
MAT 257, Handout 8: October 31-November 4, 2011.

Assignment.

Start to read chapter 3 of Spivak for later in the week.

Some topics from the lectures

Level sets, gradients, regular and critical values. For continuously differentiable
f : Rn → R we defined

• a level set of f is a set of the form f−1({p}), for some p ∈ R. We generally abuse notation
and write f−1(p).
• if f is differentiable at a, the gradient of f at a is the vector defined by the requirement

that
〈∇f(a), v〉 = Df(a)(v) for all v ∈ Rn

Note that Df(a), f ′(a) and ∇f(a) are all different objects: Df(a) is a linear map Rn → R;
f ′(a) is a 1× n matrix representing that linear map, and ∇f(a) is a vector. In particular,
note that to define ∇f we need to know the inner product on Rn, whereas the other two
objects are defined without knowing the inner product. However, they all look very similar
when written down. For example, f ′(a) = (D1f(a), . . . , Dnf(a)), whereas ∇f(a) is the
vector whose ith component is exactly Dif(a).
• A regular point of f is a point a ∈ Rn such that ∇f(a) 6= 0. A critical point is a point
a ∈ Rn such that ∇f(a) = 0.
• A regular value of f is a number p ∈ R such that every point x ∈ f−1(p) is regular. A

critical value is a number p ∈ R that is not a regular value.
More generally, for a differentiable function f : Rn → Rm with m ≤ n, we sometimes say a

regular value of f is a point p ∈ Rm such that Df(x) has rank m at every x ∈ f−1(p).

Informally,
• ∇f(a) is orthogonal to the level set of f that passes through a. (Note that the inner product

is needed to talk about “orthogonality”.)
• ∇f(a) points in the “direction of fastest increase” of f at a, and |∇f(a)| is the slope of f

in the direction of fastest increase. (Note that the inner product is needed to talk about
“direction of fastest increase.” Why is this true?)

Making these statements precise requires some definitions, including the following (revised some-
what from the lecture). Let us temporarily write bla(f, a) to denote the “best linear approximation
of f at a” so that bla(f, a)(x) = f(a) +Df(a)(x− a) = f(a) + 〈∇f(a), x− a〉.

• If a is a regular point of f and f(a) = p, then the tangent plane of f−1(p) at a is
bla(f, a)−1(p), i.e. the level set of bla(f, a) that passes through a.
• the tangent space to f−1(p) at a is {v ∈ Rn : Df(a)(v) = 0} = {v ∈ Rn : 〈∇f(a), v〉 = 0}.

Note that this is the set of vectors that are parallel to the tangent plane of f−1(p) at a.
(I did not carefully distinguish between the tangent plane and the tangent space in the lecture.)
Then in the above informal statements, “orthogonal to the level set of f that passes through a”

should be understood to mean “orthogonal to every vector v in the tangent space of f−1(p) at a.”
The other statements about the “direction of fastest increase” and “slope n the direction of fastest
increase” can similarly be formulated precisely in terms of bla(f, a).

We said vaguely that there is a connection between critical points of f and “changes in topology
of the level sets of f”. This connection is developed in depth in Morse Theory, a branch of topology.
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Taylor’s Theorem in Rn. If f : Rn → R is k times differentiable at a, then

(1) f(x+ v) =
k∑
j=0

1
j!
Djf(a)(v . . . , v) +Rk(v) where lim

v→0

|Rk(v)|
|v|k

= 0.

The k = 1 case is just the definition of Df , since R1(v) = F (a+ v)− f(a)−Df(a)(v).

A weaker version of the theorem states that limt→0Rk(tv)/tk = 0 for every v ∈ Rn. (Why is this
weaker?) This weaker assertion follows immediately from combining any standard 1-dimensional
version of Taylor’s Theorem with Lemma 3 from the Week 6 handout.

Below are a couple of exercises that related to Taylor’s Theorem, one of which sketches the proof
of the stronger assertion (1) above.

Some exercises

1. In this exercise we will prove (1).
Because we only assume that f is k times differentiable at a, our proof can only refer to Dkf(a),

as well as lower derivatives of f at points near a; we have not assumed that Dkf(x) exists for any
x 6= a. So our first task is to develop an expression for Rk(v) that involves only these quantities.
For present purposes, this rules out standard formulas for Rk(v) as found for example on Wikipdia.

a. Prove that if g : R→ R is k − 1 times differentiable in an interval (−δ, δ) (with δ > 0) and k
times differentiable at 0, then for t ∈ (−δ, δ),

g(t)−
k∑
j=0

tj

t!
g(j)(0) =

∫ t

0

∫ s1

0
· · ·
∫ sk−1

0

(
g(k)(sk)− g(k)(0)

)
dsk · · · ds2 ds1

=
∫ t

0

∫ s1

0
· · ·
∫ sk−2

0

(
g(k−1)(sk−1)− g(k−1)(0)− sk−1g

(k)(0)
)
dsk−1 · · · ds2 ds1.

where g(j) denotes the jth derivative of g.

b. Using part (a) and Lemma 3 on Handout 6, prove that if f : Rn → R is k times differentiable
at a ∈ Rn, then if v is sufficiently small1 then

Rk(v) =
∫ 1

0

∫ s1

0
· · ·
∫ sk−2

0

(
D(k−1)f(a+ sk−1v)−D(k−1)f(a)−D(k)f(a)(sk−1v)

)
(v, . . . , v)dsk−1 · · · ds2 ds1.

where Rk(v) is defined to be

Rk(v) := f(a+ v)−
k∑
j=0

1
j!
Djf(a)(v, . . . , v).

(As usual, part of what you must do is decipher the notation.)

c. Use part (b) and the definition of Dkf(a) to prove that limv→0Rk(v)/|v|k = 0.

2. In this exercise, we introduce notation that allows for a rather elegant explicit formula (in
terms of partial derivatives of f) for the kth order Taylor polynomial of f .

When f is a function whose domain is Rn (or an open subset of Rn), we will use the notation

Dαf(a) = Dα1
1 Dα2

2 · · ·D
αn
n f(a)

where α is an n-tuple of the form (α1, . . . , αn), with αi a nonnegative integer for every i. Thus, the
ith derivative is iterated αi times.

1that is, if a + v ∈ R for some open rectangle R containing a in which in which f is k − 1 times continuously
differentiable
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For example if n = 2, and α = (2, 1), then Dαf = D1D1D2f(a).

Note, if we wanted to, we could write “D(2,1)f” to mean “Dαf , for the multi-index α = (2, 1).” But we
will generally not do so, because D(2,1)f looks enough like D2,1f = D1D2f that it is easy to get confused.
So we will generally only use the notation Dαf for “generic” α.

If f : Rn → Rm, then Dαf(x) denotes the element of Rm with components Dαf i, i = 1, . . . ,m.
We call α a multi-index, and we use the notation

|α| =
n∑
i=1

αi, α! := α1! · · ·αn!.

so that in particular |α| is the “order” of the partial derivative Dαf . (For this reason we sometimes
call |α| the order of the multi-index α.) Also, if v = (v1, . . . , vn) is a vector in Rn, then we will use
the notation

vα = (v1)α1 · · · (vn)αn

Exercise 2 is to prove that if f is k times differentiable, then

(2)
k∑
j=0

1
j!
Djf(a)(v, . . . , v) =

∑
|α|≤k

vα

α!
Dαf(a).

The sum on the right-hand side means “the sum over all multi-indices α of order at most k”.

remark: The other expression that we have for a kth order Taylor series, following directly
from results in handout 6, is

(3)
k∑
j=0

 n∑
i1,...,ij=1

vi1 · · · vijDij ,··· ,i1f(a)


(We could also write (2) as

∑k
j=0

(∑
|α|=j|

vα

α!D
αf(a)

)
, making it look a bit more like (3).)

In general I find it clearer to write Taylor series of order k in the form (3) if k ≤ 2, and using
multi-indices if k ≥ 3, and especially for a generic positive intiger k.


