(y, z) : z ∈ [an, bn], y ∈ hz(S ′)} = h(S).

So Fubini’s Theorem implies that∫ bn

an

(

∫
hz(S′)

1 dy) dz =

∫
h(S)

1.

This completes the proof of Claim 1. �

Claim 2 Assume that U is an open subset of Rn and that k : U → Rn is a
diffeomorphism onto its image. If k has the form

k(x) = k(x1, . . . , xn−1, kn(x))

then k has the change of variables property in U .

proof of Claim 2. This is very similar to the proof of Claim 1 and hence is omitted. �
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To conclude the proof of the theorem, we argue that for any a ∈ A, there is an
open neighborhood U of a such that U ⊂ A and such that

(16) g = λ ◦ k ◦ h in U , with λ is linear and h, k are as in claims 1 and 2 above.

By Claims 1 and 2, together with Lemmas 8 (change of variables property preserved
under composition), 7 (linear functions have the change of variables property), and 4
(suffices to establish the change of variables property locally), this will complete the
proof of the theorem.

To prove (16), let λ = Dg(a), so that

g = λ ◦ g̃, g̃ := Dg(a)−1 ◦ g.
The chain rule implies that g̃′(a) = I (the identity matrix.) Next we define

h(x) = (g̃1(x), . . . , g̃n−1(x), xn).

Then the fact that g̃′(a) = 1 implies that h′(a) = I. Thus, by the inverse function
theorem, there exists some open neighborhood U ⊂ A such that x ∈ U and such that
h is a diffeomorphism of U onto its image h(U). So we can define k : h(U)→ Rn by

k(x) = (x1, . . . , xn−1, g̃n(h−1(x))).

Then the definitions imply that g̃ = k ◦ h, or equivalently that k = g̃ ◦ h−1. since g̃
and h−1 are both diffeomorphisms, it folllows that k is as well. Thus we have proved
(16) and completed the proof of the theorem.

�


