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Abstract. In this paper, we classify all noncollapsed singularity models for the mean curvature flow of
3-dimensional hypersurfaces in R4 or more generally in 4-manifolds. Specifically, we prove that every
noncollapsed translating hypersurface in R4 is either Rˆ2d-bowl, or a 3d round bowl, or belongs to the
one-parameter family of 3d oval bowls constructed by Hoffman-Ilmanen-Martin-White.
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1. Introduction

A hypersurface Mn Ă Rn`1 is called a translator if its mean curvature vector satisfies

(1) H “ vK

for some 0 ‰ v P Rn`1. Solutions of (1) correspond to selfsimilarly translating solutions tMt “ M`tvutPR

of the mean curvature flow,

(2) pBt xqK “ Hpxq.

Translators model the formation of type II singularities under mean curvature flow, see e.g. [Ham95,
HS99, Whi03]. We recall that Huisken and Hamilton grouped singularities of the mean curvature flow at
some time T into type I and II, depending on whether pT ´ tq|A|2 stays bounded or not [Hui90, Ham95].
Type I singularities are modelled on shrinkers, and are easier to analyze than type II singularities. For
example it is known in any dimension that the round cylinders Rk ˆ S n´k are the only mean-convex
shrinkers [Hui93, Whi03], and also the only stable shrinkers [CM12]. In an attempt to get a grasp on type
II singularities, translators have received a lot of attention over the last 25 years, but despite these efforts
no general classification result has been obtained for n ě 3, not even for convex graphs.

For n “ 2, there is by now a very precise understanding of translators. Altschuler-Wu [AW94] con-
structed a translator that is the graph of an entire rotationally invariant function, called the bowl. In
[Wan11], Wang proved that the bowl is the unique (up to rigid motions and scaling) convex translator in
R3 that is an entire graph. More recently, a complete classification of graphical translators in R3 has been
obtained by Hoffman-Ilmanen-Martin-White [HIMW19a], building on important prior work of Spruck-
Xiao [SX20]. Namely, they proved that any such translator is either a bowl, or a grim reaper surface, or
belongs to the one-parameter family of ∆-wings discovered by Ilmanen. See [Ngu09], [HMW19a] and
[HMW19b] for other examples of translators, and [HIMW19b] for a survey article about translators in R3.
See also [CCK21] for a recent classification of translators of the α-Gauss curvature flow in R3.

For n ě 3, in his pioneering work [Wan11], Wang constructed graphical convex translators that are not
rotationally symmetric, addressing a conjecture of White [Whi03]. The only instances for n ě 3 where
some classification has been obtained are the uniformly 2-convex case [Has15, BL17, SS19] and the case
of solutions contained in strip regions [BLT18], which both very much behave like the 2-dimensional case.

1.1. Main results. In the present paper, we address the classification problem for translators in R4. We
focus on the situation most relevant for singularity analysis, namely the noncollapsed case. We re-
call that a hypersurface M is called noncollapsed if it has positive mean curvature and there is some
α ą 0 such that at every point p P M the inscribed radius and exterior radius is at least α{Hppq, see
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Figure 1. The oval bowls Mk are 3-dimensional translating hypersurfaces in R4, whose
level sets look like 2-dimensional ovals in R3. It is a one-parameter family of translators,
whose principal curvatures at the tip are pk, 1´k

2 , 1´k
2 q. For k “ 1{3 it is the round bowl

(with round spherical level sets), while for k Ñ 0 one has convergence to Rˆ2d-bowl.

[SW09, And12, HK17]. It is known since the work of White [Whi00, Whi03] that all blowup limits of
any mean-convex mean curvature flow are noncollapsed. In fact, one can take α “ 1, see [Bre15, HK15].
More generally, by Ilmanen’s mean-convex neighborhood conjecture [Ilm03], which has been proved re-
cently in the case of neck-singularities in [CHH18, CHHW19], it is expected even without mean-convexity
assumption that all blowup limits near any cylindrical singularity are ancient noncollapsed flows.

Let us first review the known examples of noncollapsed translators in R4: Two examples that have
been known for quite a while are R ˆ Bowl2 - the product of the line with the 2-dimensional bowl
from from Altschuler-Wu [AW94], and Bowl3 - the 3d round bowl constructed by Clutterbuck-Schnürer-
Schulze [CSS07]. More recently, Hoffman-Ilmanen-Martin-White [HIMW19a] constructed examples that
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are not rotationally symmetric. Specifically, for every triple pk1, k2, k3q of nonnegative numbers with
k1` k2` k3 “ 1 they proved that there exists at least one unit-speed graphical translator with tip principal
curvatures pk1, k2, k3q. Moreover, they showed that when one takes k1 ď k2 “ k3 then one always gets
a translator that is an entire graph and has circular symmetry in the last two variables. It is not hard to
show that these entire graphical translators are in fact noncollapsed (see Theorem 4.2). Hence, for ev-
ery k P p0, 1

3q there exists at least one noncollapsed translators Mk Ă R
4 that is noncollapsed and circular

symmetric and whose principal curvatures at the tip are pk, 1´k
2 , 1´k

2 q. The HIMW-translators tMkukPp0,1{3q

interpolate between M0 “ Rˆ Bowl2 and M1{3 “ Bowl3. Furthermore, as we will see later, the HIMW-
translators have oval level sets, as illustrated in Figure 1, and we thus refer to them as the oval bowls.

Our main classification theorem shows that any noncollapsed translators in R4 in fact must be equal, up
to rigid motion and scaling, to one of the examples from the literature that we reviewed above:

Theorem 1.1 (classification of noncollapsed translators). Every noncollapsed translator in R4 is, up to
rigid motion and scaling,

‚ either Rˆ Bowl2,
‚ or the 3d round bowl Bowl3,
‚ or belongs to the one-parameter family of 3d oval bowls tMkukPp0,1{3q constructed by Hoffman-

Ilmanen-Martin-White.

In particular, our main theorem provides a complete classification of singularity models for the mean
curvature flow of embedded mean-convex hypersurfaces in R4 or more generally also in 4-manifolds
(observe that even for general ambient 4-manifolds the blowup limits always live in Euclidean space). To
discuss this, recall that for mean-convex flows all blowup limits are noncollapsed and convex [Whi00,
Whi03, HS99, HK17]. In particular, for type I singularities one can always pass to a type I blowup limit
that is a shrinker by Huisken’s monotonicity formula [Hui90], while for type II singularities one can
always pass to a type II blowup limit that is a translator by Hamilton’s Harnack inequality [Ham95].

Corollary 1.2 (classification of singularity models). For the mean curvature flow of closed embedded
mean-convex hypersurfaces in R4 (or more generally in a 4-manifold), every type I blowup limit is

‚ either a round shrinking S 3,
‚ or a round shrinking Rˆ S 2,
‚ or a round shrinking R2 ˆ S 1,

and every type II blowup limit is

‚ either Rˆ Bowl2,
‚ or the 3d round bowl Bowl3,
‚ or belongs to the one-parameter family of 3d oval bowls tMkukPp0,1{3q constructed by Hoffman-

Ilmanen-Martin-White.

In particular, our corollary seems to be the first general classification result of singularity models in
higher dimensions. Recall that while singularities for mean curvature flow in R3 and for three-dimensional



NONCOLLAPSED TRANSLATORS IN R4 5

Ricci flow are by now well understood, the classification of singularities in higher dimensions, without
special assumptions such as two-convexity or positive isotropic curvature, is widely open.

Our main classification result is related to a recent breakthrough by Angenent-Daskalopoulos-Sesum
[ADS19, ADS20], who proved that every compact ancient noncollapsed flow in R3 (or more generally in
Rn`1 assuming uniform 2-convexity) is either a round shrinking sphere or an ancient oval. The ancient
ovals, whose existence has been proved in [Whi03, HH16], are compact ancient solutions that for t Ñ 0
converge to a round point, but for t Ñ ´8 look very oval, namely like a cylinder with two bowl-like caps.

Let us now discuss some major challenges that arise in establishing our main classification result:

First, the round bowl has a neck-tangent flow at ´8, i.e.

(3) lim
λÑ0

λMλ´2t “ Rˆ S 2p
?
´4tq,

but oval bowls have a bubble-sheet tangent flow at ´8, i.e.

(4) lim
λÑ0

λMλ´2t “ R
2 ˆ S 1p

?
´2tq.

While the case of neck-singularities has been analyzed extensively over the last 20 years culminating
in the recent classification from [ADS19, ADS20, BC19, BC18, CHH18, CHHW19] (see also [Bre20,
ABDS19, BDS20, LZ18, BN20, BDNS21] for corresponding classification results for the Ricci flow), the
classification of bubble-sheet singularities up to now seemed to be a problem out of reach.

Second, the classification of ancient ovals from the recent breakthrough by Angenent-Daskalopoulos-
Sesum [ADS19, ADS20] crucially relies on the property that eventually all such ovals agree up to rigid
motion and scaling. In contrast, the examples from [HIMW19a] for different values of k are genuinely
distinct, and furthermore it is not known a-priori whether or not the HIMW-family is unique and depends
continuously on k. Even though this may sound like a more technical point, this actually causes the fol-
lowing fundamental issue: In the spectral analysis one cannot kill the neutral and unstable modes in any
straightforward way.

Third, the classification of round bowl and ancient ovals crucially relies on the fact that they are ro-
tationally symmetric. In contrast, the oval bowls from [HIMW19a] are only SOp2q-symmetric but not
SOp3q-symmetric. In particular, this increases the number of independent variables, and thus precludes
the direct use of ODE techniques or techniques from 1+1 dimensional parabolic equations.

1.2. Key results and outline of the proofs. Let us now outline the main steps of our argument. Roughly
speaking, our main classification result will follow by combining the following five key results:

‚ Theorem 1.3 (blowdown and circular symmetry),
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‚ Theorem 1.5 (uniform sharp asymptotics),
‚ Theorem 1.6 (spectral uniqueness),
‚ Theorem 1.7 (existence with prescribed eccentricity),
‚ Theorem 1.8 (monotonicity and analyticity).

We will now discuss these five key results in turn. For the rest of this outline, we denote by M “ BK
any noncollapsed translator in R4, where we normalize without loss of generality such that it translates
with unit speed in positive x1-direction. Assuming that M is neither Rˆ2d-bowl nor a 3d round bowl, the
ultimate goal is to show that it is an oval bowl Mk, and is uniquely determined by the tip curvature k.

In Section 2, we discuss coarse asymptotics and circular symmetry. The key to get started is:

Theorem 1.3 (blowdown and circular symmetry, c.f. [CHH21, Zhu20]). The blowdown of M “ BK is
always a halfline, more precisely

(5) lim
λÑ0

λK “ tλe1 | λ ě 0u.

In particular, M has a unique tip point and is SO(2)-symmetric.

The result about the blowdown has already been established in our previous paper [CHH21]. To prove
this we had to rule out the potential scenario of noncollapsed wing-like translators, which we did via fine-
bubble sheet analysis. In particular, the blowdown directly yields the existence of a unique tip point where
x1 is minimized. It then follows from a recent result by Zhu [Zhu20] that M is SO(2)-symmetric. Zhu’s
proof was based on a bubble-sheet version of the Brendle-Choi neck improvement theorem [BC19, BC18].
Exploiting the fact that the blowdown is a halfline, we found a shorter proof of Zhu’s result, which is based
instead on methods from [Bre13, Has15] and which we include for convenience of the reader.

Theorem 1.3 also yields further important information about the coarse asymptotics of the level sets

(6) Σh :“ M X tx1 “ hu.

Exploiting the more quantitate information from the proof we show that for every δ ą 0 we have

(7) lim
hÑ8

diampΣhq

h1{2`δ
“ 0.

Moreover, using the vanishing asymptotic slope property, which follows again from Theorem 1.3, we
show that the level sets move almost like a mean curvature flow of surfaces in R3. Namely, we show that

(8) |H ´ Hh| ď CH3,

where H is the mean curvature of M, and Hh is the mean curvature of Σh Ă tx1 “ hu.

In Section 3, we establish uniform sharp asymptotics. Loosely speaking, our result shows that the level
sets M X tx1 “ ´tu have the same sharp asymptotics as the ones from Angenent-Daskalopoulos-Sesum
[ADS19] for the 2-dimensional ancient ovals in R3, and moreover these sharp asymptotics hold uniformly
for certain families of translators. In more detail, we establish uniform sharp asymptotics for the profile
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function of the level sets. Specifically, assuming without loss of generality that the SOp2q-symmetry from
above is in the x3x4-plane centered at the origin, we can express the level sets as

(9) Σ´t “

!

p´t, x, x3, x4q P R
4 : ´d´ptq ď x ď d`ptq, px2

3 ` x2
4q

1{2 “ Vpx, tq
)

.

The profile function Vpx, tq is defined for all t ! 0 and all x on a maximal interval r´d´ptq, d`ptqs. We
also consider the renormalized profile function v defined by

(10) vpy, τq “ eτ{2Vpe´τ{2y,´e´τq.

Moreover, in the tip regions we define Yp¨, τq as the inverse function of vp¨, τq, and let

(11) Zpρ, τq “ |τ|1{2
´

Yp|τ|´1{2ρ, τq ´ Yp0, τq
¯

.

As we will see, in the central region there is an inwards quadratic bending of the form

(12) vpy, τq “
?

2´
y2 ´ 2
?

8|τ|
` op|τ|´1q.

It will be crucial that our uniform sharp asymptotics in all regions hold for all times where the function v
behaves approximately like (12) in an Gaussian L2-sense. To describe this, let us discuss some background
and notation. The evolution of v is governed by the one-dimensional Ornstein-Uhlenbeck operator

(13) L “ B2
y ´

y
2By ` 1.

Recall that L is a self-adjoint operator on the Hilbert space H :“ L2pR, e´y2{4dyq, and that

(14) H “ H` ‘ H0 ‘ H´,

where H` is spanned by the unstable eigenfunctions ψ1 “ 1 and ψ2 “ y, and H0 is spanned by the neutral
eigenfunction ψ0 “ y2 ´ 2. We write p˘ and p0 for the orthogonal projections on H˘ and H0. Moreover,
we fix a small constant θ ą 0, and consider the cylindrical profile function

(15) vC “ ϕCpvqv,

where ϕC is a suitable cutoff function that localizes in the cylindrical region C “ tv ě 5
8θu. Finally, given

any τ0 ! 0 after a suitable shift in the x1x2-plane we can assume that

(16) p`pvCpτ0q ´
?

2q “ 0.

Definition 1.4 (κ-quadratic). We say that M (normalized as above and centered as in (16)) is κ-quadratic
at time τ0 if its cylindrical profile function vC satisfies

(17)

›

›

›

›

›

vCpy, τ0q ´
?

2`
y2 ´ 2
?

8|τ0|

›

›

›

›

›

H

ď
κ

|τ0|
,

and for every τ P r2τ0, τ0s the renormalized hypersurface M̄τ “ e´τ{2M´e´τ can be expressed locally as
a graph of a function upy1, y2, τq over the cylinder R2 ˆ S 1p

?
2q with the estimate

(18) sup
τPr2τ0,τ0s

}up¨, τq}C4pBp0,2|τ0|1{100qq ď |τ0|
´1{50.



8 KYEONGSU CHOI, ROBERT HASLHOFER, OR HERSHKOVITS

Here, the small parameter κ ą 0 measures the deviation from (12) in the Gaussian L2-norm. The con-
dition involving the bubble-sheet function u is more technical and can be ignored at first reading.

Using these notions, we can now precisely state our uniform sharp asymptotics:

Theorem 1.5 (uniform sharp asymptotics). For every ε ą 0 there exists κ ą 0 and τ˚ ą ´8, such that if
M is κ-quadratic at time τ0 for some τ0 ď τ˚, then for every τ ď τ0 the following holds:

(i) Parabolic region: The renormalized profile function satisfies

(19)
ˇ

ˇ

ˇ

ˇ

vpy, τq ´
?

2
ˆ

1´
y2 ´ 2

4|τ|

˙ˇ

ˇ

ˇ

ˇ

ď
ε

|τ|
p|y| ď ε´1q.

(ii) Intermediate region: The function v̄pz, τq :“ vp|τ|1{2z, τq satisfies

(20) |v̄pz, τq ´
a

2´ z2| ď ε,

on r´
?

2` ε,
?

2´ εs.
(iii) Tip regions: We have the estimate

(21) }Zp¨, τq ´ Z0p¨q}C100pBp0,ε´1qq ď ε,

where Z0pρq is the profile function of the 2d-bowl with speed 1{
?

2.

Moreover, for every τ ď τ0 the renormalized hypersurface M̄τ “ e´τ{2M´e´τ can be expressed locally as
a graph of a function upy1, y2, τq over the cylinder R2 ˆ S 1p

?
2q with the estimate

(22) }u}C4pBp0,2|τ|1{10q ď |τ|
´1{5.

Finally, given any κ ą 0, after suitable recentering every M is κ-quadratic at time τ0, provided τ0 “

τ0pM, κq ą ´8 is sufficiently negative.

In particular, the uniform sharp asymptotics imply that the level sets Σh satisfy the estimate

(23)

ˇ

ˇ

ˇ

ˇ

ˇ

d˘phq
a

2h log h
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε.

Also, while we initially only assumed that we have the graphical radius |τ|1{100 for 2τ0 ď τ ď τ0, the
theorem shows that we actually get the improved graphical radius |τ|1{10 for all τ ď τ0.

To prove the uniform sharp asymptotics, we carry out a fine bubble-sheet analysis, which generalizes
the fine neck analysis from [ADS19]. Roughly speaking, this can be done by carefully analyzing the
evolution of upy1, y2, τq, which is governed by the two-dimensional Ornstein-Uhlenbeck operator

(24) L “ B2
y1
` B2

y2
´

y1
2 By1 ´

y2
2 By2 ` 1.

The most challenging part is to establish that the estimates are in fact uniform for all M that are κ-quadratic
at time τ0. To this end, remembering Definition 1.4 (κ-quadratic) we have to (i) upgrade information at the
single time τ0 to information for all τ ď τ0, and (ii) upgrade information about profile function vpy, τq in
the Hilbert space H to information about the bubble-sheet graph function upy1, y2, τq in the larger Hilbert
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space H – H b H. To accomplish (i) we use Merle-Zaag type arguments. To accomplish (ii) we exploit
the fact that |By1u| is exponentially small on our bubble-sheet thanks to the translator equation.

Our next key result says that noncollapsed translators in R4 are uniquely characterized by the spectral
projection of their cylindrical profile function to the unstable and neutral space:

Theorem 1.6 (spectral uniqueness). There exist κ ą 0 and τ˚ ą ´8 with the following significance: If
M1 and M2 are noncollapsed translators in R4 (normalized and centered as before) that are κ-quadratic
at time τ0, where τ0 ď τ˚, and if their cylindrical profile functions v1

C
and v2

C
satisfy

(25) p`pv1
Cpτ0q ´ v2

Cpτ0qq “ 0 (equal spectral center),

and

(26) p0pv1
Cpτ0q ´ v2

Cpτ0qq “ 0 (equal spectral eccentricity),

then

(27) M1 “ M2.

The statement of Theorem 1.6 (spectral uniqueness) is similar to the main technical result of [ADS20].
Some important technical differences are that Theorem 1.6 is uniform across all κ-quadratic solutions and
that instead of simply truncating the difference of profile functions, we use the intrinsic localization (15).
This is crucial to ensure that having equal spectrum is manifestly an equivalence relation.

The biggest difference, however, is how these theorems can be applied. For the ancient ovals it was
shown in [ADS20, Section 4] that by a suitable rigid motion and scaling one can always arrange that the
truncated difference of the profile functions satisfies the conditions p`pwCpτ0qq “ 0 and p0pwCpτ0qq “ 0.
This of course was only possible since the ancient ovals are – at the end of the day – unique up to rigid
motion and scaling. In contrast, the HIMW translators are a genuinely distinct one-parameter family of
solutions. While an easy shift in the x1x2-plane still allows us to impose our usual centering condition
(16), which in particular implies (25), dealing with the spectral eccentricity is far more subtle. In particu-
lar, since it is not known a priori whether or not the HIMW family is unique and continuous, while all tip
curvatures k are realized, it is highly nonobvious whether or not all spectral eccentricities are realized.

In Section 4, we overcome the above difficulties and complete the proof of the main classification
theorem, modulo the proof of the spectral uniqueness theorem, which will be proven in the last section. A
key point is to show that the Hoffman-Ilmanen-Martin-White construction in fact realizes all eccentricities.
To describe this, recall from [HIMW19a] that for every ellipsoidal parameter a P r0, 1

3 s and every height
h ă 8, there exists an SOp2q-symmetric translator-with-boundary Ma,h, with tip at the origin and whose
boundary lies at height x1 “ h and is an ellipse of the form a2x2

2 ` p
1´a

2 q
2x2

3 ` p
1´a

2 q
2x2

4 “ R2, where
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R “ Rpa, hq. We then define the HIMW classA as the collection of all possible limits, namely1

(28) A :“
"

lim
iÑ8

Mai,hi | ai P r0, 1{3s and hi Ñ8

*

.

We first establish some basic properties of this class and show that every member of A is noncollpased.
Hence, the above results apply to the class A. Also, given any τ0, it is easy to see that there is a unique
shift in x1-direction such that our centering condition (16) holds. We denote this shifted class byA1.
We then consider the eccentricity map

(29) E : A1 Ñ R, M ÞÑ xvM
C pτ0q, 2´ y2yH.

Observe that the expected value of E for translators satisfying the sharp asymptotics at time τ0 is

(30) e0 “
4
?

2π
|τ0|

.

Our next theorem shows that in fact all values in a neighborhood of definite size are realized:

Theorem 1.7 (existence with prescribed eccentricity). There exist a constants κ ą 0 and τ˚ ą ´8 with
the following significance. For every τ0 ď τ˚ and every x P R with |x´ e0| ď

κ
10|τ0|

there exists a shifted
HIMW translator M P A1 that is κ-quadratic at time τ0 and satisfies

(31) EpMq “ x.

The theorem, applied in combination with the other key results from above, has the following two
fundamental consequences:

(A) Every noncollapsed translator in R4 is, up to rigid motion and scaling, a member of the HIMW
classA.

(B) The spaceA is homeomorphic to an interval.

Let us sketch how these two fundamental facts follow: Given any noncollapsed translator M Ă R4 that is
neither a 3d bowl nor splits off a line, by Theorem 1.5 (uniform sharp asymptotics), choosing τ0 ! 0, nor-
malizing and shifting, we can arrange that the centering condition (16) holds and that M is κ

100 -quadratic
at time τ0. Then, by Theorem 1.7 (existence with prescribed eccentricity) we can find a κ-quadratic shifted
HIMW translator M1 P A1 with EpM1q “ EpMq. Finally, Theorem 1.6 (spectral uniqueness) implies that
M “ M1, which yields (A). Moreover, a similar argument, now also using the fact that our sharp asymp-
totics are uniform, in fact shows that every point in A has a neighborhood that is homeomorphic to an
interval, which yields (B).

Let us now explain our strategy to prove Theorem 1.7. We fix τ0 ! 0 and denote by Bκ the set of all
translators M P A1 that are κ-quadratic at time τ0. By Theorem 1.6 (spectral uniqueness) the restricted
eccentricity map E|Bκ : Bκ Ñ R is injective. Our goal is to show that the image of E|Bκ contains the
interval

(32) I :“
„

e0 ´
κ

10|τ0|
, e0 `

κ

10|τ0|



.

1A priori this slightly generalizes the construction from Hoffman-Ilmanen-Martin-White, but a posteriori it will be equivalent.
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We choose a reference translator M0 that is κ
100 -quadratic at time τ0. Observe that EpM0q is contained

in the interior of I. Also recall that we can express M0 as a limit of a sequence Mi of shifted HIMW
translators-with-boundary with ellipsoidal parameters ci and height hi.
We then run a continuity argument as follows: For each i, we choose the maximal interval rai, bis con-
taining ci such that for every a P rai, bis the shifted HIMW translators-with-boundary Ma

i with ellipsoidal
parameters a and height hi satisfies, roughly speaking, the following two properties:

(i) Ma
i is κ-quadratic at time τ0, and

(ii) EpMa
i q P I.

Since the HIMW construction at any finite height hi depends continuously on the ellipsoidal parameter, it
is not hard to see that 0 ă ai ă ci ă bi ă

1
3 . We then argue that for all large i the endpoint elements are

mapped to the endpoints of the interval, i.e.

(33) EpMai
i q P BI and EpMbi

i q P BI .

To show this, we have to exclude the possibility that (i) gets saturated at the endpoint elements, which we
do using Theorem 1.5 (uniform sharp asymptotics) together with the fact that EpMa

i q P I . For this step,
it is crucial that our notion of κ-quadraticity only depends on the behaviour of the cylindrical profile func-
tion at the single time τ0, and that our sharp asymptotics are uniform among such κ-quadratic solutions.
Furthermore, invoking in addition a Rado-type argument that will be discussed further below, we show
that

(34) EpMai
i q ‰ EpM

bi
i q.

Hence, by the intermediate value theorem for each x P I there exists some di P rai, bis with EpMdi
i q “ x.

Finally, passing to a subsequential limit, we get the desired translator M P Bκ satisfying EpMq “ x.

Having established the two fundamental facts (A) and (B), our final key step is:

Theorem 1.8 (monotonicity and analyticity, c.f. [CHH]). The tip curvature map k : A Ñ r0, 1{3s is
monotone and analytic.

Since every monotone analytic function is strictly monotone, this is indeed sufficient to conclude our
main classification theorem (Theorem 1.1) and its corollary (Corollary 1.2).

To establish monotonicity we use a Rado-type argument. This method, going back to [Rad51], is tra-
ditionally used in the study of 2-dimensional surfaces see e.g. [Gul73, Che76, MY82, Ros95, Bre16,
HIMW19a]. Here, we observe that the method can be adapted to our setting of 3-dimensional hyper-
surfaces with circular symmetry. Finally, analyticity follows from Lyapunov-Schmidt reduction and a
linearized version of the estimates from Section 5. This proof of analyticity is rather standard but also
rather lengthy, and will thus be given in a separate technical paper [CHH].2

2Analyticity is only needed to relate the spectral eccentricity and the tip curvature. Readers who are happy with a classification
of noncollapsed translators in terms of their spectral eccentricity can of course simply skip the paper about analyticity.
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Finally, in Section 5, we prove Theorem 1.6 (spectral uniqueness), by adapting the argument from
[ADS20] – with some important differences and additional steps – to our setting. To explain the underlying
mechanism, recall that by equation (8) the level sets almost evolve by mean curvature flow. More precisely,
the profile function V of the level sets of our translator satisfies the equation

(35) Vt “
p1` V2

t qVxx ` p1` V2
x qVtt ´ 2VxVtVxt

1` V2
x ` V2

t
´

1
V
.

For comparison, the profile function U of the ancient ovals in R3 would satisfy

(36) Ut “
Uxx

1` U2
x
´

1
U
.

Heuristically, thanks to the vanishing asymptotic slope one hopes that the functions U and V behave quite
similarly. However, while (36) is an uniformly parabolic PDE, equation (35) is an elliptic PDE with de-
generating coefficients, so some careful arguments are needed to make these heuristics precise.

In terms of the renormalized profile function our evolution equation takes the form

vτ “
vyy

1` v2
y
´

y
2

vy `
v
2
´

1
v
` eτNrvs,(37)

where N is a certain nonlinear error term, involving second derivatives with respect to both y and τ. Our
inverse profile function satisfies

(38) Yτ “
Yvv

1` Y2
v
`

1
v

Yv `
1
2
pY ´ vYvq ` eτMrYs,

for another nonlinear termM, which we also view as error term.

We first prove that our profile function is almost quadratically concave, namely

(39) pv2qyy ď
eτ

v2 .

This is based on the maximum principle, and thus some care is needed to handle the error term as opposed
to the analysis of the ovals in [ADS20], where the profile function was exactly quadratically concave. The
almost quadratic concavity estimate has the important corollary that Y „ Ce´v2{4 near the tips.

We then consider the difference of the profile functions w :“ v1 ´ v2, as well as its truncated version

(40) wC :“ v1ϕCpv1q ´ v2ϕCpv2q,

where, as before, ϕC localizes in the cylindrical regions Ci “ tvi ě
5
8θu. The difference function w

satisfies an evolution equation of the schematic form

(41) wτ “ Lw` Erws ` eτF rws,

where L is the one-dimensional Ornstein-Uhlenbeck operator. The function wC satisfies a related equation
with additional terms coming from the cutoff function. We also work with the difference of inverse profile
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functions W :“ Y1 ´ Y2, as well as its truncated version

(42) WT :“ ϕT ¨ pY1 ´ Y2q,

where ϕT is a suitable cutoff function that localizes in the tip region T “ tv ď 2θu. The function WT also
satisfies a related degenerate elliptic PDE, which we again view as parabolic PDE with error terms.

Our energy estimates require certain weighted integral norms, similarly as in [ADS20]. In addition to
the Gaussian L2-norm } }H, one also needs the Gaussian H1-norm

(43) } f }D :“
ˆ
ż

p f 2 ` f 2
y qe

´y2{4dy
˙1{2

,

and its dual norm } }D˚ . Moreover, for time-dependent functions this induces the parabolic norms

(44) } f }X,8 :“ sup
τďτ0

ˆ
ż τ

τ´1
} f p¨, σq}2

X
dσ

˙1{2

,

where X “ H,D orD˚. Furthermore, in the tip region one works with the norm

(45) }F}2,8 :“ sup
τďτ0

1
|τ|1{4

ˆ
ż τ

τ´1

ż 2θ

0
Fpv, σq2eµpv,σq dv dσ

˙1{2

,

where µ is a carefully chosen weight satisfying µpv, τq “ ´1
4 Y1pv, τq2 for v ě θ{2.

In contrast to [ADS20], we also need exponentially weighted C2-norms to control the higher derivative
terms coming from the nonlinearities eτN and eτM. Specifically, in the cylindrical region C “ C1 Y C2

we work with3

} f }C2
exppCq

:“ sup
τďτ0

˜

|τ|eτ sup
y:py,τqPC

`

| f | ` | fy| ` | fτ| ` | fyy| ` | fyτ| ` | fττ|
˘

¸

,(46)

and in the tip region we work with

}F}C2
exppT q

:“ sup
τďτ0

ˆ

eτ sup
vď2θ

`

|F| ` |Fv| ` |Fτ| ` |Fvv| ` |Fvτ| ` |Fττ|
˘

˙

.(47)

In the cylindrical region we prove the energy estimate

(48) }wC ´ p0wC}D,8 ď ε
`

}wC}D,8 ` }w 1tθ{2ďv1ďθu}H,8
˘

`C}w}C2
exppCq

.

In the tip region we prove the energy estimate

(49) }WT }2,8 ď
C
|τ0|

´

}W1rθ,2θs}2,8 ` }W}C2
exppT q

¯

.

The proofs of these energy estimates are along the lines of [ADS20], but with various additional steps and
technical tweaks necessitated by our intrinsic localization and the nonlinear terms.

3For technical reasons, in the cylindrical region we use the weight |τ|eτ. Alternatively, one could use e
99
100 τ.
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We then combine our two energy estimates, taking also into account the equivalence of norms in the
transition region similarly as in [ADS20], to derive the decay estimate

(50) }wC}D,8 ` }WT }2,8 ď C
´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

For comparison, in the corresponding estimate in [ADS20, Section 8] the right hand side would simply
vanish and one could conclude directly that w and W vanish identically. In our case, however, the estimate
(50) is only half of the story, since the right hand side contains the exponentially weighted error terms
coming from our nonlinearities. While (50) gives control backwards in τ, we also need an estimate that
gives control forwards in τ. To this end, we consider the Hausdorff distance of the level sets, namely

(51) Dphq :“ dHausdorff
`

M1 X tx1 “ hu,M2 X tx1 “ hu
˘

.

Note that Dphq is essentially equivalent to the sum of the L8 norms of w and W at time τ “ ´ log h. We
then consider the level h1 “ e´τ

1`1, where τ1 P p´8, τ0s is such that

(52) }w}C2
exppCq

` }W}C2
exppT q

ď 2eτ
1
´

|τ1|}w}C2|Cτ1
` }W}C2|Tτ1

¯

.

Using the comparison principle for translators we show that we have the weighted L8-estimate

(53) sup
hPrh1{e2,h1s

Dphq ď 10plog h1q1{2Dph1q .

Using this weighted L8-estimate control, we can then estimate the weighted C2-norms in terms of the
weighted L2-norms via interior estimates. Specifically, taking also into account that thanks to our sharp
asymptotics the ellipticity of (35) only degenerates polynomially in log h, we derive the estimate

(54) }w}C2
exppCq

` }W}C2
exppT q

ď ε
`

}wC}D,8 ` }WT }2,8
˘

.

Finally, combining (50) and (54) we infer that w and W vanish identically, i.e. that M1 “ M2. This
concludes the outline of the proof.

Acknowledgments. KC has been supported by KIAS Individual Grant MG078901. RH has been sup-
ported by an NSERC Discovery Grant and a Sloan Research Fellowship. OH has been supported by the
Koret Foundation early career award and ISF grant 437/20.

2. Coarse asymptotics and circular symmetry

Let M Ă R4 be a noncollapsed translator. Without loss of generality we can assume that it translates
with unit speed in positive x1-direction, namely

(55) H “ eK1 .

By the convexity estimate [HK17, Theorem 1.10], our translator is convex. If M splits off a line, then it
must be Rˆ2d-bowl by [Has15]. We can thus assume from now on that M is strictly convex.
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2.1. Coarse asymptotics. Let K be the closed domain bounded by M. Consider the blowdown

(56) Ǩ :“ lim
λÑ0

λK.

By the main theorem of our prior paper [CHH21] the blowdown is a halfline, namely

(57) Ǩ “ tλe1 | λ ě 0u.

In the following, we write ν for the outwards unit normal.

Proposition 2.1 (asymptotic slope and tip point). We have xe1, νy Ñ 0 as x1 Ñ8. Moreover, there exists
a unique tip point p0 P M such that x1pp0q “ infpPM x1ppq.

Proof. By (57) and convexity, the fact that xe1, νy Ñ 0 as x1 Ñ8 is clear.
To find a tip point, assume without loss of generality that 0 P M, and consider the infimum

(58) m :“ inf
pPM

x1ppq.

Let pi P M be a minimizing sequence. Suppose towards a contradiction that |pi| Ñ 8. Then, up to a
subsequence pi{||pi|| Ñ w P S 3, and the ray `w :“ tλw | λ ě 0u is contained in K, and thus in Ǩ. By
(57) this implies w “ e1, which contradicts the assumption that pi is a minimizing sequence. Thus, there
exists a point p0 with

(59) x1pp0q “ inf
pPM

x1ppq.

By strict convexity this tip point is unique. This completes the proof of the proposition. �

Next, by [HK17, Theorem 1.14] and [CM15] the tangent flow to Mt “ M ` te1 at time ´8 is either a
neck or a bubble-sheet, namely either

(60) lim
λÑ0

λMλ´2t “ Rˆ S 2p
?
´4tq,

or

(61) lim
λÑ0

λMλ´2t “ R
2 ˆ S 1p

?
´2tq.

If (60) holds, then M is the round bowl by [Has15]. We can thus assume from now on that (61) holds.

Let us now consider the level sets

(62) Σh :“ M X tx1 “ hu.

By strict convexity, the level sets Σh are compact and diffeomorphic to the two-sphere.

Proposition 2.2 (diameter growth). The level sets satisfy

(63) lim
hÑ8

diampΣhq

h1{2
“ 8 and lim

hÑ8

diampΣhq

h1{2`δ
“ 0

for every δ ą 0.
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Proof. The first estimate follows from the assumption that we are in case (61). To prove the second
estimate, note that since M is strictly convex, [CHH21, Theorem 1.10] implies that in the fine bubble-
sheet expansion of the renormalized flow M̄τ “ eτ{2M´e´τ the neutral mode is dominant. Hence, we can
apply [CHH21, Corollary 1.8], which says that given any δ ą 0 for τ ! 0 we have the estimate

(64) M̄τ X tx1 “ 0u Ď Bp0, eδ|τ|q.

On the other hand, using the translator equation and remembering the renormalization we see that

(65) Σh “ e´τ{2 pM̄τ X tx1 “ 0uq ,

where τ “ ´ log h. Combining these facts yields the assertion. �

As a corollary of the proof we also obtain:

Corollary 2.3 (inscribed radius). The maximal inscribed radius of the level sets satisfies

(66) lim
hÑ8

rinpΣ
hq

p2hq1{2
“ 1.

Proof. By (61) the renormalized flow M̄τ for τÑ ´8 converges to Γ “ R2 ˆ S 1p
?

2q. Hence, using the
inwards quadratic bending from [CHH21, Theorem 1.7] we see that the maximal inscribed radius of M̄τ

for τÑ ´8 converges to
?

2. Together with (65), where τ “ ´ log h, this implies the assertion. �

The following estimate shows that the mean curvature of the level set is, up to a cubic error term, the
same as the mean curvature H of the translator, when x1 is high:

Proposition 2.4 (mean curvature of level sets). There exists a uniform constant C ă 8 such that

(67) |H ´ Hh| ď CH3,

where Hh is the mean curvature of Σh “ M X tx1 “ hu in Ph “ tx1 “ hu.

Proof. On a translator we have ∇H “ ApeJ1 ,´q and x∇H, e1y “ ∆H ` |A|2H. Thus,

(68) |ApeJ1 , e
J
1 q| ď |∆H| ` |A|2H.

From the local curvature estimate [HK17, Theorem 1.8], we know that |∆H| ď CH3, and so

(69) |ApeJ1 , e
J
1 q| ď CH3.

Now, given p P Σh, let tU,Vu be and orthonormal basis to TpΣh and let W :“ eJ1 {||e
J
1 ||. Then tU,V,Wu

is an orthonormal basis to TpM and

(70) H “ ApU,Uq ` ApV,Vq ` ApW,Wq “ ApU,Uq ` ApV,Vq ` OpH3q.

Now, let γU and γV be unit speed curves in Σh such that γUp0q “ p and γ1Up0q “ U respectively γVp0q “ p
and γ1Vp0q “ V . Then

(71) H “ xγ2U ` γ2V , νy ` OpH3q.
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On the other hand, the normal to Σh in Ph is

(72) νh “
ν´ He1
?

1´ H2
.

As xU, e1y “ 0 and xV, e1y “ 0, we conclude that

(73) Hh “ xγ2U ` γ2V , ν
hy “ xγ2U ` γ2V , νyp1` OpH2qq “ pH ` OpH3qqp1` OpH2qq.

This proves the proposition. �

2.2. Circular symmetry. Let M Ă R4 be a strictly convex noncollapsed translator, normalized such that
it translates with unit speed in positive x1-direction, and that the tip is at the origin. Further, suppose that
M is not the round bowl. By Colding-Minicozzi [CM15] the asymptotic cylinder R2 ˆ S 1 is unique. We
can assume without loss of generality that the R2-factor is in the x1x2-plane. Let R be the rotation vector
field corresponding to the circular symmetry of the asymptotic cylinder, namely

(74) R :“ x3Bx4 ´ x4Bx3 .

The goal of this subsection is to give a short proof of Zhu’s theorem:

Theorem 2.5 (circular symmetry). M is SOp2q-symmetric. More precisely, there exists some a P t0uˆR2,
such that the recentered translator M ´ a is invariant under rotations generated by the vector field R.

Note that rotations with center a P t0u ˆ R2 are generated by the vector field

(75) Ra :“ px3 ´ a3qBx4 ´ px4 ´ a4qBx3 .

Consider the rotation function fa :“ xRa, νy, where ν is the outwards unit normal of M. Our goal is to
find some a P t0u ˆ R2 such that fa vanishes identically on M.

Proposition 2.6 (weighted estimate, c.f. [Has15, Proposition 3.1]). For all h ą 0 we have

(76) sup
tx1ďhu

ˇ

ˇ

ˇ

ˇ

fa
H

ˇ

ˇ

ˇ

ˇ

ď sup
tx1“hu

ˇ

ˇ

ˇ

ˇ

fa
H

ˇ

ˇ

ˇ

ˇ

.

Proof. On our translator, the rotation functions and the mean curvature satisfy
`

∆` eJ1 ¨ ∇` |A|
2˘ fa “ 0,(77)

`

∆` eJ1 ¨ ∇` |A|
2˘H “ 0.(78)

Hence, the assertion follows from the maximum principle. �

Proof of Theorem 2.5. Consider the function

(79) Bphq :“ min
aPt0uˆR2

max
tx1“hu

| fa|

Case 1: Suppose there is a sequence hi Ñ8 with Bphiq “ 0. For each i, choose ai such that

(80) max
tx1“hiu

| fai | “ 0.
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Proposition 2.6 (weighted estimate) implies that fai “ 0 in the region tx1 ď hiu. Observe that

(81) fai “ f0 ´ xTi, νy,

where Ti “ p0, 0,´ai
4, a

i
3q. Thus, xTi, νy “ f0 in the region tx1 ď hiu. Hence, ai is constant and fai “ 0

everywhere, and we have proven rotational symmetry.

Case 2: Suppose now that Bphq ą 0 for h large. Fix τ P p0, 1{4q such that τ´
1
2`δ ą 2D, where D ă 8 is

the constant from [Has15, Proposition 4.1]. By Proposition 2.2 (diameter asymptotics) we have

(82) Bphq ď Oph1{2`δq.

Hence, we can then find hi Ñ8 such that

(83) inf
hPrτhi,his

Bphq ě
1
2
τ1{2`δBphiq.

Choose ai such that

(84) max
tx1“hiu

| fai | “ Bphiq.

Let pi P M X tx1 “ hiu be a point where the maximum in (84) is attained, and consider the renormalized
function

(85) rfi :“ Bphiq
´1 fai .

Recall that the family tMt “ M` te1utPR moves by mean curvature flow. If we view f̃i as a one parameter
family of functions on Mt, then equation (77) takes the form

(86) Bt rfi “ p∆` |A|
2
q rfi.

Set λi :“ Hppiq, and consider the parabolic rescalings

(87) pMi
t :“ λipMλ´2

i t ´ piq,

and

(88) pfipx, tq :“ rfipλ´1
i x` pi, λ

´2
i tq,

where x P pMi
t . Note that pMi

t moves by mean curvature flow and that pfi satisfies the parabolic equation

(89) Bt pfi “ p∆` |A|
2
q pfi.

Observe that λi Ñ 0 by Proposition 2.1 (asymptotic slope) and the translator equation. On the other hand,
using Corollary 2.3 (inscribed radius) and the sharp noncollapsing estimate from [HK15] we get

(90) lim inf
iÑ8

p2hiq
1{2λi ě 1.

Thus, by the global convergence theorem [HK17, Thm. 1.12], for i Ñ 8 the mean curvature flows pMi
t

converge (subsequentially) to an ancient noncollapsed mean curvature flow pM8
t that splits off a line in

x1-direction. Write pM8
t “ Nt ˆ R. Observe that Nt is noncompact by (61). Hence, by the classification

from Brendle-Choi [BC19] the 2d-flow Nt must be either (a) a round shrinking cylinder tCtută1{2, or (b)



NONCOLLAPSED TRANSLATORS IN R4 19

a translating bowl soliton B.

Using equation (83), Proposition 2.6 (weighted estimate), and the knowledge of the mean curvature of
the limiting flow, we see that f̂m converges (subsequentially) to a limit f “ t f ptqu, which after splitting of
the R-factor in x1-direction can be viewed as a function on Nt, solving

(91) Bt f “ p∆Nt ` |ANt |
2
q f ,

that in case (a) satisfies | f pz, θ, tq| ď 4 for t P p0, 1
4q, and in case (b) satisfies | f pz, θ, tq| ď Cp1 ` zq´1{2,

where z and θ denote the height and angle on Nt. Moreover, since divR4R “ 0 and xR, Bx1y “ xR, Bx2y “ 0,
the divergence theorem yields, after splitting off an R-factor in x1-direction, that for every z we have

(92)
ż

f pz, θ, tq dθ “ 0.

Let us first consider case (a). Note that f is independent of z. Hence, [Has15, Proposition 4.1] gives

(93) inf
TPR2

sup
Ct

| f ptq ´ fT | ď D
`1

2 ´ t
˘

for all t P r1{4, 1{2q, where fT “ xT, νy for translations T P R2. On the other hand, we have

inf
T

sup
tx1“0u

| f̂ip 1
2 ´ τq ´ fT | “ inf

T
sup
tx1“hiu

| f̃ipλ´2
i p

1
2 ´ τqq ´ fT | “ inf

T
sup

tx1“hi´λ
´2
i p 1

2´τqu

| f̃ip0q ´ fT |

“
1

Bphiq
inf
T

sup
tx1“hi´λ

´2
i p 1

2´τqu

| fRai
´ fT | “

Bphi ´ λ´2
i p

1
2 ´ τqq

Bphiq
ě

1
2
τ1{2`δ(94)

for i large enough, where we used (83) and (90) in the last step. Taking the limit as i Ñ8 gives

(95) inf
T

sup
C 1

2´τ

| f p 1
2 ´ τq ´ fT | ě 1

2τ
1{2`δ.

Since τ´
1
2`δ ą 2D, this contradicts (93). This completes the analysis in case (a).

Finally, in case (b) Proposition 2.7 (Liouville property) from below gives a contradiction. This finishes
the proof of the theorem. �

In the above proof we have used the following proposition:

Proposition 2.7 (Liouville property). Suppose f is a solution on the 2d-bowl B of

(96) p∆` eJz ¨ ∇` |A|
2q f “ 0,

such that for every z we have

(97)
ż

f pz, θq dθ “ 0.

If

(98) | f | ď Cp1` zq´1{2

for some C ă 8, then f “ 0.
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Proof. The argument from [Has15], which has been written for f “ fR but also applies for other solutions
f of (96) satisfying (98), shows that f “ xT, νy for some T P R2. By (97) we must have T “ 0. �

3. Uniform sharp asymptotics

Throughout this section, M Ă R4 denotes any noncollapsed translator that is neither the 3d round bowl
nor Rˆ2d-bowl. As before, we normalize such that the translation is in x1-direction with unit speed.

To establish the sharp asymptotics we need suitable inner barriers for the renormalized mean curvature
flow near the cylinder Γ “ R2 ˆ S 1p

?
2q. To begin with, recall from Angenent-Daskalopoulos-Sesum

[ADS19, Figure 1 and Section 8] that there is some L0 ą 1 such that for every a ě L0 there are shrinkers

Σa “ tsurface of revolution with profile r “ uapy1q, 0 ď y1 ď au Ă R3.(99)

The parameter a captures where the concave functions ua meet the y1-axis. In our previous paper [CHH21,
Section 3] we constructed a bubble-sheet foliation Γa Ă R

4 by shifting and rotating the ADS-shrinker
foliation Σa Ă R

3. For the present paper, we need the somewhat more general inner barriers

(100) Γ
η
a :“

 

pr cos θ, r sin θ, y3, y4q : θ P r0, 2πq, pr ´ η, y3, y4q P Σa
(

Ă R4,

where we now shift by η ą 0 instead of by 1.

Proposition 3.1 (barriers). The hypersurfaces Γ
η
a act as an inner barriers for the renormalized mean

curvature flow in the region |py1, y2q| ě 3η´1.

Proof. Being an inner barrier for the renormalized mean curvature flow is equivalent to the condition

(101) HΓ
η
a
ď 1

2x~y, νy.

To show this, note that by symmetry of the hypersurfaces Γ
η
a, it suffices to compute HΓ

η
a

in the region
ty2 “ 0, y1 ą 0u, where we can identify points and unit normals in Γ

η
a with the corresponding ones in Σa,

by disregarding the y2-component. The relation between the mean curvature of a surface Σ Ă R3 and its
(unshifted) rotation Γ Ă R4 on points with y2 “ 0 and y1 ą 0 is given by

(102) HΓ “ HΣ `
1
y1
xe1, νy.

In our case, the convexity of Σa gives xe1, νy ě 0, so using (102) and the shrinker equation we infer that

(103) HΓ
η
a
“

1
2
x~y´ ηe1, νy `

1
y1
xe1, νy ď

1
2
x~y, νy,

where in the last inequality, we have used that y1 ě 2η´1. This proves the proposition. �
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3.1. Sharp asymptotics in bubble-sheet region. We consider the renormalized mean curvature flow

(104) M̄τ “ e
τ
2 M´e´τ ,

where τ “ ´ logp´tq. Then, M̄τ converges to

(105) Γ “ R2 ˆ S 1p
?

2q

as τ Ñ ´8. Recall that we have circular symmetry (see Theorem 2.5). In particular, this symmetry
must preserve Γ. This symmetry must also preserve the positive e1-axis. Hence, after shifting M in the
x3x4-plane, the hypersurfaces M̄τ are left invariant by the rotation vector field

(106) V “ x3e4 ´ x4e3.

Denote by Ωτ the set of points y “ py1, y2q P R
2 such that py, r cos θ, r sin θq P M̄τ for some r ą 0. There

exists a unique function u : Ωτ ˆ RÑ p´
?

2,8q such that

(107)
`

y, p
?

2` upy, τqq cos θ, p
?

2` upy, τqq sin θ
˘

P M̄τ,

and

(108) lim
yÑBΩτ

upy, τq “ ´
?

2.

Moreover, there exists an admissible graphical radius function ρ0pτq for τ ď τ˚, namely a positive smooth
function ρ0 : p´8, τ˚s Ñ R` with limτÑ´8 ρ0pτq “ 8 such that

´ρ0pτq ď ρ10pτq ď 0(109)

and

(110) }u}C4pBp0,2ρ0pτqqXΓq ď ρ0pτq
´2

hold for τ ď τ˚.
Since M̄τ moves by renormalized mean curvature flow, the graph function u satisfies the equation

uτ “
∆u

1` |∇u|2
´

1
?

2` u
`

1
2

´?
2` u´ y ¨ ∇u

¯

.(111)

This can be rewritten as

uτ “ Lu´
u2

2
?

2
´

u3

4` 2
?

2u
´
|∇u|2∆u

1` |∇u|2
,(112)

where

(113) L “
B2

By2
1

`
B2

By2
2

´
y1

2
B

By1
´

y2

2
B

By2
` 1.

The two-dimensional Ornstein-Uhlenbeck operator L has 3 unstable eigenfunctions, namely

(114) 1, y1, y2,

and 3 neutral eigenfunctions, namely

(115) y2
1 ´ 2, y2

2 ´ 2, y1y2.
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Next, we fix a smooth cut-off function χ : R` Ñ r0, 1s such that χpsq “ 1 for s ď 1 and χpsq “ 0 for
s ě 2. Then, we define

(116) αpτq “

ˆ
ż

|y|ď2ρ0pτq
u2py, τqχ

´

|y|
ρ0pτq

¯

1
2
?

2π
e´

|y|2`2
4 dy

˙1{2

,

and

(117) βpτq “ sup
σďτ

αpσq.

By the inverse Poincare inequality [CHH21, Proposition 4.4] we have limτÑ´8 βpτq “ 0.

Proposition 3.2 (barrier estimate). There are constants c ą 0 and C ă 8 such that

(118) |upy, τq| ď Cβpτq
1
2

holds for |y| ď cβpτq´
1
4 and τ ! 0.

Proof. By parabolic estimates (see [CHH21, Appendix A]), there is a constant K ă 8 such that

(119) |upy, τq| ď Kβpτq

holds for |y| ď 2L0 and τ ! 0, where L0 is the constant from the ADS-foliation (99). Given τ̂ ! 0,
consider the barrier hypersurface Γa “ Γ1

a from (100) with parameters η “ 1 and

(120) a “
c0

a

Kβpτ̂q
.

If we choose c0 small enough, then by [ADS19, Lemma 4.4] the profile function ua of the ADS-shrinker
Σa satisfies

(121) uapL0 ´ 1q ď
?

2´ Kβpτ̂q.

Combining this with (119), the inner barrier principle from Proposition 3.1 implies that Γa is enclosed by
M̄τ for |y| ě L0 and τ ď τ̂. Since uap

?
aq2 ě 2´ 2{a (see e.g. [CHH18, Equation (195)]), this yields

(122) upy, τ̂q2 ě 2´ 2{a

for |y| P rL0,
?

a´ 1s. Hence, remembering (120) we conclude that

(123) upy, τq ě ´Cβpτq
1
2

holds for |y| ď cβpτq´
1
4 and τ ! 0. Finally, by convexity, using also (119), this lower bound implies a

corresponding upper bound. This concludes the proof of the proposition. �

We now define

(124) ρpτq :“ βpτq´
1
5

Then, Proposition 3.2 (barrier estimate) and standard interior Schauder estimates give

(125) }up¨, τq}C4pΣXB2ρpτqp0qq ď ρpτq´2
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for τ ! 0. Moreover, thanks to [CHH21, Theorem 1.10] the neutral eigenfunctions dominate4 and we thus
have

(126)
ˇ

ˇ

ˇ

ˇ

d
dτ
α2
ˇ

ˇ

ˇ

ˇ

“ opα2q.

This implies

(127) ´ ρpτq ď ρ1pτq ď 0

for τ ! 0, i.e. ρ is an admissible graphical radius function.

We now work with the truncated graph function

(128) ûpy, τq “ upy, τqχ
´

|y|
ρpτq

¯

,

where ρ denotes the improved graphical radius from equation (124).

Proposition 3.3 (evolution equation). The function û satisfies

(129) Bτû “ Lû´ 1
2
?

2
û2 ` E,

where the error term can be estimated by

|E| ďCχ|u|3 `Cχ|∇u|2|∇2u| `C|χ1|ρ´1`|∇u| ` |y||u|
˘

`C|χ2|ρ´2|u| `Cχp1´ χq
`

|u|2 ` |∇2u|2
˘

.(130)

Proof. We compute

|Bτû´ χBτu| “ |y||ρ1ρ´2|χ1u| ď C|χ1|ρ´1|y||u|,(131)

and

(132) |Lû´ χLu| “
ˇ

ˇu∆χ` 2∇u ¨ ∇χ´ 1
2 uy ¨ ∇χ

ˇ

ˇ ď C|χ1|ρ´1`|∇u| ` |y||u|
˘

`C|χ2|ρ´2|u|.

Moreover, we have
ˇ

ˇ

ˇ

ˇ

´
û2

2
?

2
`

χu2

2
?

2

ˇ

ˇ

ˇ

ˇ

ď χp1´ χqu2,

ˇ

ˇ

ˇ

ˇ

χu3

4` 2
?

2u

ˇ

ˇ

ˇ

ˇ

ď χ|u|3,
ˇ

ˇ

ˇ

ˇ

χ|∇u|2∆u
1` |∇u|2

ˇ

ˇ

ˇ

ˇ

ď Cχ|∇u|2|∇2u|.(133)

Together with (112) this yields the desired result. �

We now consider the neutral eigenfunction

ψ0 “ 2´
3
2 p e

2πq
1
4 py2

2 ´ 2q,(134)

which is normalized with respect to the Gaussian inner product x¨, ¨yH . Here, for θ-independent functions
the Gaussian inner product is given by

(135) x f , gyH “
ż

f pyqgpyqp8πq´
1
2 e
´|y|2`2

4 dy.

4Thanks to the SOp2q-symmetry the fine tuning rotation S pτq from [CHH21, Proposition 4.1] is simply the identity matrix.
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We now define

(136) α0 “ xû, ψ0yH .

Then, by [CHH21, Theorem 1.7] we have

(137) û “ α0ψ0 ` op|α0|q

inH-norm.

Lemma 3.4 (error estimate). The error term E from Proposition 3.3 (evolution equation) satisfies the
estimate

(138) |xE, ψ0yH | ď Cβpτq2`
1
5

for τ ! 0.

Proof. Using the inverse Poincare inequality from [CHH21, Proposition 4.4], the argument from [CHH18,
Proof of Proposition 4.21] applies. �

Proposition 3.5 (evolution of expansion coefficient). The coefficient α0 from the expansion (137) satisfies

d
dτα0 “ ´p

e
2πq

1
4α2

0 ` opβ2q.(139)

Proof. Using Proposition 3.3 (evolution equation) and Lψ0 “ 0 we see that

d
dτα0 “ xBτû, ψ0yH “ xLû´ 1

2
?

2
û2 ` E, ψ0yH “ x´

1
2
?

2
û2 ` E, ψ0yH .(140)

Together with (137) and Lemma 3.4 (error estimate) this implies

(141) d
dτα0 “ ´

1
2
?

2
cα2

0 ` opβ2q,

where

(142) c “
ż

ψ3
0p8πq

´ 1
2 e´

|y|2`2
4 dy.

Computing c yields the desired result. �

Theorem 3.6 (inwards quadratic bending). The function û satisfies

(143) lim
τÑ´8

|τ|ûpy, τq “ ´
y2

2 ´ 2

2
?

2
inH-norm. In particular, for τ ! 0 we have

(144) }ûp¨, τq}H “ p2π{eq
1
4 |τ|´1 ` op|τ|´1q.

Proof. Let

(145) β0pτq :“ sup
σďτ

|α0pσq|,

where α0 is defined in (136). By Proposition 3.5 (evolution of the expansion coefficient) there is some
τ˚ ą ´8 so that for τ ď τ˚ we have

(146)
ˇ

ˇ

ˇ

d
dτα0 ` p

e
2πq

1
4α2

0

ˇ

ˇ

ˇ
ď 1

10β
2
0.
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Suppose that at some τ0 ď τ˚ we have β0pτ0q “ |α0pτ0q|. Then,

(147) ´ d
dτα0pτ0q ě p

e
2πq

1
4α2

0pτ0q ´
1

10β
2
0pτ0q ě

1
2α

2
0pτ0q ą 0,

implies that there exists some small δ ą 0 such that α0pτq ą α0pτ0q holds for τ P pτ0 ´ δ, τ0q. Since
β0pτ0q “ |α0pτ0q| ě |α0pτq| for τ ď τ0, we thus have α0pτ0q ă 0.

Next, we choose any time τ1 ď τ˚ satisfying β0pτ1q “ |α0pτ1q|, and an interval I “ rτ1, τ
1s Ă rτ1, τ˚s

such that d
dτα0pτq ď 0 for τ P I. Since α0pτ1q ă 0, we have ´α0pτq “ β0pτq for all τ P I. Moreover,

(148) ´ d
dτα0 ě α2

0pτq ě α2
0pτ1q ą 0

holds for all τ P I. Therefore, if τ1 ă τ˚ we can keep extending τ1 until τ1 “ τ˚. Namely, ´α0pτq “ β0pτq

holds for all τ P rτ1, τ˚s. Since τ1 was arbitrarily, we infer that ´α0pτq “ β0pτq for all τ ď τ˚. Namely,
we have α0 ă 0 and

d
dτα0 “ ´p

e
2πq

1
4α2

0 ` opα2
0q,(149)

for all τ ď τ˚. Integrating this ODE yields

α0pτq “
´p2π{eq

1
4 ` op1q
|τ|

(150)

for τ ! τ˚. Together with (137) this implies the assertion. �

Recall that in contrast to [ADS19, ADS20], where only a single solution was considered, we need
estimates for families that are uniform depending only on the quadratic bending in the central region. As
opposed to the introduction, we will first work with the following stronger notion of κ-quadraticity:

Definition 3.7 (strongly κ-quadratic). We say that a noncollapsed translator M in R4, normalized as above,
that is neither a 3d round bowl nor Rˆ 2d-bowl, is strongly κ-quadratic from time τ0 if

(i) ρpτq “ |τ|1{10 is an admissible graphical radius function for τ ď τ0, and
(ii) the truncated graph function ûpy, τq “ upy, τqχ

´

|y|
ρpτq

¯

, satisfies the estimate

(151)

›

›

›

›

›

ûpy, τq `
y2

2 ´ 2

2
?

2|τ|

›

›

›

›

›

H

ď
κ

|τ|
for τ ď τ0.

Corollary 3.8 (strong κ-quadraticity). For every κ ą 0 and every noncollapsed translator M in R4,
normalized as above, that is neither a 3d round bowl nor 2d-bowl ˆR, there exists τ˚ “ τ˚pκ,Mq ą ´8
such that M is strongly κ-quadratic from any time τ0 ď τ˚.

Proof. By Theorem 3.6 (inwards quadratic bending) and the inverse Poincare inequality from [CHH21,
Proposition 4.4] we have βpτq „ |τ|´1. Together with the above, this implies the assertion. �

Finally, in the parabolic region the L2-estimate from Theorem 3.6 can be upgraded to an L8-estimate.
Moreover, this estimate kicks in at time τ0 and is uniform depending only on κ:
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Proposition 3.9 (uniform asymptotics in parabolic region). For every ε ą 0 there exist constants κ ą 0
and τ˚ ą ´8, such that if M is strongly κ-quadratic from time τ0 ď τ˚, then we have the estimate

ˇ

ˇ

ˇ

ˇ

ˇ

upy, τq `
y2

2 ´ 2

2
?

2 |τ|

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε

|τ|
(152)

for τ ď τ0 and |y| ď ε´1.

Proof. Consider the difference

(153) Dpy, τq :“ ûpy, τq ´ y2
2´2

2
?

2τ
.

If M is κ-quadratic from time τ0, then by definition we have

(154) }D}H ď
κ

|τ|

for every τ ď τ0. On the other hand, by Theorem 3.6 (inwards quadratic bending) and the parabolic
estimates from [CHH21, Theorem A.1] there exist a constant C “ Cpεq ă 8, such that

(155) sup
|y|ď2ε´1

|upy, τq| ď C|τ|´1,

for τ ď τ0, provided τ0 ď τ˚pεq. Therefore, standard interior estimates give

(156) }Dp¨, τq}W3,2pBp0,ε´1qq ď C|τ|´1

for such τ. Applying Agmon’s inequality with (154) and (156) we conclude that

(157) }Dp¨, τq}L8pBp0,ε´1qq ď
ε

|τ|
,

provided κ is sufficiently small. This proves the proposition. �

3.2. Sharp asymptotics in intermediate region. To capture the intermediate region we consider the
function

(158) v̄pz, τq “
?

2` up0, |τ|1{2z, τq.

We will show that v̄pz, τq converges to
?

2´ z2 uniformly on each compact interval in p´
?

2,
?

2q. More
precisely, we make this convergence explicit in the parameter κ of strong κ-quadraticity:

Proposition 3.10 (intermediate region). For every ε ą 0 there exist κ ą 0 and τ˚ ą ´8, such that if M
is strongly κ-quadratic from time τ0 ď τ˚, then on I “ r´

?
2` ε,

?
2´ εs we have

(159) sup
zPI, τďτ0

ˇ

ˇ

ˇ
v̄pz, τq ´

a

2´ z2
ˇ

ˇ

ˇ
ď ε.
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Proof. We will adapt the proof from [ADS19, Section 6] to our setting.

Lower bound: By [ADS19, Lemma 4.4], there exist some a0 ě 1 and an increasing function M :
pa0,8q Ñ p100,8q with lim

aÑ8
Mpaq “ 8 such that the profile function ua of Σa satisfies

(160) uapyq ď
?

2´
y2 ´ 3
?

2 a2

for 0 ď y ď Mpaq. Let δ ą 0 be such that
b

2
1`δ ě

?
2´ ε, and define

(161) âpτq “

d

2|τ|
1` δ

.

Choose τ˚ such that

(162) δ´1 ď mintMp|τ˚|
1
2 q, |τ˚|

1
2´

1
100 u,

and such that

(163)
ˇ

ˇ

ˇ

ˇ

c

2
´

1´ y2

apτq2

¯

´ uapτqpyq
ˇ

ˇ

ˇ

ˇ

ď ε

hold for every τ ď τ˚ and |y| ď apτq, which is possible in light of [ADS19, Lemma 4.3].
By Proposition 3.1 (barriers) for each fixed τ̂ ď τ0 ď τ˚ the static hypersurface Γ3δ

âpτ̂q Ă R
4 plays the

role of an inner barrier in the region |y| ě δ´1. Since Γ3δ
âpτ̂q Ă R

4 is compact and enclosed by the cylinder

R2 ˆ S 1p
?

2q “ lim
τÑ´8

M̄τ, this yields

(164)
?

2` upy, τq ě uâpτ̂qp|y| ´ 3δq

for y P ΩτzBδ´1p0q and τ ď τ̂, provided the boundary condition

(165)
?

2` upy, τq ě uâpτ̂qpδ
´1 ´ 3δq

holds for |y| “ δ´1 and τ ď τ̂. To check this boundary condition, note that (160) by our choice of
constants implies

uâpτ̂qpδ
´1 ´ 3δq ´

?
2 ď ´

rδ´1 ´ 3δs2 ´ 3
?

2 â2pτ̂q
ď ´

δ´2

2
?

2 |τ̂|
.(166)

Moreover, using also Corollary 3.9 (uniform asymptotics in parabolic region) we see that if our solution
is κ-quadratic from time τ0 ď τ˚, for κ sufficiently small, then (after reducing τ˚ to be the minimum of its
current value and the value from Proposition 3.9) we have

(167) u py, τq ě ´
y2

2 ´ 2` δ

2
?

2|τ|
ě ´

|y|2

2
?

2|τ|
ě ´

δ´2

2
?

2|τ̂|

for |y| “ δ´1 and τ ď τ̂. Thus, the boundary condition (165) indeed holds for |y| “ δ´1 and τ ď τ̂.
Consequently,

(168) v̄pz, τ̂q “
?

2` up0, |τ̂|
1
2 z, τq ě uâpτ̂qp|τ̂|

1
2 |z|q
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holds for τ̂ ď τ0 and z satisfying |τ̂|´
1
2 δ´1 ď |z| ď |τ̂|´

1
2 âpτ̂q. As |τ̂|´

1
2 âpτ̂q “

b

2
1`δ ě

?
2 ´ ε, while

by the choice ot τ˚ one has |τ̂|´
1
2 δ´1 ě |τ̂|´1{100, we obtain

(169) v̄pz, τq ě uâpτqp|τ|
1
2 |z|q

for |z| P r|τ|´
1

100 , 2´ εs and τ ď τ0. Thus, by (163), for every τ ď τ̄0 and |z| P r|τ|´
1

100 ,
?

2´ εs we get

(170) v̄pz, τq ` ε ě

d

2´
2|τ|z2

â2pτq
“

b

2´ p1` δqz2 .

Finally, since v̄ is concave in z, we have v̄pz, τq ě mintv̄p|τ|´
1

100 , τq, v̄p´|τ|
1

100 , τqu for |z| ď |τ|´
1

100 .
Putting things together, we conclude that

(171) inf
|z|ď

?
2´ε, τďτ0

´

v̄pz, τq ´
a

2´ z2
¯

ě ´2ε.

Upper bound: Since u is concave, we have

uτ ď ´
1

?
2` u

`
1
2

´?
2` u´ y ¨ ∇u

¯

.(172)

Thus, vpy, τq :“ p
?

2` up0, y, τqq2 ´ 2 satisfies

vτ ď v´
1
2

yvy.(173)

Hence, for each α P R we have
d
dτ

´

e´τvpαe
τ
2 , τq

¯

ď 0,(174)

provided τ is negative enough so that p0, αe
τ
2 q P Ωτ. Thus, for τ̄ ď τ we get

(175) vpαe
τ
2 , τq ď eτ´τ̄v

´

αe
τ
2 e´

τ´τ̄
2 , τ´ pτ´ τ̄q

¯

.

Therefore, for σ P p0, 1s we obtain

(176) vpy, τq ď σ´2vpσy, τ` 2 logσq.

On the other hand, by Proposition 3.9 (uniform asymptotics in parabolic region), given any A ă 8, there
exists κ ą 0 such that if M is κ-quadratic from time τ0 ď τ˚, then

(177) vpy, τq ď |τ|´1p2´ y2q ` A´1|τ|´1

for |y| ď A. Thus, for |y| ě A we obtain

vpy, τq ď py{Aq2vp˘A, τ´ 2 logp|y|{Aqq(178)

“ ´
p1´ 2A´2qy2

|τ| ` 2 logp|y|{Aq
` A´1p|τ´ 2 logp|y|{Aq|´1q.(179)

This implies

v̄pz, τq “
b

2` vp|τ|1{2z, τq ď
b

2´ z2p1´ 2A´2q ` |τ|´1{2(180)
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uniformly for |z| ě A|τ|´
1
2 . In addition, the concavity of v̄ and (171) yield

v̄pz, τq ď 2v̄pA|τ|´
1
2 , τq ´ v̄p2A|τ|´

1
2 ´ z, τq(181)

ď 2
b

2´ z2p1´ 2A´2q ` |τ|´1{2 ´
a

2´ z2 ` 2ε ď
a

2´ z2 ` 4ε.(182)

for |z| ď A|τ|´
1
2 , provided |τ| is sufficiently large and A is large enough (which happens for κ small

enough). Hence,

(183) sup
|z|ď

?
2´ε, τďτ0

´

v̄pz, τq ´
a

2´ z2
¯

ď 4ε

This finishes the proof of the proposition. �

3.3. Sharp asymptotics in terms of level sets. Let us now reformulate the results from the previous
subsections in terms of the level sets. Recall that, after re-centering our translator M in the x3x4-plane, the
level sets Σh “ MXtx1 “ hu are left invariant by the field x3e4´ x4e3. Hence, we can represent the level
sets as

(184) Σh “

!

ph, x2, x3, x4q P R
4 : ´d1phq ď x2 ď d2phq, px2

3 ` x2
4q

1{2 “ Vpx2,´hq
)

.

The function Vpx, tq, where t “ ´h, is called the profile function, and is defined for x ” x2 P r´d´phq, d`phqs.
It vanishes at the endpoints of this interval. We also consider the rescaled profile function v defined by

(185) Vpx, tq “
?
´tvpy, τq

where

(186) y “
x
?
´t
, τ “ ´ logp´tq.

In the tip regions, since Byv ‰ 0, we can define Ypv, τq as the inverse function of vpy, τq. In addition, to
capture the tips at scale |τ|´1{2, we consider the function

(187) Zpρ, τq “ |τ|1{2
´

Yp|τ|´1{2ρ, τq ´ Yp0, τq
¯

.

The following theorem shows that the profile function of the level sets of our translator satisfies ex-
actly the same sharp asymptotics as the profile function of the ancient ovals in [ADS19]. An important
difference with [ADS19], where only a single solution is considered, is that our estimates are uniform:

Theorem 3.11 (uniform sharp asymptotics assuming strong κ-quadraticity). For every ε ą 0 there exists
κ ą 0 and τ˚ ą ´8, such that if M is strongly κ-quadratic from time τ0 ď τ˚, then for every τ ď τ0 the
following holds:

(i) Parabolic region: The renormalized profile function satisfies

(188)
ˇ

ˇ

ˇ

ˇ

vpy, τq ´
?

2
ˆ

1´
y2 ´ 2

4|τ|

˙ˇ

ˇ

ˇ

ˇ

ď
ε

|τ|
p|y| ď ε´1q.
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(ii) Intermediate region: The function v̄pz, τq :“ vp|τ|1{2z, τq satisfies

(189) |v̄pz, τq ´
a

2´ z2| ď ε,

on r´
?

2` ε,
?

2´ εs.
(iii) Tip regions: We have the estimate

(190) }Zp¨, τq ´ Z0p¨q}C100pBp0,ε´1qq ď ε,

where Z0pρq is the profile function of the 2d-bowl with speed 1{
?

2.

In particular, Σh satisfies the estimate

(191)

ˇ

ˇ

ˇ

ˇ

ˇ

d˘phq
a

2h log h
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε.

Proof. By definition of the level sets, we have

(192) Σh “ pM ´ he1q X tx1 “ 0u.

Hence, describing Σh amounts to describing the x1 “ 0 section of the time t “ ´h slice of the flow
Mt “ M ` te1, which has already been done in the previous subsections. Specifically, observing that
vpy, τq “

?
2 ` up0, y, τq and applying Proposition 3.9 (uniform asymptotics in parabolic region) we

obtain

(193)
ˇ

ˇ

ˇ

ˇ

vpy, τq ´
?

2
ˆ

1´
y2 ´ 2

4|τ|

˙
ˇ

ˇ

ˇ

ˇ

ď
ε

|τ|
p|y| ď ε´1q,

which proves the first assertion. Next, by Proposition 3.10 (intermediate region) we have

(194) sup
τďτ0

sup
|z|ď

?
2´ε
|v̄pz, τq ´

a

2´ z2| ď ε,

which proves the second assertion. In particular, scaling back to the original surface Σh this implies

(195)

ˇ

ˇ

ˇ

ˇ

ˇ

d˘phq
a

2h log h
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε.

Recall that by Proposition 2.1 (asymptotic slope and tip point) we have H “ ´xe1, νy Ñ 0 as h Ñ 8.
Denote by H˘tipphq the mean curvature of M at the point p˘h at level h with maximal respectively minimal
x2-value. Using the above and Hamilton’s Harnack inequality [Ham95], similarly as in [ADS19, Section
7.2], we get

(196)

ˇ

ˇ

ˇ

ˇ

ˇ

d

h
log h

H˘tipphq ´
1
?

2

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2ε.

Now, suppose towards a contradiction there is a sequence Mi that is κi-quadratic from time τ0,i with
κi Ñ 0 and τ0,i Ñ ´8, but such that at some time τi ď τ0,i the function Zipρ, τq is not ε-close in
C100pBp0, ε´1qq to Z0pρq, the profile function of the 2d-bowl with speed 1{

?
2. Let hi “ e´τi Ñ 8 be

the height of the tips. Using the theory of noncollapsed flows from [HK17] we see that for i Ñ 8 the
sequence of flows that is obtained from Mi

t by shifting pp˘hi
, 0q to the origin and parabolically rescaling by

a

logphiq{hi converges to an ancient noncollapsed flow M8
t that splits isometrically as M8

t “ R ˆ N8t .
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By construction, N8t Ă R3 is a noncompact ancient noncollapsed flow, whose time zero slice is contained
in a halfspace and with mean curvature 1{

?
2 at the base point. Hence, the classification by Brendle-

Choi [BC19] implies that N8t is the rotationally symmetric translating bowl soliton with speed 1{
?

2.
This yields that Zipρ, τq Ñ Z0pτq smoothly and locally uniformly. For i large enough this contradicts the
assumption that Zi is not ε-close to Z0, and thus finishes the proof of the theorem. �

3.4. Uniform sharp asymptotics from one time. In this subsection, we show that one can conclude the
sharp asymptotics from information about the cylindrical profile function of the flow at the time τ0 itself.
This will be used in the next section in the continuity method along the HIMW class.

Recall that the renormalized profile function u “ upy1, y2, τq from the bubble-sheet analysis and the
renormalized profile function v “ vpy, τq of the level sets M X tx1 “ e´τu are related by

(197) vpy, τq “
?

2` up0, y, τq .

In the analysis of the function v we work with the Hilbert space H :“ L2pR, e´y2{4dyq, while on the other
hand in the analysis of the function u we worked with the Hilbert spaceH – Hb H.

Definition 3.12 (κ-quadratic). We say that a noncollapsed translator M ‰ Bowl3,R ˆ Bowl2 in R4,
normalized as above and centered such that p`pvCpτ0q ´

?
2q “ 0, is κ-quadratic at time τ0 if

(i) the cylindrical profile function vC “ vϕCpvq at time τ0 satisfies

(198)

›

›

›

›

›

vCpy, τ0q ´
?

2`
y2 ´ 2

2
?

2|τ0|

›

›

›

›

›

H

ď
κ

|τ0|
,

(ii) and the bubble-sheet graph function u satisfies

(199) sup
τPr2τ0,τ0s

}up¨, ¨, τq}C4pBp0,2|τ0|1{100q ď |τ0|
´1{50.

In contrast to Definition 3.7 (strongly κ-quadratic) here we work with the smaller Hilbert space H, and
more importantly we only prescribe the behavior of the function vC at the time τ0 itself as opposed to
prescribing the behavior at all times τ ď τ0. The main goal of this subsection is to prove:

Theorem 3.13 (κ-quadraticity implies strong κ-quadraticity). For every κ ą 0 sufficiently small there
exists τ˚ ą ´8 with the following significance. If M is κ

5 -quadratic at time τ0 for some τ0 ď τ˚, then M
is strongly-κ quadratic from time τ0.

In particular, by definition of strong κ-quadraticity, we get that ρpτq “ |τ|1{10 is an admissible graphical
radius for τ ď τ0, so the solution is graphical on a much larger scale than we initially assumed.

To prove Theorem 3.13, we will start with a lemma that upgrades the information of v in H to informa-
tion about u in H , essentially by exploiting the fact that By1u is very small on our bubble-sheet. Before
stating the lemma, we recall that we can decompose

(200) H “ H` ‘H0 ‘H´,
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according to the positive, neutral and negative eigenspaces of L, and that we denote the corresponding
projections by P`,P0 and P´. Moreover, in the following we work with the truncated function

(201) ûpy1, y2, τq :“ upy1, y2, τqχ
´

|py1,y2q|

ρpτq

¯

,

where ρpτq is a suitable graphical radius function that will be fixed below.

Lemma 3.14 (upgrade to bubble-sheet). For every κ ą 0 sufficiently small there exists τ˚ ą ´8 with the
following significance. If M is κ

5 -quadratic at time τ0 for some τ0 ď τ˚, then

(202)

›

›

›

›

›

ûpτ0q `
y2

2 ´ 2

2
?

2|τ0|

›

›

›

›

›

H

ď
κ

4|τ0|
,

and

(203) }P`ûpτ0q}H ď
1

|τ0|100 .

Proof. First observe that the unit normal at

(204) p “ py1, y2, p
?

2` upy1, y2, τ0qq cos θ, p
?

2` upy1, y2, τ0qq sin θq P M̄τ0

is given by

(205) ν “
1

b

1` pBy1uq2 ` pBy2uq2

`

´By1u,´By2u, cos θ, sin θ
˘

.

Now, if |py1, y2q| ď 2ρpτ0q, then pBy1uq2 ` pBy2uq2 ! 1, hence in particular |By1u| ď 2|xν, e1y|. On the
other hand, since p lies on a bubble-sheet, at the point P on the unrescaled translator corresponding to p,
we have HpPq ď eτ0{2. Together with the translator equation H “ xe1, νy and (199) this yields

(206) sup
|py1,y2q|ď2|τ0|1{100

|By1u| ď 2eτ0{2.

Now, remembering (197) and integrating this gradient estimate we infer that

(207) sup
|py1,y2q|ď|τ0|1{100

ˇ

ˇ

ˇ

?
2` ûpy1, y2, τ0q ´ vCpy2, τ0q

ˇ

ˇ

ˇ
ď eτ0{3,

provided τ0 ď τ˚, where we also used that u “ û and v “ vC in the region under consideration. On the
other hand, we have the Gaussian tail estimates

(208)
ż

|y|ě1
2 |τ0|1{100

˜

vCpy, τ0q ´
?

2`
y2 ´ 2

2
?

2|τ0|

¸2

e´
y2

4 dy ď
κ

|τ0|100 ,

and

(209)
ż

maxt|y1|,|y2|uě
1
2 |τ0|1{100

˜

ûpy1, y2, τ0q `
y2

2 ´ 2

2
?

2|τ0|

¸2

e´
y2

1`y2
2

4 dy1dy2 ď
κ

|τ0|100 .

Combining the above inequalities and choosing τ˚ “ τ˚pκq sufficiently negative, we infer that

(210)

›

›

›

›

›

ûpτ0q `
y2

2 ´ 2

2
?

2|τ0|

›

›

›

›

›

H

ď
1

p2eq1{4

›

›

›

›

›

vCpτ0q ´
?

2`
y2 ´ 2

2
?

2|τ0|

›

›

›

›

›

H

`
κ

20|τ0|
,
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where the factor 1
p2eq1{4

comes from the different normalizations of the two Hilbert spaces. Taking also
into account the assumption that M is κ

5 -quadratic at time τ0, this proves (202).

To derive (203), we first recall that H` is spanned by the eigenfunctions φ0 “ 1, φ1 “ y1, φ2 “ y2.
Now, thanks to the normalization p`pvCpτ0q ´

?
2qq “ 0, for every y1 and i “ 0, 1, 2 we have

(211)
ż 8

´8

´

vCpy2, τ0q ´
?

2
¯

φi e´
y2
2
4 dy2 “ 0.

Moreover, using the pointwise estimate (207) we see that

(212)

ˇ

ˇ

ˇ

ˇ

ˇ

ż

maxt|y1|,|y2|uď
1
2 |τ0|1{100

ûpy1, y2, τ0qφi e´
y2

1`y2
2

4 dy1dy2

´

ż

maxt|y1|,|y2|uď
1
2 |τ0|1{100

pvCpy2, τ0q ´
?

2qφi e´
y2

1`y2
2

4 dy1dy2

ˇ

ˇ

ˇ

ˇ

ˇ

ď
κ

|τ0|100 .

Furthermore, similarly as before we have the Gaussian tail estimates

(213) |τ0|
1{100 sup

|y1|ď
1
2 |τ0|1{100

ż

|y2|ě
1
2 |τ0|1{100

ˇ

ˇ

ˇ

´

vCpy2, τ0q ´
?

2
¯

φi

ˇ

ˇ

ˇ
e´

y2
2

4 dy2 ď
κ

|τ0|100 ,

and

(214)
ż

maxt|y1|,|y2|uě
1
2 |τ0|1{100

|ûpy1, y2, τ0qφi| e
´

y2
1`y2

2
4 dy1dy2 ď

κ

|τ0|100 .

Combining the above equations we infer that
ˇ

ˇ

ˇ

ˇ

ż 8

´8

ż 8

´8

ûpy1, y2, τ0qφi e´
y2
1`y2

2
4 dy1dy2

ˇ

ˇ

ˇ

ˇ

ď
3κ

|τ0|100 .(215)

In particular, this shows that

(216) }P`ûpτ0q}H ď
1

|τ0|100 ,

and thus finishes the proof of the lemma. �

As another preparation, we need some suitable graphical radius to get the argument started:

Lemma 3.15 (initial graphical radius). There exists some universal number q ą 0 with the following
significance. For every κ ą 0 sufficiently small, there exists a constant τ˚ ą ´8, such that if M is
κ-quadratic at time τ0 ď τ˚, then ρpτq “ |τ|q is an admissible graphical radius function for τ ď τ0.

Proof. We will use the Lojasiewicz-Simon inequality from Colding-Minicozzi [CM15] in combination
with (199) and the discussion after Proposition 3.2. Recall that the Gaussian area of a hypersurfaces in
R4, given by

(217) FpMq “ p4πq´3{2
ż

M
e´

|x|2

4 ,
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is decreasing along the renormalized mean curvature flow. Letting Γ be the bubble-sheet cylinder, we have

(218) lim
τÑ´8

FpM̄τq “ FpΓq.

Using (199) and Taylor expansion, at time τ0 we can estimate

(219)

ˇ

ˇ

ˇ

ˇ

ˇ

ż

|y|ď|τ0|1{100

˜

p
?

2` uq
b

1` |∇u|2e´
|y|2`p

?
2`uq2

4 ´
?

2e´
|y|2`2

4

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď 40|τ0|
´1{50.

Together with Gaussian tale estimates and monotonicity this implies

(220) 0 ď FpΓq ´ FpM̄τq ď 50|τ0|
´1{50

for all τ ď τ0. Hence, by quantitative differentiation [CHN13], for any ε ą 0 and R ă 8, there exists τ˚
such that if τ0 ď τ˚ then for every τ ď τ0 one has that M̄τ is a C2,α graph of with norm at most ε over
the cylinder in Bp0,Rq. Thus, by [CM15, Theorem 6.1], there exist K ă 8 and η P p1{3, 1q such that for
every τ ď τ0 ´ 1 we have

(221) pFpΓq ´ FpM̄τqq
1`η

ď K pFpM̄τ´1q ´ FpM̄τ`1qq .

Using the discrete Lojasiewicz lemma [CM15, Lemma 6.9] this yields

(222) pFpΓq ´ FpM̄τqq ď CpK, ηq|τ|´1{η,

for every τ ď 2τ0, and

(223)
8
ÿ

j“J

`

FpM̄´ j´1q ´ FpM̄´ jq
˘1{2

ď CpK, ηqJ´p.

for J ě 2|τ0|, where p :“ 1
4η ´

1
4 . Since the renormalized mean curvature flow is the negative gradient

flow of the F-functional this implies

(224)
ż τ

´8

ż

M̄τ1

ˇ

ˇ

ˇ

ˇ

Hpqq `
qK

2

ˇ

ˇ

ˇ

ˇ

e´
|q|2

4 dµτ1pqqdτ1 ď C|τ|´p

for τ ď 2τ0. Hence, applying [CM15, Lemma A.48], we obtain

(225)
ż

t|py1,y2q|ďρ0pτq{2u
|upy1, y2, θ, τq|e´

y2
1`y2

2
4 ď C|τ|´p

for τ ď 2τ0, where ρ0pτq is our initial choice of graphical radius. Thus, by Proposition 3.2 (barrier
estimate) the quantity β from (117) satisfies βpτq ď C|τ|´p{2, so by (124) the function |τ|´p{20 is an ad-
missible graphical radius for τ ď 2τ0. Hence, setting q “ mint p

20 ,
1

200u, together with (199) we conclude
that ρpτq :“ |τ|q is an admissible graphical radius for τ ď τ0. This finishes the proof of the lemma. �

After these preparations, we can now prove the main result of this subsection:
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Proof of Theorem 3.13. Using the graphical radius ρpτq “ |τ|q from Lemma 3.15 (initial graphical ra-
dius), we define the truncated function û as in (201). Remembering (200) we consider

U`pτq :“ }P`ûpτq}2
H
,

U0pτq :“ }P0ûpτq}2
H
,(226)

U´pτq :“ }P´ûpτq}2
H
.

Recall from [CHH21, Section 4] that for τ ď τ0 we have the differential inequalities

d
dτ

U` ě U` ´C0ρ
´1 pU` ` U0 ` U´q,

ˇ

ˇ

ˇ

d
dτ

U0

ˇ

ˇ

ˇ
ď C0ρ

´1 pU` ` U0 ` U´q,(227)

d
dτ

U´ ď ´U´ `C0ρ
´1 pU` ` U0 ` U´q,

where C0 ă 8 is a constant. We will first show that U0 dominates in the following quantitative sense:

Claim 3.16 (dominant mode). For every τ ď τ0 we have the inequality

(228) U`pτq ` U´pτq ď
4C0

ρpτ0q
U0pτq.

Proof. We argue as in the proof of the Merle-Zaag ODE lemma [MZ98]. Set ε “ C0ρpτ0q
´1. Possibly

after decreasing τ˚, we can assume that ε ă 1{100. Now, if at some time τ ď τ0 we had the inequality
2εpU` ` U0q ď U´, then by (227) at this time τ we would get

d
dτ
pU´ ´ 2εpU` ` U0qq ď ´U´ ` εp1` 4εqpU` ` U0 ` U´q ´ 2εU`

ď ´U´ ` εp1` 4εqp1`
1
2ε
qU´ ă 0.(229)

Hence, if the inequality 2εpU` ` U0q ď U´ held at some time τ1 ď τ0, then it would hold on p´8, τ1s,
contradicting Theorem 3.6 (inwards quadratic bending). Thus, we must have

(230) U´ ă 2εpU0 ` U`q

for every τ ď τ0. To finish the proof, we will show that

(231) U` ă 8εU0.

for all τ ď τ0. Note that by Lemma 3.14 (upgrade to bubble-sheet) this inequality indeed holds at time
τ “ τ0. Now, if the inequality (231) failed for some at some time less than τ0, then at the largest time
τ ă τ0 where it failed we would have U` “ 8εU0. Together with (227) and (230) this would imply

d
dτ
p8εU0 ´ U`q ď εp8ε` 1qpU` ` U0 ` U´q ´ U`

ď εp8ε` 1qp8ε` 1` 2εp1` 8εqqU0 ´ 8εU0 ď ´εU0 ă 0.

This contradicts the definition of τ, and thus establishes (231). This concludes the proof of the claim. �
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Now that we know that U0 dominates, it is important to determine which eigenfunction in

(232) H0 “ spanty2
1 ´ 2, y2

2 ´ 2, y1y2u

is the dominated one. The following claim shows that y2
2 ´ 2 dominates in a quantitative sense:

Claim 3.17 (dominant eigenfunction). For τ ď τ0 with }ûpτq}H ě e´ρpτq we have the estimate

(233)
ˇ

ˇxûpτq, y2
1 ´ 2yH

ˇ

ˇ` |xûpτq, y1y2yH | ď
C
ρpτq

}ûpτq}H .

Proof. Let ψ1 :“ y2
1 ´ 2, ψ2 :“ y1y2 and set αi :“ xû, ψiyH . Then, for i “ 1, 2 we have

|αi| ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż

maxt|y1|,|y2|uď
1
2ρpτq

uψi e´
y2

1`y2
2

4 dy1dy2

ˇ

ˇ

ˇ

ˇ

ˇ

`

ż

maxt|y1|,|y2|uě
1
2ρpτq

|ûψi|e
´

y2
1`y2

2
4 dy1dy2.(234)

Using the Cauchy-Schwarz inequality and the inverse Poincare inequality from [CHH21, Proposition 4.4]
we can estimate the second integral by

(235)
ż

maxt|y1|,|y2|uě
1
2ρpτq

|ûψi| e
´

y2
1`y2

2
4 dy1dy2 ď

C
ρpτq

}û}H .

To bound the first integral, note that as in the proof of Lemma 3.14 (upgrade to bubble-sheet) we have

(236) sup
maxt|y1|,|y2|uď

1
2ρpτq

ˇ

ˇ

ˇ

?
2` upy1, y2, τq ´ vpy2, τq

ˇ

ˇ

ˇ
ď eτ{3.

Hence,

(237)

ˇ

ˇ

ˇ

ˇ

ˇ

ż

maxt|y1|,|y2|uď
1
2ρpτq

upy1, y2, τqψi e´
y2

1`y2
2

4 dy1dy2

´

ż

maxt|y1|,|y2|uď
1
2ρpτq

´

vpy2, τq ´
?

2
¯

ψi e´
y2

1`y2
2

4 dy1dy2

ˇ

ˇ

ˇ

ˇ

ˇ

ď eτ{4.

Now, since ψ2 is an odd function of y1 we clearly have

(238)
ż

maxt|y1|,|y2|uď
1
2ρpτq

´

vpy2, τq ´
?

2
¯

ψ2 e´
y2

1`y2
2

4 dy1dy2 “ 0.

To estimate the integral involving ψ1 observe that using the identity

(239)
ż 8

´8

ψ1e´
y2
1
4 dy1 “ 0

for every y2 we have

(240)
ż

|y1|ď
1
2ρpτq

´

vpy2, τq ´
?

2
¯

ψ1 e´
y2

1`y2
2

4 dy1 “ ´

ż

|y1|ě
1
2ρpτq

´

vpy2, τq ´
?

2
¯

ψ1 e´
y2

1`y2
2

4 dy1.

This yields

(241)

ˇ

ˇ

ˇ

ˇ

ˇ

ż

maxt|y1|,|y2|uď
1
2ρpτq

´

vpy2, τq ´
?

2
¯

ψ2 e´
y2

1`y2
2

4 dy1dy2

ˇ

ˇ

ˇ

ˇ

ˇ

ď e´2ρpτq.
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Combining the above equations establishes the claim. �

Continuing the proof of the theorem, we consider the evolution of the coefficient

(242) α0pτq :“ xûpτq, ψ0yH ,

where we now work with the normalized eigenfunction

(243) ψ0 “ 2´3{2p e
2πq

1{4py2
2 ´ 2q.

Note that by the above two claims, α0 is dominant in a quantitative sense. Specifically, if we write

(244) ûpτq “ α0pτqψ0 ` wpτq,

then for all τ ď τ0 with |α0pτq| ě e´ρpτq we have the estimate

(245) }wpτq}H ď
C

ρpτ0q
|α0pτq|.

Now, using Proposition 3.3 (evolution equation) and equation (244) we see that
d
dτ
α0 “ ´

1
2
?

2
xû2, ψ0yH ` xE, ψ0yH

“ ´p e
2πq

1
4α2

0 ´
1?

2
α0xw, ψ2

0yH ´
1

2
?

2
xw2, ψ0yH ` xE, ψ0yH ,(246)

where E satisfies the pointwise estimate (130).

Claim 3.18 (error estimate). For all τ ď τ0 with |α0pτq| ě e´ρpτq
1{2

we have the estimate

(247)
ˇ

ˇα0xw, ψ2
0yH

ˇ

ˇ`
ˇ

ˇxw2, ψ0yH
ˇ

ˇ` |xE, ψ0yH | ď
C

ρpτ0q
α2

0pτq.

Proof. Using equation (245) the first term is easily controlled as

(248) |α0xw, ψ2
0yH | ď C|α0|}w}H ď

C
ρpτ0q

α2
0pτq.

To bound the last term, first observe that E from (130) is supported in the ball t|y| ď 2ρpτqu, so in
particular by the definition of admissible graphical radius we have the estimate

(249) |u| ` |∇u| ` |∇2u| ď
1

ρpτq2
.

Now, for |y| ď ρpτq1{2 we can estimate

(250) |E||ψ0| ď
`

C|u|3 `C|∇u|2|∇2u|
˘

ρpτq ď
C
ρpτq

`

|u|2 ` |∇u|2
˘

.

Together with the inverse Poincare inequality from [CHH21, Proposition 4.4] this yields

(251)
ż

|y|ďρpτq
1
2
|Eψ0| e´

|y|2
4 ď

C
ρpτq

}û}2
H
ď

C
ρpτq

α2
0pτq,

where in the last step we used the above two claims. In the remaining domain we have the coarse estimate
|Eψ0| ď Cρpτq2 so we can bound

ż

ρpτq1{2ď|y|ď2ρpτq
|Eψ0| e´

|y|2
4 ď e´ρpτq

2{3
.(252)
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Hence, for all τ ď τ0 with |α0pτq| ě e´ρpτq
1{2

we get

(253) |xE, ψ0yH | ď
C

ρpτ0q
α2

0pτq.

Finally, the second term is controlled similarly as in [ADS19, Proof of Lemma 5.14], but since we need to
check that everything works from time τ0 we include the details. By Ecker’s weighted Sobolev inequality
[Eck00] we have

(254) |xψ0,w2yH | ď C
ż

p1` |y|2qw2e´|y|
2{4 ď Cp}w}2

H
` }∇w}2

H
q.

Since the Gaussian L2-norm is already controlled by (245), it thus suffices to control }∇w}2
H

. To this
end, note that projecting the evolution equation for û from Proposition 3.3 (evolution equation) to the
orthonormal complement of spantψ0u gives

(255) Bτw “ Lw` g,

where g at all τ ď τ0 with |α0pτq| ě e´ρpτq
1{2

satisfies the estimate

(256) }g}H ď
1

2
?

2
}û2}H ` }E}H ď

C
ρpτq

}û}H ď
C

ρpτ0q
|α0pτq| .

Now, given τ̂ ď τ0, using (255) and integration by parts we compute

d
dτ

ż

eτ̂´τw2e´|y|
2{4 “

ż

eτ̂´τp2wg´ 2|∇w|2 ´ w2q e´|y|
2{4

ď

ż

eτ̂´τpg2 ´ 2|∇w|2q e´|y|
2{4,(257)

and

d
dτ

ż

pτ´ τ̂q|∇w|2e´|y|
2{4 “

ż

`

|∇w|2 ´ 2pτ´ τ̂qpLwqpLw` gq
˘

e´|y|
2{4

ď

ż

`

|∇w|2 ` 1
2pτ´ τ̂qg2q

˘

e´|y|
2{4 .(258)

For τ P rτ̂´ 1, τ̂s this yields

d
dτ

ż

´

pτ´ τ̂q|∇w|2 ` eτ̂´τ
2 w2

¯

e´|y|
2{4 ď

ż

g2 e´|y|
2{4 .(259)

Hence, together with (245) and (256) we infer that

(260) }∇wpτq}2
H
ď

C
ρpτ0q2

sup
τ1Prτ,τ`1s

α2
0pτ

1q.

Finally, using the second Merle-Zaag ODE from (227) and remembering (245) we see that

(261) sup
τ1Prτ,τ`1s

α2
0pτ

1q ď 2α2
0pτq.

In light of (254), the last estimate is established and the claim follows. �
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Now, setting γ :“ p e
2πq

1
4 and ε :“ Cρpτ0q

´1 by the evolution equation (246) and Claim 3.18 (error
estimate) we have

(262)
ˇ

ˇ

ˇ

ˇ

d
dτ
α0 ` γα2

0

ˇ

ˇ

ˇ

ˇ

ď εα2
0pτq

for all τ ď τ0 with |α0pτq| ě e´ρpτq
1{2

. Integrating this differential inequality backwards in time gives

(263) pγ ´ εqpτ´ τ0q ď
1

α0pτq
´

1
α0pτ0q

ď pγ ` εqpτ´ τ0q,

as long as |α0| ě e´ρ
1{2

on rτ, τ0s. Regarding the initial condition, observe that by (202) we have

(264)
ˇ

ˇ

ˇ

ˇ

1
α0pτ0q

´ γτ0

ˇ

ˇ

ˇ

ˇ

ď
γ2κ

2
|τ0|,

provided κ is sufficiently small. Hence, if τ0 ď τ˚pκq is so that ε ď γ2κ
2 , then we obtain

(265)
ˇ

ˇ

ˇ

ˇ

1
α0pτq

´ γτ

ˇ

ˇ

ˇ

ˇ

ď
γ2κ

2
|τ|,

as long as |α0| ě e´ρ
1{2

on rτ, τ0s. Finally, since 1
|τ|
" e´|τ|

q
2 if follows from continuity that (265) holds

unconditionally. In other words, we have shown that for all τ ď τ0 we have

(266)
ˇ

ˇ

ˇ

ˇ

α0pτq `
1
γτ

ˇ

ˇ

ˇ

ˇ

ď
3κ

4|τ|
.

Together with the estimate (245) this shows that }ûpτq}H „ |τ|´1 for every τ ď τ0. Hence, similarly as in
(124) we can now upgrade to the new graphical radius ρpτq “ |τ|1{10 for τ ď τ0. Furthermore, combining
(245) and (266) also shows that û, now defined with respect to the new graphical radius, satisfies

(267)

›

›

›

›

›

ûpτq `
y2

2 ´ 2

2
?

2|τ|

›

›

›

›

›

H

ď
κ

|τ|
for τ ď τ0.

Thus, we conclude that M is strongly κ-quadratic from time τ0. This finishes the proof of the theorem. �

As a corollary of the proof, we also obtain the following projection estimate:

Corollary 3.19 (projection estimate). If M is κ-quadratic at time τ0 ď τ˚, then

(268) }p´pvCpτ0qq}H ď
κ

100|τ0|
.

Proof. Setting wpy1, y2, τq :“ vCpy2, τq we compute

p2eq´
1
4 }p´pvCpτ0qq}H “ }P´pwpτ0qq}H ď }P´pwpτ0q ´ ûpτ0qq}H ` }P´pûpτ0qq}H

ď }wpτ0q ´
?

2´ ûpτ0q}H ` U´pτq1{2.(269)

Using again a combination of the pointwise estimate (207) and Gaussian tail estimates we get

(270) }wpτ0q ´
?

2´ ûpτ0q}H ď
κ

|τ0|100 .



40 KYEONGSU CHOI, ROBERT HASLHOFER, OR HERSHKOVITS

Moreover, by Claim 3.16 (dominant mode) and the inequality U0pτq
1{2 ď C|τ|´1 we have

(271) U´pτq1{2 ď 2
ˆ

C0

ρpτ0q

˙1{2 C
|τ|

Taking τ˚ sufficiently negative, this implies the assertion. �

As a consequence, we now obtain uniform sharp asymptotics depending only on κ-quadraticity:

Theorem 3.20 (uniform sharp asymptotics). For every ε ą 0 there exists κ ą 0 and τ˚ ą ´8, such that
if M is κ-quadratic at time τ0 for some τ0 ď τ˚, then for every τ ď τ0 the following holds:

(i) Parabolic region: The renormalized profile function satisfies

(272)
ˇ

ˇ

ˇ

ˇ

vpy, τq ´
?

2
ˆ

1´
y2 ´ 2

4|τ|

˙
ˇ

ˇ

ˇ

ˇ

ď
ε

|τ|
p|y| ď ε´1q.

(ii) Intermediate region: The function v̄pz, τq :“ vp|τ|1{2z, τq satisfies

(273) |v̄pz, τq ´
a

2´ z2| ď ε,

on r´
?

2` ε,
?

2´ εs.
(iii) Tip regions: We have the estimate

(274) }Zp¨, τq ´ Z0p¨q}C100pBp0,ε´1qq ď ε,

where Z0pρq is the profile function of the 2d-bowl with speed 1{
?

2.

Moreover, we have the estimate

(275) }p´pvCpτ0qq}H ď
κ

100|τ0|
.

Furthermore, for every τ ď τ0 the renormalized hypersurface M̄τ “ e´τ{2M´e´τ can be expressed locally
as a graph of a function upy1, y2, τq over the cylinder R2 ˆ S 1p

?
2q with the estimate

(276) }u}C4pBp0,2|τ|1{10q ď |τ|
´1{5.

Proof. This follows combining Theorem 3.11 (uniform sharp asymptotics assuming strong κ-quadraticity),
Theorem 3.13 (κ-quadraticity implies strong κ-quadraticity) and Corollary 3.19 (projection estimate). �

4. From spectral uniqueness to classification

In this section, we explain how to derive the main classification theorem from spectral uniqueness.
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4.1. The Hoffman-Ilmanen-Martin-White class. In this subsection, we introduce the HIMW class by
slightly generalizing the construction from [HIMW19a, Cor. 8.2], and establish some of its basic proper-
ties. We also fix notations that will be used throughout the remaining subsections.

For every a P r0, 1
3 s and every R ă 8, consider the ellipsoidal domain given by

(277) Ωa,R :“

#

px2, x3, x4q

ˇ

ˇ

ˇ
a2x2

2 `

ˆ

1´ a
2

˙2

x2
3 `

ˆ

1´ a
2

˙2

x2
4 ă R2

+

.

Let ua,R be the solution to the upward moving translator equation5

div

˜

∇u
a

1` |∇u|2

¸

´
1

a

1` |∇u|2
“ 0 on Ωa,R,(278)

u “ 0 on BΩa,R.(279)

As shown in [HIMW19a, Section 9], it follows from the moving plane method that ua,Rpx2, x3, x4q attains
its minimum ξ “ ξpa,Rq P p´8, 0q at x2 “ x3 “ x4 “ 0, and that ua,R is SOp2q-symmetric in the x3x4-
plane, and reflection symmetric in the x2-coordinate. Using interior and exterior bowl barriers one easily
sees that ξpa,Rq Ñ ´8 as R Ñ 8 and ξpa,Rq Ñ 0 as R Ñ 0. Observing also that for any fixed a, the
function R ÞÑ ξpa,Rq is strictly decreasing, it follows that for every pξ, aq there is a unique R “ Rpξ, aq,
depending continuously on pξ, aq, such that ua,Rp0q “ ξ. By abuse of notation, write ua,ξ “ ua,Rpξ,aq.

We now shift the tip to the origin, namely we consider the translator (with boundary) defined by

(280) Ma,ξ :“ graphpua,ξ ´ ξq.

We can now introduce the HIMW class as the collection of all translators that are obtained as limits of
the above translators Mai,ξi , for any sequences ai P r0, 1

3 s and ξi Ñ ´8:

Definition 4.1 (HIMW class). The HIMW class is

(281) A :“
"

lim
iÑ8

Mai,ξi | ai P r0, 1{3s and ξi Ñ ´8

*

.

Note that, inheriting the properties from Mai,ξi , all elements in A are SOp2q-symmetric in the x3x4-
plane, and reflection symmetric in the x2-coordinate. Moreover, the proof of [HIMW19a, Theorem 8.1,
Corollary 8.2] carries through to our setting, showing that every M P A is an entire graph. Furthermore,
the circular symmetry together with [HIMW19a, Theorem 9.2] implies that

(282) the principal curvatures at the tip 0 P M are equal to pk, 1´k
2 , 1´k

2 q for some k P r0, 1
3 s.

Let us next explain the relationship with the construction from [HIMW19a, Cor. 8.2]. To this end, note
first that when a “ 0 then Ma,ξ splits off the x2-direction by [HIMW19a, Theorem 3.2] hence is a piece

5In contrast to [HIMW19a], we use the convention that translators move upwards. In particular, we have ua,R ď 0.
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of Rˆ2d-bowl, and when a “ 1
3 then Ma,ξ is Op3q-symmetric hence a piece of the 3d round bowl. Thus,

it follows from the intermediate value theorem that for each ξ the tip curvature map

(283) Fξ : r0, 1
3 s Ñ r0, 1

3 s, a ÞÑ k

is surjective. In the construction from [HIMW19a, Cor. 8.2] one fixes the tip curvature k P r0, 1{3s and
then for ξi Ñ ´8 chooses ai with Fξipaiq “ k and passes to a limit of Mai,ξi . Here, we slightly generalized
the construction by also allowing that ki Ñ k depends on i, which a priori leads a larger class of translators
(a posteriori it will be the same) and is important for the argument in Section 4.3.

Theorem 4.2 (noncollapsing and convexity). Every M P A is noncollapsed and convex.

Proof. Consider the associated mean curvature flow Mt “ M ` te1. Since M is an entire graph, Mt

foliates the entire space and thus by mean-convexity has polynomial volume growth. Therefore, the
entropy EntrMs is finite. Hence, we can let Nt be a tangent flow to Mt at ´8. We claim that Nt cannot be
a hyperplane (of any multiplicity). To this end, note that [HIMW19a, Theorem 9.3] implies that for every
M P A and height h ą 0, the level sets Σh :“ M X tx1 “ hu satisfy

(284) max
xPΣh

x2 ě max
xPΣh

x3.

Now, if Nt “ Q for some hyperplane Q, then clearly e1 P Q. Moreover, by counting dimensions we
see that Q X spante3, e4u ‰ t0u. Together with the SOp2q-symmetry this implies Q “ spante1, e3, e4u,
contradicting (284). Hence, Nt is not a hyperplane.

Claim 4.3. Nt is a smooth multiplicity-one self-shrinker.

Proof. Since we have already excluded hyperplanes, in particular the ones of multiplicity-two, this follows
from the methods of White [Whi00]. Indeed, first observe that every tangent flow to Nt has to be a static
or quasi-static hyperplane (with multiplicity one or two), being a one-sided minimizing stationary cone.
Note also that since Nt is self-shrinking, quasi-static hyperplanes (of any multiplicities) are excluded by
the clearing out lemma. Now, letting Kt be the domain enclosed by Nt, the above implies that a point
x P Nt is regular with multiplicity-one if and only if x P ClpIntKtq. This is a closed condition, so the
regular set is closed. Also, the regular set is always open by the local regularity theorem. We will next
show that 0 P IntpKtq for t ă 0. To this end, note that in addition to (284) the moving plane method also
yields that maxxPΣh x3 is attained at a point with x2 “ x4 “ 0, and that ΣhXtx4 “ 0uXtx2 ą 0uXtx3 ą 0u
is graphical both over the x2-axis and the x3-axis. Hence, if 0 was not an interior point of Kt, then we
would have x3 “ 0 on Kt. Together with the circular symmetry this would imply that Kt Ď spante1, e2u,
which is a contradiction. Thus, IntpKtq ‰ H. Since Nt is connected (being a limit of graphs), we conclude
that all points are regular with multiplicity-one. This proves the claim. �

Thanks to the claim, we can apply Huisken’s classification of smooth mean-convex shrinkers [Hui93],
which gives that Nt must be a generalized cylinder. In particular, we infer that

(285) EntrMs ď EntrS 1s ă 2.
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It is well known to experts that this implies that M is α-noncollapsed. For convenience of the reader we
provide a short proof using methods from the work of White [Whi03] (alternatively, one could apply the
recent local noncollapsing estimate from Brendle-Naff [BN21]). Suppose towards a contradiction that
there is a sequence of points x j P M whose maximal interior tangent ball is of radius r j ď j´1Hpx jq

´1.
Consider the sequence of flows N j

t that is obtained from Mt by centering at px j, 0q and parabolically
rescaling by r´1

j . Passing to a subsequential limit [Ilm94, Whi09], we obtain an ancient, cyclic, unit-
regular, integral Brakke flow M̂t, with 0 P sptpM̂0q. As the tangent flow to M̂t at p0, 0q is contained in
a half-space, it must be a hyperplane, with multiplicity-one, by the entropy bound. Hence, p0, 0q is a
regular point [Whi05], and Hp0, 0q “ 0. By the strong maximum principle (see Lemma 4.4 below), this
implies that tM̂tutď0 is a static hyperplane. For j large, this contradicts the fact that r j was maximal. This
establishes interior noncollapsing. A similar argument yields exterior noncollapsing. Finally, by [HK17,
Theorem 1.10] the noncollapsing implies convexity. �

In the above proof we have used the following lemma:

Lemma 4.4 (White’s strong maximum principle, c.f. [Whi03, Theorem 6]). Suppose tMtutď0 is an an-
cient, cyclic, unit-regular, integral Brakke flow in R4 with entropy strictly less than two and such that
H ě 0 at regular points. If p0, 0q is a regular point and Hp0, 0q “ 0, then tMtutď0 is a flat hyperplane.

Proof. By the smooth strong maximum principle, there is an ε ą 0 such that Mt X Bp0, εq is a smooth
minimal hypersurface Σ for t P p´ε2, 0s. Furthermore, the assumptions of the lemma and [Whi97, The-
orem 9] imply that the singular set of tMtutď0 has parabolic Hausdorff dimension at most 2. We claim
that

(286) Σ Ď sptpMtq, for all t P p´8, 0s.

Indeed, taking any x0 P Σ and t0 ă 0, the smallness of the singular set implies that px0, t0q can be
connected to p0, 0q by a time-like space-time curve γ that stays in the regular part of the flow. Hence, by
the smooth strong maximum principle we obtain H “ 0 along γ. This proves (286). It follows that the
tangent flow to tMtutď0 at ´8 must be a flat hyperplane. Hence, tMtutď0 itself is a flat hyperplane. �

4.2. Monotonicity of the tip curvature map. Recall that by definition

(287) Fξ : r0, 1{3s Ñ r0, 1{3s, a ÞÑ k,

maps a to the smallest principal curvature k of the tip 0 P Ma,ξ “ graphpua,ξ ´ ξq. Recall also that since
Fξ is continuous and fixes the endpoints, it must be surjective. The goal of this subsection is to prove:

Theorem 4.5 (monotonicity). Fξ is strictly monotone.

Proof. If not, there exist a1 ‰ a2 such that Ma1,ξ and Ma2,ξ agree at the origin to more than second order.
Consider the difference function

(288) w :“ ua1,ξ ´ ua2,ξ,
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defined over the intersection of ellipsoidal domains

(289) Ω :“ Ωa1,Rpa1,ξq XΩa2,Rpa2,ξq.

We will analyze the nodal set

(290) Z :“ tw “ 0u.

To this end, for any p P Z denoting by d “ dppq be the leading order of w around p, we write

(291) w “ wd ` Ed,

where wd is the degree d Taylor polynomial and the error satisfies Ed “ Op|x ´ p|d`1q. Here, d is finite
by Almgren’s frequency function argument (see for instance [CM11, Theorem 6.1]). Now, observe that

(292) ∆wd “ 0.

Indeed, using the translator equation (278) we see that

(293) ∆wd “ ∆ua1,ξ ´ ∆ua2,ξ ´ ∆Ed “ Op|x´ p|d´1q,

which, since ∆wd has degree at most d ´ 2, implies (292).

Now, by the circular symmetry it suffices to analyze the set

(294) Ẑ :“ Z X tx4 “ 0u.

Claim 4.6. There exists a neighborhood of 0 where Ẑ consists of d “ dp0q smooth curves intersecting
transversally at 0. Moreover, crossing any of the 2d rays, w changes a sign.

Proof of the claim. Since 0 lies on the axis of circular symmetry, wd is a spherical harmonic that is invari-
ant under rotations in the x3x4-plane. Thus, assuming for ease of notation that x2ppq “ 0, in spherical
coordinates we have

(295) wd “ rdPdpcos θq,

where Pd is the d-th Legendre polynomial. As Pd has d distinct roots in p´1, 1q, we infer that that near
p “ 0 the set twd “ 0u X tx4 “ 0u consists of d curves intersecting transversally, and that wd changes
sign whenever one crosses any of the 2d rays. The corresponding behavior of tw “ 0u X tx4 “ 0u now
follows from Lemma 4.8 below. �

Next, setting Ω̂ :“ ΩX tx4 “ 0u we have:

Claim 4.7. There exists a connected component D̂ of ClpΩ̂qzClpẐq that does not meet BΩ̂.

Proof. Writing Ω̂i :“ Ωai,Rpai,ξq, observe that the ellipses BΩ̂1 and BΩ̂2 intersect at 4 points. Hence, BΩ̂
consists of 4 arcs meeting these 4 intersection points p1, . . . , p4. Note that w “ 0 on those four intersection
points, but w ‰ 0 anywhere else on BΩ̂ by the maximum principle. Hence, ClpẐq X BΩ̂ “ tp1, . . . , p4u,
and consequently there are at most 4 connected components of ClpΩ̂qzClpẐq that meet BΩ̂.
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On the other hand, by Claim 4.6 around 0 the set Ω̂zẐ looks like 2d sectors. Let q`1 , . . . q
`

d , q
´

1 , . . . q
´

d
be points in those distinct sectors, where the sign is according to the sign of w. Note that d “ dp0q ě 3,
since Ma1,ξ and Ma2,ξ agree at the origin to more than second order.

Suppose towards a contradiction that all connected components of ClpΩ̂qzClpẐq meet BΩ̂. Then, since
2d ą 4, by the pigeonhole principle two points of the set tq˘i u must be in the same connected component
A, and these points moreover must be of the same sign, as otherwise A “ pAXtw ą 0uq\pAXtw ă 0uq.
Since open connected sets in R2 are path connected, we can assume without loss of generality that there
is a continuous path γ from q´1 to q´2 in ClpΩ̂qzClpẐq. We can further assume that γ is injective. Finally,
let us complete γ to a simple closed curve γ̃ in ClpΩ̂qzClpẐq Y t0u by connecting q´1 and q´2 to 0 in the
small neighborhood of 0. Now, by the Jordan curve theorem, γ̃ encloses a bounded domain B. Letting
q`1 and q`2 be the points in the two sectors neighboring q´1 , one of them, without loss of generality q`1 ,
is necessarily in B. But then the connected component D̂ of q`1 in ClpΩ̂qzClpẐq does not intersect the
boundary: If it did, a curve from q`1 to the boundary would have had to intersect γ̃, which is impossible
by intermediate value theorem. This proves the claim. �

Finally, considering the orbit of the enclosed region D̂ under the SOp2q-symmetry, this implies that
there is a domain D Ď Ω such that w “ 0 on BD and w ą 0 or w ă 0 in D. This contradicts the maximum
principle, and thus concludes the proof of the theorem. �

In the above proof we used the following lemma:

Lemma 4.8. Let γk
dprq “ pr cos θk

d, r sin θk
dq be a zero ray of wd around 0. Then there exists a correspond-

ing zero curve γkprq “ pr cos θkprq, r sin θkprqq of w, such that limrÑ0 θ
kprq “ θk

d. Moreover, there exists
some r0 ą 0 such that all the zeros of w in Bp0, r0q lie on such a curve.

Proof. Note that there exist c ą 0 and C ă 8 such that |wpγk
dprqq| ď Crd`1, and |x∇wpγk

dprqq,Ty| ě
crd´1, and |∇2w| ď Crd´2, where T denotes the unit tangent vector to S p0, rq. Thus, there exists ε ą 0
such that |x∇w,Ty| ě c

2 rd´1 on S p0, rq X Bpγk
dprq, εrq. It follows that the equation w “ 0 has a unique

solution in S p0, rq X Bpγk
dprq, εrq, and this solution x must in fact lie in S p0, rq X Bpγk

dprq,Dr2q, where
D ă 8. The quantitative version of the implicit function theorem gives that the function r Ñ xprq is
smooth, proving the existence of such asserted zero curve γkprq. Moreover, as |γkprq ´ γk

dprq| ď Dr2, the
curve starts at the same angle, as asserted. Finally, note that there exists δ ą 0 such that when |x| “ r and

(296) x R
2d
ď

k“1

`

S p0, rq X Bpγk
dprq, εrq

˘

,

then |wdpxq| ě δrd. Choosing r0 small enough, this completes the proof of the lemma. �

4.3. The spectral eccentricity of the HIMW class. In this subsection, we prove that the HIMW con-
struction realizes all spectral eccentricities. Together with spectral uniqueness this will immediately yield
that the HIMW class is homeomorphic to an interval. Furthermore, we will also show that the tip curvature
function on the HIMW class is weakly monotone.
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Recall that we work with the Hilbert space H “ L2pR, e´y2{4dyq, and that p` denotes the orthogonal
projection to H`, which is spanned by the unstable eigenfunctions ψ1 “ 1 and ψ2 “ y. Moreover, recall
from Definition 4.1 (HIMW class) that we work with the class of all HIMW translators,

(297) A “

"

lim
iÑ8

Mai,ξi | ai P r0, 1{3s and ξi Ñ ´8

*

.

We equipA with the smooth topology corresponding to smooth convergence on compact subsets.
Let us first suitably shift these translators so that their spectral center agrees with the one of the cylinder:

Proposition 4.9 (shift map). Given any τ0 ă 0, for every M P A there exists a unique α “ αpM, τ0q P R

such that the cylindrical profile function vC “ ϕCpvqv of the shifted translator M ` αe1 satisfies

(298) p`pvCpτ0q ´
?

2q “ 0,

and settingA1 :“ tM ` αpM, τ0qe1|M P Au endowed with the smooth topology, the shift map

(299) S : AÑ A1, M ÞÑ M ` αpM, τ0qe1

is a homeomorphism. Moreover, for every κ ą 0 there exist κ1 ą 0 and τ˚ ą ´8 such that if τ0 ď τ˚ and
M P A is strongly κ1-quadratic from time τ0 ` 1, then SpMq is κ-quadratic at time τ0.

Proof. Note that for every M P A, every α and τ0, the renormalized profile function vM,αpτ0q of pM `

αe1q X tx1 “ e´τ0u can be viewed as an entire function in y P R, with the convention that it is equal to
zero above the diameter. By reflection-symmetry of the HIMW translators, we always have

(300) xvM,α
C
pτ0q, yyH “ 0.

Thus, we only have to analyze the inner product with the constant function 1. To this end, note that
by convexity of M and the definitions of vα and vα

C
, for every y P R the function α ÞÑ vM,α

C
py, τ0q is

monotonically decreasing. Thus, the function

(301) pMpαq :“ xvM,α
C
pτ0q, 1yH

is monotonically decreasing. Note that the monotonicity is strict as long as pM does not vanish. Moreover,
observe that pMpαq “ 0 for α ą e´τ0 and pMpαq Ñ 8 for α Ñ ´8. Hence, by strict monotonicity and
continuity there exists a unique α “ αpM, τ0q such that pMpαq “ x1,

?
2yH. In other words, remembering

(300), this is the unique α with

(302) p`pv
M,α
C
pτ0q ´

?
2q “ 0.

This defines the shift map S. Since each member of A, except Bowl2 ˆ R, has its unique tip point at the
origin, no two elements of A are vertical shifts of one another. Hence, S is injective. To establish the
continuity of S, note first that pM, α, yq ÞÑ vM,αpy, τ0q is continuous, and that

(303) lim
αÑ´8

vM,αpy, τ0q “ 8

uniformly on compact sets of A ˆ R. Therefore, if Mi Ñ M, then the sequence tαpMi, τ0qu
8
i“1 is

bounded, so it converges up to a subsequence to some α P R. But then, by continuity again, we infer
that p`pvM,αpτ0qq “ p`p

?
2q, hence α “ αpM, τ0q by uniqueness. As this is true for every converging
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subsequence, it follows that αpMi, τ0q Ñ αpM, τ0q, proving the continuity of M ÞÑ αpM, τ0q, and thus of
S. Finally, for every M1 P A1 denoting hpM1q the height of the tip of M1, we have the equation

(304) S´1pM1q “ M1 ´ hpM1qe1.

Since the height of the tip is continuous, S´1 is continuous as well.
Moreover, if M P A is strongly κ1-quadratic from time τ0 ` 1, then in light of the proof of Lemma 3.14,
remembering in particular (207), for τ ď τ0 we get

(305)
›

›

›

›

vpτq ´
?

2
´

1´
y2 ´ 2

4|τ|

¯

›

›

›

›

H

ď C
κ1

|τ|
.

Since the profile functions of M ` αe1 and M are related by

(306) vαpy, τq “ p1` aqv
ˆ

y
1` a

, τ´ 2 logp1` aq
˙

, where a “
?

1` αeτ ´ 1,

we can expand

vαpy, τq ´
?

2 “
?

2a´ p1` aq

´

y
1`a

¯2
´ 2

?
8|τ´ 2 logp1` aq|

` Opκ1{|τ|q(307)

in H-norm. It follows that for the unique solution of the orthogonality condition (302) we have

(308) |a| ď Cκ1{|τ| .

Thus, choosing κ1 sufficiently small and τ0 ď τ˚ sufficiently negative, we conclude that SpMq is κ-
quadratic at time τ0. This finishes the proof of the proposition. �

We also need the following version for translators-with-boundary:

Proposition 4.10 (shift map with boundary). Given any τ0 ă 0, there exists a constant H P pe´τ0 ,8q

with the following significance. For every a P r0, 1
3 s and for every ξ ď ´H there exists a unique αpa, ξq P

r´H{2,H{2s such that the cylindrical profile function vC of Ma,ξ ` αe1 satisfies

(309) p`pvCpτ0q ´
?

2q “ 0.

Moreover, for each fixed ξ, the function a ÞÑ αpa, ξq is continuous.

Proof. The reasoning is similar as above, but we need to be a tad more careful as we do not know that the
Ma,ξ are convex. To begin with, let us observe that the same argument as above with

?
2 replaced by 1

and 2, respectively, yields the existence of two continuous maps α1 : A Ñ R and α2 : A Ñ R such that
the cylindrical profile functions of the shifted translators M ` α1pMqe1 and M ` α2pMqe1 satisfy

(310) p`pv1
Cpτ0q ´ 1q “ 0 and p`pv2

Cpτ0q ´ 2q “ 0.

SinceA is compact, we get that |α1|, |α2| ď H0{2 for some constant H0 ă 8.
Now, suppose there was a sequence pai, ξiq with ξi Ñ ´8 such that the asserted αpai, ξiq does not exist.
After passing to a subsequence the translators-with-boundary Mai,ξi converge to some M P A, and hence
for i large enough the cylindrical profile functions of Mai,ξi ` α1pMq and Mai,ξi ` α2pM, τ0q satisfy

(311) p`pv
1,i
C
pτ0q ´

?
2q ă 0 and p`pv

2,i
C
pτ0q ´

?
2q ą 0.
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However, then by the intermediate value theorem, we can find some αpai, ξiq between α2pMq and α1pMq
such that the cylindrical profile function of Mai,ξi ` αpai, ξiqe1 satisfies

(312) p`pvi
Cpτ0q ´

?
2q “ 0.

Next, to address uniqueness, observe that for every M P A the function pM from the proof of Proposition
4.9 is strictly monotone with nonvanishing derivative whenever pM ‰ 0. Therefore, it follows again
from smooth convergence and compactness that for ξ large enough, the value αpa, ξq is unique. Finally,
smoothness of the map a ÞÑ αpa, ξq follows from uniqueness and boundedness as before. �

Now, consider the eccentricity map

(313) E : A1 Ñ R, M ÞÑ xvM
C pτ0q, 2´ y2yH.

Observe that the expected value of E for translators satisfying the sharp asymptotics at time τ0 is

(314) e0 :“
4
?

2π
|τ0|

.

Theorem 4.11 (existence with prescribed eccentricity). There exist constants κ ą 0 and τ˚ ą ´8 with
the following significance. For every τ0 ď τ˚ and every x P R with |x´ e0| ď

κ
10|τ0|

there exists a shifted
HIMW translator M P A1 that is κ-quadratic at time τ0 and satisfies

(315) EpMq “ x.

Proof. Let κ ą 0 and τ˚ ą ´8 be constants such that Theorem 1.6 (spectral uniqueness) applies. Let us
fix τ0 ď τ˚ and denote by Bκ “ Bκpτ0q the set of all translators M P A1 that are κ-quadratic at time τ0.
Note that Theorem 1.6 (spectral uniqueness) implies that the restricted eccentricity map E|Bκ : Bκ Ñ R is
injective. Our goal is to show that the image of E|Bκ contains the interval

(316) I :“
„

e0 ´
κ

10|τ0|
, e0 `

κ

10|τ0|



.

Possibly after decreasing τ˚, by Corollary 3.8 (strong κ-quadraticity) and Proposition 4.9 (shift map) for
any τ0 ď τ˚ we can find a reference translator M0 P A

1 that is κ
100 -quadratic at time τ0. In particular,

observe that EpM0q P IntpIq. Let Mi :“ Mci,ξi ` αpci, ξiqe1 be a sequence of shifted HIMW translators-
with-boundary converging to M0, where the shift parameters αpci, ξiq are chosen according to Proposition
4.10 (shift map with boundary) to ensure that p`pvi

C
pτ0q ´

?
2q “ 0.

Now, for each i, choose the maximal interval rai, bis containing ci such that for every a P rai, bis, the
translator-with-boundary Ma

i :“ Ma,ξi ` αpa, ξiqe1 satisfies:

(i) Ma
i is κ-quadratic at time τ0, and

(ii) we have that

(317) EpMa
i q P I.

Here, we interpret Definition 3.12 (κ-quadraticity) in the setting of translators-with-boundary by demand-
ing that its inequalities must hold literally. This is possible since ξi Ñ ´8, while τ0 and the constant
H from Proposition 4.10 (shift map with boundary) are fixed. Recall that the HIMW construction at any
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fixed level ξi depends continuously on the ellipsoidal parameter and interpolates between a piece of the 3d
round bowl and a line times a piece of the 2d bowl. Taking also into account that for any fixed ξi the shift
function a ÞÑ αpa, ξiq from Proposition 4.10 (shift map with boundary) is continuous, it follows that

(318) 0 ă ai ă ci ă bi ă
1
3 .

Claim 4.12 (endpoints). The endpoints elements are mapped to the boundary of the interval I, namely for
all large i we have

(319) EpMai
i q,EpM

bi
i q P BI .

Proof of the claim. Since the interval rai, bis is maximal, either condition (i) or condition (ii) must be
saturated at its endpoints. Suppose towards a contradiction that EpMbi

i q R BI for increasingly high values
of i. Then, for Mbi

i the condition (i) must be saturated, i.e. at least one of the weak inequalities

(320)

›

›

›

›

›

v
Mbi

i
C
py, τ0q ´

?
2`

y2 ´ 2
?

8|τ0|

›

›

›

›

›

H

ď
κ

|τ0|
,

and

(321) sup
τPr2τ0,τ0s

}uMbi
i p¨, ¨, τq}C4pBp0,2|τ0|1{100q ď |τ0|

´1{50,

must be an equality. After passing to a subsequence the Mbi
i converge to a limit M P A1, which by (320)

and (321) is κ-quadratic at time τ0. Thus, by Theorem 3.13 (κ-quadraticity implies strong κ-quadraticity),
the translator M is strongly 5κ-quadratic from time τ0. In particular, ρMpτq “ |τ|1{10 is an admissible
graphical radius function for τ ď τ0, so inequality (321) is a strict inequality for i large enough. Thus, it
must be the case that

(322)

›

›

›

›

›

vM
C pτ0q ´

?
2`

y2 ´ 2

2
?

2|τ0|

›

›

›

›

›

H

“
κ

|τ0|

On the other hand, by the centering condition we have

(323) p`pvM
C pτ0q ´

?
2q “ 0,

and Corollary 3.19 (projection estimate) tells us that

(324) }p´pvM
C pτ0qq}H ď

κ

100|τ0|
,

and the fact that EpMq P I yields

(325)

›

›

›

›

›

p0pvM
C pτ0qq ´

y2 ´ 2

2
?

2|τ0|

›

›

›

›

›

H

ď
κ

10|τ0|
}ψ0}H ď

6κ
10|τ0|

.

Adding these estimates implies that

(326)

›

›

›

›

›

vM
C pτ0q ´

?
2`

y2 ´ 2

2
?

2|τ0|

›

›

›

›

›

H

ă
κ

|τ0|
.

This contradicts (322), and thus proves the claim. �
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Now, if along our sequence we have EpMai
i q ‰ EpM

bi
i q for infinitely many i, then we are done. Indeed,

in this case by the claim and the intermediate value theorem for each x P I we can find some di P rai, bis

such that EpMdi
i q “ x. Passing to a subsequential limit, we get a translator M P Bκ with EpMq “ x.

On the other hand, if EpMai
i q “ EpM

bi
i q for all large i, then we argue as follows. After passing to

a subsequence Mai
i and Mbi

i converge to some limits M1,M2 P Bκ with EpM1q “ EpM2q P BI. By
Theorem 1.6 (spectral uniqueness) we see that M1 “ M2. Then, applying Theorem 4.5 (monotonicity)
we infer that the tip curvature is constant along the construction, namely kpMq “ kpM0q for all M that are
obtained as limit of a sequence Mdi

i with di P rai, bis. Since BI has only two elements it follows that the
preimage E|´1

Bκ
pIq realizes at most two different tip curvatures. However, choosing κ

100 -quadratic reference
translators M0,M1

0,M
2
0 such that their tip curvatures kpM0q, kpM1

0q, kpM
2
0q are all distinct, this yields the

desired contradiction, and thus concludes the proof of the theorem. �

As a corollary we obtain that the HIMW class A is homeomorphic to a closed interval, and that under
any such identification the tip curvature map k : AÑ r0, 1{3s becomes weakly monotone:

Corollary 4.13 (HIMW class). There exists a homeomorphism ψ : r0, 1s Ñ A, and for any such ψ the
composed map k ˝ ψ : r0, 1s Ñ r0, 1{3s is weakly monotone.

Proof. Theorem 4.11 (existence with prescribed eccentricity) together with Theorem 1.6 (spectral unique-
ness) and Proposition 4.9 (shift map) shows that every M P Ao :“ A´ tBowl3,RˆBowl2u has a neigh-
borhood homeomorphic to an interval. Moreover, since every M P Ao is κ

100 -quadratic from some time,
it also follows that Ao is connected. Observing also that Ao is Hausdorff and second countable, we thus
conclude thatAo is an open interval, and soA is a closed interval.
Finally, to show monotonicity it suffices to show, using the notions introduced in the above proof, that for
every τ0 ď τ˚ the map Fκ :“ k ˝ pE|Bκq

´1 : I Ñ r0, 1{3s is weakly monotone. To this end, recall that
by Claim 4.12 (endpoints) and the final paragraph of the proof of the theorem for i large enough the ec-
centricity map sends the endpoint elements to the two different boundary points of the interval I. Assume
without loss of generality that EpMai

i q “ min I and EpMbi
i q “ max I. Now, given any s P IntpIq for i large

enough choose ci with EpMci
i q “ s. Then, for any t P ps,max Iq, the intermediate value theorem gives

di P pci, biq with EpMdi
i q “ t. By Theorem 4.5 (monotonicity) the tip curvature of the translators-with-

boundary satisfies

(327) kpMci
i q ă kpMdi

i q.

Since the left hand side converges to Fκpsq while the right hand side converges to Fκptq, this concludes
the proof of the corollary. �
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4.4. Conclusion of the proof. In this subsection, we conclude the proof of the classification theorem,
modulo the proof of the spectral uniqueness theorem. To this end, we first show that every noncollapsed
translator in R4 is realized by the HIMW construction:

Theorem 4.14 (representation theorem for noncollapsed translators). Every noncollapsed translator in
R4 is, up to rigid motion and scaling, a member of the HIMW classA.

In essence, this will follow by combining several results from other sections. The only ingredient that
has not been discussed yet, is that we can shift our translator so that it has the same spectral center as
the cylinder. To state this recentering result precisely, recall that for any noncollapsed translator M Ă R4

(normalized as before) the cylindrical profile function is defined by

(328) vC “ ϕCpvqv,

where v “ vpy, τq is the renormalized profile function of M X tx1 “ e´τu, and ϕC is a suitable cutoff

function. Recall also that we work with the Hilbert space H “ L2pR, e´y2{4dyq, and that p` denotes the
orthogonal projection to H`, which is spanned by the unstable eigenfunctions ψ1 “ 1 and ψ2 “ y.

Proposition 4.15 (recentering). Given any noncollapsed translator M Ă R4 (normalized as before), with
M ‰ Bowl3,Bowl2ˆR, and κ ą 0, there exists τ˚ “ τ˚pM, κq ą ´8 so that for any τ0 ď τ˚ we can find
α, β so that the cylindrical profile function vαβ

C
of the shifted translator Mαβ “ M ` αe1 ` βe2 satisfies

(329) p`pv
αβ
C
pτ0q ´

?
2q “ 0,

and so that Mαβ is κ-quadratic at time τ0.

Proof. We will use a mapping degree argument, similarly as in [ADS20, Section 4]. For convenience, we
set

(330) a “
?

1` αeτ ´ 1, b “ βeτ{2.

Then, the renormalized profile function vαβ for the level sets of M`αe1` βe2 relates to the renormalized
profile function v for the level sets of M by

(331) vαβpy, τq “ p1` aqv
ˆ

y´ b
1` a

, τ´ 2 logp1` aq
˙

.

Our goal is to find a suitable zero of the map

(332) Ψpa, bq “
ˆ

A

ψ1, vab
C ´

?
2
E

H
,
A

ψ2, vab
C ´

?
2
E

H

˙

,

where a “ apα, βq and b “ bpα, βq are defined via (330), while maintaining κ-quadraticity. To this end,
we start with the following estimate:

Claim 4.16. For every κ ą 0 there exists τκ “ τκpMq ą ´8 such that for every τ ď τκ and all
pa, bq P r´1{|τ|, 1{|τ|s ˆ r´1, 1s we have

(333)

ˇ

ˇ

ˇ

ˇ

ˇ

A ψ1

}ψ1}
2
H

, vab
C ´

?
2
E

H
´
?

2
´

a´
b2

4|τ|

¯

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

A ψ2

}ψ2}
2
H

, vab
C ´

?
2
E

H
´

b
?

2|τ|

ˇ

ˇ

ˇ

ˇ

ˇ

ď
κ

100|τ|
.
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Proof. By Corollary 3.8 (strong κ-quadraticity), given any κ1 ą 0 the translator M is strongly κ1-quadratic
from some time τ˚. In light of the proof of Lemma 3.14, remembering in particular (207), for τ ď τ˚ ´ 1
we get

(334)
›

›

›

›

vpτq ´
?

2
´

1´
y2 ´ 2

4|τ|

¯

›

›

›

›

H

ď C
κ1

|τ|
.

Since |a| ď 1{|τ| and |b| ď 1, together with (331) this implies

vαβpy, τq ´
?

2 “
?

2a´ p1` aq

´

y´b
1`a

¯2
´ 2

?
8|τ´ 2 logp1` aq|

` Opκ1{|τ|q

“
?

2a´
b2
?

8|τ|
`

b
?

2|τ|
y` Opκ1{|τ|q(335)

in H-norm. Choosing κ1 ! κ, together with standard Gaussian tail estimates, the claim follows. �

Now, consider the map

(336) Ψ0pa, bq “
?

2
´

a´
b2

4|τ|
,

b
2|τ|

¯

.

By Claim 4.16, for κ small enough, for τ ď τκ the maps Ψ and Ψ0 are homotopic when restricted to the
boundary of

(337) D :“
 

pa, bq | |τ|2a2 ` b2 ď 100κ2( ,

where the homotopy can be chosen through maps avoiding the origin. Because the winding number of
Ψ0|BD around the origin is 1, there exists pa, bq P D with Ψpa, bq “ 0. Finally, by the above estimates, the
shifted translator Mαβ is κ-quadratic at time τ0. �

We can now prove the representation theorem:

Proof of Theorem 4.14. Recall first that by Theorem 2.5 (circular symmetry) every noncollapsed translator
in R4 is SOp2q-symmetric. Now, let M Ă R4 be a noncollapsed translator that is neither a 3d round bowl
nor the product of a line and a 2d bowl. After a rigid motion and rescaling, we can assume that M translates
with unit speed in positive x1-direction, and that the circular symmetry is in the x3x4-plane centered at the
origin. Furthermore, by Proposition 4.15 (recentering) given κ ą 0 and τ0 ! 0 after a suitable shift in the
x1x2-plane we can assume that the cylindrical profile function of M satisfies

(338) p`pvCpτ0q ´
?

2q “ 0,

and that M is κ
100 -quadratic from time τ0. Let us fix a reference translator M0 P A

1 as in the previous
subsection. Possibly after decreasing τ0 we can assume that M0 is also κ

100 -quadratic at time τ0. Since
both M and M0 are κ

100 -quadratic at time τ0, it follows that

(339) |EpMq ´ EpM0q| ď
κ

10|τ0|
.
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Hence, by Theorem 4.11 (existence with prescribed eccentricity) there exists a HIMW translator M1 P A1

that is κ-quadratic at time τ0 and satisfies

(340) EpM1q “ EpMq.

Therefore, remembering also that p`pvM1
C
pτ0qq “ p`p

?
2q “ p`pvM

C
pτ0qq by construction, we can apply

Theorem 1.6 (spectral uniqueness) to conclude that the translators M and M1 coincide. �

Modulo the spectral uniqueness theorem, which will be established in the next section, we can now
conclude the proof of our main classification result and its corollary, which we restate here:

Theorem 4.17 (classification of noncollapsed translators in R4). Every noncollapsed translator in R4 is,
up to rigid motion and scaling, either (i) R ˆ Bowl2, or (ii) the 3d round bowl Bowl3, or (iii) belongs to
the one-parameter family of 3d oval bowls tMkukPp0,1{3q constructed by Hoffman-Ilmanen-Martin-White.

Proof. By Theorem 4.14 (representation theorem for noncollapsed translators) every noncollapsed trans-
lator in R4 that is neither a 3d round bowl nor a line times a 2d bowl, is up to rigid motion and scaling
a member of Ao :“ A ´ tBowl3,R ˆ Bowl2u. Hence it suffices to classify members of Ao. On the
one hand, we have seen in Corollary 4.13 (HIMW class) that Ao is homeomorphic to an open interval
over which k is weakly monotone. On the other hand, [CHH] shows that Ao is analytically equivalent to
an interval over which k is analytic. As any weakly monotone analytic function is strictly monotone, we
conclude that k : AÑ r0, 1{3s is bijective. This finishes the proof of the classification theorem. �

5. Proof of the spectral uniqueness theorem

The goal of this section is to prove the spectral uniqueness theorem, which we restate here for conve-
nience of the reader:

Theorem 5.1 (spectral uniqueness). There exist κ ą 0 and τ˚ ą ´8 with the following significance:
Suppose M1 and M2 are noncollapsed translators in R4 (neither 3d round bowl, nor Rˆ 2d-bowl, and
normalized and centered as before) that are κ-quadratic at time τ0 ď τ˚. If their cylindrical profile
functions v1

C
and v2

C
satisfy

(341) p`pv1
Cpτ0qq “ p`pv2

Cpτ0qq (equal spectral center),

and

(342) p0pv1
Cpτ0qq “ p0pv2

Cpτ0qq (equal spectral eccentricity),

then

(343) M1 “ M2.
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We recall that given M Ă R4 (normalized as before, namely such that it translates with unit speed in
positive x1-direction and such that the circular symmetry is in the x3x4-plane centered at the origin), we
denote by Vpx, tq the profile function of the level sets M X tx1 “ ´tu, and write

Vpx, tq “
?
´t vpy, τq, where y “

x
?
´t
, τ “ ´ logp´tq.(344)

The cylindrical profile function is defined by

(345) vCpy, τq “ ϕCpvpy, τqqvpy, τq.

Here, we fix a sufficiently small constant θ ą 0 and a smooth cutoff function ϕC : R` Ñ r0, 1s, such that

ϕCpvq “ 0 if v ď 5
8θ, ϕCpvq “ 1 if v ě 7

8θ,(346)

and

0 ď ϕ1C ď 5{θ, |ϕ2C| ď 25{θ2, |ϕ3C | ď 125{θ3.(347)

We also recall that the evolution of vC is governed by the Ornstein-Uhlenbeck operator

(348) L “ B2
y ´

y
2
By ` 1,

which is a self-adjoint operator on the Hilbert space H :“ L2pR, e´y2{4dyq, and

(349) H “ H` ‘ H0 ‘ H´,

where H` is spanned by the unstable eigenfunctions ψ1 “ 1 and ψ2 “ y, and H0 is spanned by the neutral
eigenfunction ψ0 “ y2 ´ 2, and that we write p˘ and p0 for the orthogonal projections on H˘ and H0.
Finally, we recall that (341) is in fact automatically satisfied as a consequence of our centering condition

(350) p`pvCpτ0q ´
?

2q “ 0.

Now, similarly as in [ADS20, Figure 1] we consider the following regions:

Definition 5.2 (regions). Fixing θ ą 0 sufficiently small and L ă 8 sufficiently large, we call

‚ C “ tv ě 5
8θu the cylindrical region,

‚ T “ tv ď 2θu the tip region, which can be decomposed as the union of the soliton region
S “ tv ď L{

a

|τ|u and the collar region K “ tL{
a

|τ| ď v ď 2θu.

Observe that the cutoff function ϕC from above localizes in the cylindrical region, namely

(351) sptpvCq Ă C.

To localize in the tip region, we fix a smooth cutoff function ϕT pvq P r0, 1s, such that

ϕT pvq “ 1 if v ď θ, ϕT pvq “ 0 if v ě 2θ .(352)

In the tip region, say the one with y ą 0, we consider the inverse profile function Ypv, τq defined by

(353) Ypvpy, τq, τq “ y,
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and its zoomed in version Z defined by

(354) Zpρ, τq “ |τ|1{2
´

Yp|τ|´1{2ρ, τq ´ Yp0, τq
¯

.

By convention during the whole section θ is a fixed small constant and L is a fixed large constant. During
the proof one is allowed to decrease θ and increase L at finitely many instances, as needed or convenient.

5.1. Evolution equations. In this subsection we compute the evolution equations of the profile functions,
both in the cylindrical region and the tip regions.

As before, we denote by Vpx, tq the profile function of the level set M X tx1 “ ´tu of our translator,
and write

vpy, τq “ eτ{2Vpe´τ{2y,´e´τq .(355)

Proposition 5.3 (evolution equation for profile function). The profile function Vpx, tq and its renormalized
version vpy, τq satisfy6

(356) Vt “
p1` V2

t qVxx ` p1` V2
x qVtt ´ 2VxVtVxt

1` V2
x ` V2

t
´

1
V
.

and

vτ “
vyy

1` v2
y
´

y
2

vy `
v
2
´

1
v
` eτNrvs,(357)

where

(358) Nrvs “

`

vypvτ ´ v
2q ´

y
2

˘2

p1` v2
yq
`

1` v2
y ` eτpvτ `

y
2 vy ´

v
2q

2
˘vyy

`
p1` v2

yqvττ ´ 2
`

vypvτ ´ v
2q ´

y
2

˘

vτy `
1
4p1` v2

yqpyvy ´ vq

1` v2
y ` eτpvτ `

y
2 vy ´

v
2q

2
.

Proof. We parametrize our translator M Ă R4 by

(359) Xpx, t, θq “ p´t, x,Vpx, tq cos θ,Vpx, tq sin θq.

Setting er “ cos θe3 ` sin θe4 and es “ ´ sin θe3 ` cos θe4 we can express the tangent vectors as

Xx “ e2 ` Vxer, Xt “ ´e1 ` Vter, Xθ “ Ves.(360)

Thus, the non-vanishing components of the induced metric are given by

gxx “ 1` V2
x , gtt “ 1` V2

t , gxt “ VtVx, gθθ “ V2.(361)

Hence, the non-vanishing components of the inverse metric are

gxx “
1` V2

t

1` V2
x ` V2

t
, gtt “

1` V2
x

1` V2
x ` V2

t
, gxt “ ´

VtVx

1` V2
x ` V2

t
gθθ “ V´2.(362)

6For comparison, the profile function U and renormalized profile function u of a mean curvature flow of surfaces would
satisfy the simpler equations Ut “

Uxx
1`U2

x
´ 1

U and uτ “
uyy

1`u2
y
´

y
2 uy `

u
2 ´

1
u , respectively.
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Next, the upwards unit normal equals

N “
Vte1 ´ Vxe2 ` er
b

1` V2
x ` V2

t

.(363)

Furthermore, we have

Xxx “ Vxxer, Xtt “ Vtter, Xxt “ Vxter, Xθθ “ ´Ver.(364)

Using the above formulas, we can now compute

(365) H “ x∆X,Ny “
ˆ

p1` V2
t qVxx ` p1` V2

x qVtt ´ 2VxVtVxt

1` V2
x ` V2

t
´

1
V

˙

xer,Ny.

Together with the translator equation H “ xe1,Ny and equation (363), this yields

(366) Vt “
p1` V2

t qVxx ` p1` V2
x qVtt ´ 2VxVtVxt

1` V2
x ` V2

t
´

1
V
,

which proves the first evolution equation.

Next, observing that

(367) Vx “ vy,

and

(368) Vt “ ´
1
2
p´tq´

1
2 v`

x
2
p´tq´1vy ` p´tq´

1
2 vτ “ e

τ
2

´

vτ `
y
2

vy ´
v
2

¯

,

as well as

(369) Vxx “ e
τ
2 vyy,

and

(370) Vtt “ e
3τ
2

ˆ

vττ ` yvτy `
y2

4
vyy `

y
4

vy ´
v
4

˙

,

and

(371) Vxt “ eτ
´

vyτ `
y
2

vyy

¯

,

we infer that

e
τ
2

ˆ

vτ `
y
2

vy ´
1
2

v
˙

“
1` eτ

`

vτ `
y
2 vy ´

v
2

˘2

1` v2
y ` eτ

`

vτ `
y
2 vy ´

v
2

˘2 e
τ
2 vyy `

p1` v2
yqe

3τ
2

´

vττ ` yvτy `
y2

4 vyy `
y
4 vy ´

v
4

¯

1` v2
y ` eτ

`

vτ `
y
2 vy ´

v
2

˘2

´
2vye

3τ
2
`

vτ `
y
2 vy ´

v
2

˘ `

vyτ `
y
2 vyy

˘

1` v2
y ` eτ

`

vτ `
y
2 vy ´

v
2

˘2 ´
e
τ
2

v
.(372)

Together with the formula

(373)
1` b

1` a` b
“

1
1` a

`
ab

p1` aqp1` a` bq
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this implies

vτ “
vyy

1` v2
y
´

y
2

vy `
v
2
´

1
v
` eτNrvs,(374)

where

(375) Nrvs “
v2

ypvτ `
y
2 vy ´

v
2q

2

p1` v2
yq
`

1` v2
y ` eτpvτ `

y
2 vy ´

v
2q

2
˘vyy

`
p1` v2

yqpvττ ` yvτy `
y2

4 vyy `
y
4 vy ´

v
4q ´ 2vypvτ `

y
2 vy ´

v
2qpvτy `

y
2 vyyq

1` v2
y ` eτpvτ `

y
2 vy ´

v
2q

2
.

Grouping together terms proportional to vyy, vττ and vτy, respectively, this proves the proposition. �

As before, in the tip regions, we consider the inverse profile function Ypv, τq defined as the inverse
function of vpy, τq, and its zoomed in version Z defined by

(376) Zpρ, τq “ |τ|1{2
´

Yp|τ|´1{2ρ, τq ´ Yp0, τq
¯

.

Proposition 5.4 (evolution equation for inverse profile function). We have

(377) Yτ “
Yvv

1` Y2
v
`

1
v

Yv `
1
2
pY ´ vYvq ` eτMrYs,

where

(378) MrYs “

`

p 1
2 Y ´ YτqYv `

v
2

˘2

p1` Y2
v q
`

1` Y2
v ` eτpY

2 ´ Yτ ´ v
2 Yvq

2
˘Yvv

`
p1` Y2

v qYττ ` pv` YYv ´ 2YvYτqYvτ `
1
4p1` Y2

v qpvYv ´ Yq

1` Y2
v ` eτpY

2 ´ Yτ ´ v
2 Yvq

2
.

Proof. Differentiating y “ Ypvpy, τq, τq yields

0 “ Yτ ` Yvvτ, 1 “ Yvvy.(379)

Differentiating again gives

0 “ Yττ ` 2Yτvvτ ` Yvvv2
τ ` Yvvττ, 0 “ Yvvv2

y ` Yvvyy, 0 “ Yτvvy ` Yvvvyvτ ` Yvvτy.(380)

Solving these equations we obtain

vτ “ ´Y´1
v Yτ, vy “ Y´1

v ,(381)

and

vττ “ ´Y´1
v Yττ ` 2Y´2

v YτYτv ´ Y´3
v Y2

τYvv, vyy “ ´Y´3
v Yvv, vτy “ ´Y´2

v Yτv ` Y´3
v YτYvv.(382)
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Together with the evolution equation for v this yields

Yτ “ ´Yv

˜

vyy

1` v2
y
´

y
2

vy `
v
2
´

1
v
` eτNrvs

¸

“
Yvv

1` Y2
v
`

1
v

Yv `
1
2
pY ´ vYvq ´ eτYvNrvs.(383)

Finally, to express Nrvs in terms of Y , we compute

YvNrvs
`

1` Y2
v ` eτpYτ ´ 1

2 Y ` v
2 Yvq

2˘ “ Y3
vNrvs

`

1` v2
y ` eτpvτ `

y
2 vy ´

v
2q

2˘

“ ´AvvYvv ´ AvτYvτ ´ AττYττ ´ 1
4p1` Y2

v qpvYv ´ Yq,(384)

where

(385) Aττ “ 1` Y2
v ,

and

Avτ “ ´2YvYτp1` v2
yq ´ 2Yv

`

vypvτ ´ v
2q ´

y
2

˘

“ ´2YvYτ ` YvY ` v,(386)

and

Avv “
pvypvτ ´ v

2q ´
y
2q

2

p1` v2
yq

` p1` v2
yqY

2
τ ` 2

`

vypvτ ´ v
2q ´

y
2

˘

Yτ “

`

p 1
2 Y ´ YτqYv `

v
2

˘2

p1` Y2
v q

.(387)

This proves the proposition. �

5.2. Maximum principle estimates. The goal of this subsection is to prove the following a priori esti-
mate:

Proposition 5.5 (almost quadratic concavity). There exist constants κ ą 0 an τ˚ ą ´8 with the following
significance. If M is κ-quadratic at time τ0 ď τ˚, then its profile function v satisfies

(388) pv2qyy ď
eτ

v2 .

for every τ ď τ0.

To show this, we will adapt the argument from [ADS20, Section 5] to our setting. To begin with, we
have the following cylindrical derivative estimates away from the tip:

Lemma 5.6 (derivative estimates). For every ε ą 0, there exist κpεq ą 0, L0pεq ă 8 and T˚pεq ą ´8
so that the profile function Vpx, tq of any κ-quadratic solution satisfies

(389) |Vx| ` V|Vxx| ` V2|Vxxx| ` V3|Vxxxx| ` |VVt ` 1| ` V2|Vtx| ` V3|Vtxx| ` V4|Vtxxx|

` |V3Vtt ´ 1| ` V4|Vttx| ` V5|Vttxx| ď ε

at all points where Vpx, tq ě L0

´

´t
logp´tq

¯1{2
and t ď T˚.
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Proof. By the sharp asymptotics in the tip region from Corollary 3.20 (uniform sharp asymptotics) and
convexity, for every ε1 ą 0 there exist L1 ă 8 and T1 ą ´8 such that

(390) |Vx| ď ε1

at all points where Vpx, tq ě L0

´

´t
logp´tq

¯1{2
and t ď T1.

Observe that the left hand side of (389) is scale invariant and vanishes on R2 ˆ S 1. Now suppose towards
a contraction there are times ti Ñ ´8 and points xi such that

(391)
´

logp´tiq
´ti

¯1{2
Vpxi, tiq Ñ 8,

but such that the left hand side of (389) is bigger than ε. Note also that by Corollary 2.3 (inscribed radius),
letting pi P Mti be a point corresponding to xi, for all large i we have

(392) Hppi, tiq ě
1

2Vpxi, tiq
.

Let Mi
t be the sequence of flows that is obtained from Mt by shifting ppi, tiq to the origin, and parabolically

rescaling by Hppi, tiq´1. By the global convergence theorem [HK17, Theorem 1.12], we can pass to
a subsequential limit M8

t . It follows from (390), (391), (392) and Proposition 2.1 (asymptotic slope)
that M8

t splits off two lines. Hence, applying [HK17, Lemma 3.14] we infer that M8
t must be a round

shrinking R2 ˆ S 1. This yields the desired contradiction, and thus proves the proposition. �

After this preparation, we can now establish the main maximum principle estimate:

Lemma 5.7 (maximum principle). Given a sufficiently large L ă 8, if max
`

pv2qyy ´ eτv´2
˘

ą 0 in
tv ě L{

a

|τ|u, then we have Bτ
`

pv2qyy ´ eτv´2
˘

ă 0 at any interior maximum.

Proof of Lemma 5.7. For this proof it is convenient to work in the px, tq variables instead of the py, τq
variables. Set Q “ V2. We will apply the maximum principle to the function

(393) Φ :“ Qxx ´ Q´1 “ pv2qyy ´ eτv´2.

By Proposition 5.3 (evolution equation for profile function), remembering also (373), the function V
satisfies

(394) Vt “
Vxx

1` V2
x
´

1
V
`
p1` V2

x q
´1V2

x V2
t Vxx ` p1` V2

x qVtt ´ 2VxVtVxt

1` V2
t ` V2

x
.

This implies

(395) Qt “
4QQxx ´ 2Q2

x

4Q` Q2
x

´ 2` E,

where

(396) E “ 2V
p1` V2

x q
´1V2

x V2
t Vxx ` p1` V2

x qVtt ´ 2VxVtVxt

1` V2
t ` V2

x
.

Differentiating (395) with respect to x yields

(397) Qxt “
4QQxxx

4Q` Q2
x
`

4Qxp2` QxxqpQ2
x ´ 2QQxxq

p4Q` Q2
xq

2
` Ex.
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Differentiating again gives

Qxxt “
4QQxxxx ` 4QxQxxx

4Q` Q2
x

´
16QQxQxxxp2` Qxxq

p4Q` Q2
xq

2

`
r4Qxxp2` Qxxq ` 4QxQxxxs pQ2

x ´ 2QQxxq

p4Q` Q2
xq

2
´

16Q2
xp2` Qxxq

2pQ2
x ´ 2QQxxq

p4Q` Q2
xq

3
` Exx.(398)

In addition, we have

pQ´1qt “ ´
4QQxx ´ 2Q2

x

Q2p4Q` Q2
xq
`

2
Q2 ´

E

Q2 “
4QpQ´1qxx

4Q` Q2
x
´

6Q2
x

Q2p4Q` Q2
xq
`

2
Q2 ´

E

Q2 .(399)

Taking the difference of the above equations, we obtain

Φt “
4Q

4Q` Q2
x
Φxx `

4QxQxxx

4Q` Q2
x
`

6Q2
x

Q2p4Q` Q2
xq
´

2
Q2 ´

16Q2
xp2` Qxxq

2pQ2
x ´ 2QQxxq

p4Q` Q2
xq

3

`
r4Qxxp2` Qxxq ` 4QxQxxxs pQ2

x ´ 2QQxxq ´ 16QQxQxxxp2` Qxxq

p4Q` Q2
xq

2
`
E

Q2 ` Exx.(400)

Now, at an interior maximum of Φ we have

Φxx ď 0, and 0 “ Φx “ Qxxx ` Q´2Qx,(401)

hence

(402) Φt ď
2Q2

x

Q2p4Q` Q2
xq
´

2
Q2 ´

16Q2
xp2` Qxxq

2pQ2
x ´ 2QQxxq

p4Q` Q2
xq

3

`

“

4Q2Qxxp2` Qxxq ´ 4Q2
x
‰

pQ2
x ´ 2QQxxq ` 16QQ2

xp2` Qxxq

Q2p4Q` Q2
xq

2
`
E

Q2 ` Exx.

In addition, Lemma 5.6 (derivative estimates) implies

2Q2
x

Q2p4Q` Q2
xq
`

16QQ2
xp2` Qxxq

Q2p4Q` Q2
xq

2
`
E

Q2 ` Exx ď
Cε2

Q2(403)

for some constant C ă 8, provided L is large enough and t ď T˚. Hence,

Φt ď ´
1

Q2 ´
16Q2

xp2` Qxxq
2pQ2

x ´ 2QQxxq

p4Q` Q2
xq

3
`

“

4Q2Qxxp2` Qxxq ´ 4Q2
x
‰

pQ2
x ´ 2QQxxq

Q2p4Q` Q2
xq

2
.(404)

Moreover, since Q “ V2 and since V is concave, we have

(405) 2QQxx ă Q2
x.

Thus, considering signs yields

Φt ď ´
1

Q2 `
4Qxxp2` QxxqpQ2

x ´ 2QQxxq

p4Q` Q2
xq

2
.(406)

If Qxx ď 0, then the desired result Φt ď ´Q´2 ă 0 holds.
Suppose now Qxx ą 0. Then, (405) yields

Φt ď ´
1

Q2 `
2Q4

xp2` Qxxq

Qp4Q` Q2
xq

2
.(407)
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Applying again Lemma 5.6 (derivative estimates) we infer that

Φt ď ´
1

Q2 `
Cε4

Q3 .(408)

Hence, Φt ă 0 holds at interior maximum points of Φ in tV ě L
a

´t{ logp´tqu. This proves the
assertion. �

We can now prove the main result of this subsection:

Proof of Proposition 5.5 (almost quadratic convexity). Fix κ ą 0 small enough and τ˚ ą ´8 negative
enough so that the above results apply. We recall that

(409) Φ “ Qxx ´ Q´1 “ pv2qyy ´ eτv´2.

By Corollary 3.20 (uniform sharp asymptotics) in the tip regions we have that Zpρ, τq is ε-close to Z0pρq,
where Z0 is the profile function of the bowl soliton. Hence, applying [ADS20, Lemma 4.4] we get that in
the soliton region S we have pv2qyy ă 0 for τ ď τ0. In particular, Φ ă 0 in the soliton region.
Now, suppose towards a contradiction there is a point py0, τ0q, where τ0 ď τ˚, with Φpy0, τ0q ą 0. It the
follows from the paragraph above, and from 5.7 (maximum principle) that max Φp¨, τq ě Φpy0, τ0q for
every τ ď τ0. In particular, we have pv2qyypyτ, τq ě c for some c ą 0, whenever vpyτ, τq “ max Φp¨, τq.
Together with pv2qyy “ 2vvyy ` 2v2

y ă 2v2
y , which holds by concavity, we infer that v2

ypyτ, τq ě c{2. This
is in contradiction with vpyτ, τq

a

|τ| Ñ 8 and the fact that the soliton region converges to a bowl soliton,
and thus proves the proposition. �

In particular, we see that Y „ Ce´v2{4 in the collar region:

Corollary 5.8 (almost Gaussian collar). Given ε ą 0, there exist θpεq ą 0, L0pεq ă 8, τ˚pεq ą ´8

and κpεq ą 0 such that if M is κ-quadratic at time τ0 ď τ˚, then for τ ď τ0 in the collar region
tL0{

a

|τ| ď v ď 2θu we have

(410)
ˇ

ˇ

ˇ

ˇ

1`
Yv
2Yv

ˇ

ˇ

ˇ

ˇ

ď ε .

Proof. Suppose that ´τ is large enough so that Φ ď 0 holds. It is enough to show that

(411) 1´ ε ď ´
ypv2qy

4
ď 1` ε.

First of all, using the description of the intermediate region from Corollary 3.20 (uniform sharp asymp-
totics) we see that in the region tv ď 2θu we have

(412)
b

2|τ|p1´ 4θ2 ´ δq ď y ď
b

2|τ|p1` δq, τ ď τ0

for any M that is κpδ, θq-quadratic from time τ0 ď τ˚pδ, θq. By Proposition 5.5 (almost quadratic concav-
ity), after decreasing κ and τ˚ we can assume that ´pv2qyy ` eτv´2 ě 0, from which we infer that

(413) ´ pv2qy|v“2θ ´ eτ
ż

?
2|τ|p1`δq

?
2|τ|p1´4θ2q

v´2dy ď ´pv2qy ď ´pv2qy|v“L0{
?
|τ|
` eτ

ż

?
2|τ|p1`δq

?
2|τ|p1´4θ2q

v´2dy .
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In the considered region, we have v´2 ď L´2
0 |τ| and thus

(414) ´ pv2qy|v“2θ ´ 10θ2L´2
0 eτ|τ|

3
2 ď ´pv2qy ď ´pv2qy|v“L0{

?
|τ|
` 10θ2L´2

0 eτ|τ|
3
2 .

Finally, using again Corollary 3.20 (uniform sharp asymptotics) and arguing similarly as in the proof of
[ADS20, Lemma 5.7] we obtain

(415) ´ pv2qy|v“2θ ě
2
?

2
a

|τ|

a

1´ 2θ2 ´ δ,

and

(416) ´ pv2qy|v“L0{
?
|τ|
ď

2
?

2
a

|τ|
p1`CL´1

0 q,

for L0 large enough, possibly after decreasing κ and τ˚. Combining the above inequalities yields the
desired result. �

5.3. Difference between solutions. Given our translators M1 and M2, we consider the difference function
of their renormalized profile functions

(417) w :“ v1 ´ v2,

and its truncated version

(418) wC :“ v1ϕCpv1q ´ v2ϕCpv2q,

as well as the difference of the inverse profile functions

(419) W :“ Y1 ´ Y2,

and its truncated version

(420) WT :“ WϕT pvq .

Proposition 5.9 (evolution of difference). The difference function w satisfies the evolution equation

(421) wτ “ Lw` Erws ` eτF rws,

with

(422) Lw “ wyy ´
y
2

wy ` w,

and

(423) Erws “ ´
v2

1,y

1` v2
1,y

wyy ´
pv1,y ` v2,yqv2,yy

p1` v2
1,yqp1` v2

2,yq
wy `

2´ v1v2

2v1v2
w,

and

F rws “
Prv1, v1,ws
Qrv1, v1s

` Rrv1, v2s
`

wτ ´
w
2

˘

` Srv1, v2swy,(424)

where P,Q,R,S are certain second order differential expressions specified in the proof below.
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Proof. We will denote derivatives by

Bl
yB

m
τ vi “ vi , y ¨ ¨ ¨ y

loomoon

l

τ ¨ ¨ ¨ τ
loomoon

m

.(425)

Using the evolution equations for v1 and v2 from Proposition 5.3 (evolution equation for profile function),
a straightforward computation shows that w “ v1 ´ v2 satisfies the claimed evolution equation with

(426) Rrv1, v2s “
v1,yp1` v2

1,yq
´1

“

v1,ypv1,τ ` v2,τ ´
v1
2 ´

v2
2 q ´ y

‰

v2,yy ´ 2v1,yv2,τy

Qrv1, v1s

´
eτpyv1,y ` v1,τ ` v2,τ ´

v1
2 ´

v2
2 qPrv1, v2, v2s

Qrv1, v1sQrv1, v2s
,

and

(427) Srv1, v2s “

pv2,τ ´
v2
2 q

“

pv1,y ` v2,yqpv2,τ ´
v2
2 q ´ y

‰

v2,yy ´
v1,y`v2,y

1`v2
2,y

“

v2,ypv2,τ ´
v2
2 q ´

y
2

‰2 v2,yy

p1` v2
1,yqQrv1, v2s

´
2pv2,τ ´

v2
2 qv2,yτ

Qrv1, v2s
`
pv1,y ` v2,yq

“

v2,ττ ´
1
4pyv2,y ´ v2q ´Npv2q

‰

Qrv1, v2s
,

where the functions P and Q are defined by

(428) Prp, q, rspy, τq “ p1` p2
yq
´1 `pypqτ ´

q
2q ´

y
2

˘2 ryy ` p1` p2
yqrττ

´ 2
`

pypqτ ´
q
2q ´

y
2

˘

rτy `
1
4p1` p2

yqpyry ´ rq,

and

Qrp, qspy, τq “ 1` p2
y ` eτp y

2 py ` qτ ´
q
2q

2.(429)

This proves the proposition. �

To capture some extra terms from the cutoff, similarly as in [ADS20, Equation (6.11)] we set

(430) Erw, ϕCpv1qs :“ pBτ ´ LqpwϕCpv1qq ´ ϕCpv1qpBτ ´ Lqw` ϕCpv1qErws ´ ErwϕCpv1qs .

Moreover, given any scalar function ϕ, we write

(431) Drϕspy, τq :“ ϕpv1py, τqq ´ ϕpv2py, τqq.

Corollary 5.10 (evolution of the truncated difference). The function wC satisfies

(432) pBτ ´ LqwC “ ErwCs ` Erw, ϕCpv1qs ` eτϕCpv1qF rws

´ Erv2DrϕCss ` DrϕCspv2,τ ´ v2,yy `
y
2 v2,yq ´ 2v2,yByDrϕCs ` v2pBτ ´ LqDrϕCs.

Proof. First observe that

(433) pBτ ´ LqpwϕCpv1qq “ ErwϕCpv1qs ` Erw, ϕCpv1qs ` eτϕCpv1qF rws .

In addition, we have

(434) pBτ ´ Lqpv2DrϕCsq “ DrϕCspv2,τ ´ v2,yy `
y
2 v2,yq ´ 2v2,yByDrϕCs ` v2pBτ ´ LqDrϕCs .
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Using wC “ wϕCpv1q ` v2DrϕCs and linearity this implies the assertion. �

Proposition 5.11 (evolution of inverse difference). The difference function W satisfies the evolution equa-
tion

(435) Wτ “
Wvv

1` Y2
1,v

`

˜

1
v
´

v
2
´

Y2,vvpY1,v ` Y2,vq

p1` Y2
1,vqp1` Y2

2,vq

¸

Wv `
1
2

W ` eτF rWs ,

with

(436) F rWs “
PrY1,Y1,Ws
QrY1,Y1s

` RrY1,Y2s

ˆ

W
2
´Wτ

˙

` SrY1,Y2sWv,

where P,Q,R,S are certain second order differential expressions specified in the proof below.

Proof. Using the evolution equations for Y1 and Y2 from Proposition 5.4 (evolution equation for inverse
profile function), we see that W satisfies the claimed evolution with

(437) F “MrY1s ´MrY2s.

Then, a straightforward computation shows that F can be expressed as claimed with

RrY1,Y2s “
p1` Y2

1,vq
´1Y1,v

`

p 1
2 Y1 ´ Y1,τ `

1
2 Y2 ´ Y2,τqY1,v ` v

˘

Y2,vv ` 2Y1,vY2,vτ

QrY1,Y1s

´
eτ
`1

2 Y1 ´ Y1,τ `
1
2 Y2 ´ Y2,τ ` vY1,v

˘

PrY1,Y1,Y2s

QrY1,Y1sQrY1,Y2s
,(438)

and

SrY1,Y2s “

p
Y2
2 ´ Y2,τq

”

pY1,v ` Y2,vqp
Y2
2 ´ Y2,τq ` v

ı

v2,yy ´
Y1,v`Y2,v

1`Y2
2,v

“

p 1
2 Y2 ´ Y2,τqY2,v `

v
2

‰2
Y2,vv

p1` Y2
1,vqQrY1,Y2s

`
2pY2

2 ´ Y2,τqY2,vτ

QrY1,Y2s
`
pY1,v ` Y2,vq

“

Y2,ττ `
1
4pvY2,v ´ Y2q ´MpY2q

‰

QrY1,Y2s
,(439)

where

Prp, q, rspv, τq “p1` p2
vq
´1 `p

q
2 ´ qτqpv `

v
2

˘2 rvv

` p1` p2
vqrττ ` 2

`

p
q
2 ´ qτqpv `

v
2

˘

rvτ `
1
4p1` p2

vqpvrv ´ rq.(440)

and

(441) Qrp, qspv, τq “ 1` p2
v ` eτ

` q
2 ´ qτ ´ v

2 pv
˘2
.

This proves the proposition. �

To conclude this subsection, we observe that since the cutoff function ϕT pvq does not depend on τ, the
time derivative of WT “ ϕTW is simply

(442) pWT qτ “ ϕTWτ.
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5.4. Energy estimates in the cylindrical region. The goal of this subsection is to prove the following
energy estimate in the cylindrical region:

Proposition 5.12 (energy estimate in the cylindrical region). For every ε ą 0 there exist κ ą 0 and
τ˚ ą ´8 with the following significance. If M1 and M2 are κ-quadratic at time τ0 ď τ˚, then

(443) }wC ´ p0wC}D,8 ď ε
`

}wC}D,8 ` }w 1tθ{2ďv1ďθu}H,8
˘

`
C
|τ0|
}w}C2

exppCq
.

Recall that our definition of κ-quadratic imposes the centering condition p`pvi
C
pτ0q ´

?
2q “ 0, and

observe that this in particular implies that

(444) p`pwCpτ0qq “ 0.

The norms appearing in the energy estimate have been briefly described in the introduction, but let us
discuss them in more detail now. Similarly as in [ADS20], in addition to the Gaussian L2-norm

(445) } f }H :“
ˆ
ż

f 2e´y2{4dy
˙1{2

,

one also needs the Gaussian H1-norm

(446) } f }D :“
ˆ
ż

p f 2 ` f 2
y qe

´y2{4dy
˙1{2

,

and its dual norm

(447) } f }D˚ :“ sup
}g}Dď1

x f , gy .

For time-dependent functions this induces the parabolic norms

(448) } f }X,8pτq :“ sup
τ1ďτ

˜

ż τ1

τ1´1
} f p¨, σq}2

X
dσ

¸1{2

,

where X “ H,D orD˚, and we often simply write

(449) } f }X,8 :“ } f }X,8pτ0q.

In contrast to [ADS20], we also need exponentially weighted C2-norms to control the higher derivative
terms coming from the nonlinearity eτF rws. Specifically, setting

(450) Cτ :“
 

y : v1py, τq ě 5
8 or v2py, τq ě 5

8θ
(

,

we define

} f }C2
exppCq

pτq :“ sup
τ1ďτ

˜

|τ1|eτ
1

sup
yPCτ1

`

| f | ` | fy| ` | fτ| ` | fyy| ` | fyτ| ` | fττ|
˘

py, τ1q

¸

,(451)

and we often simply write

(452) } f }C2
exppCq

:“ } f }C2
exppCq

pτ0q .
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To prove Proposition 5.12, we note that thanks to (444) and [ADS20, Lemma 6.7] we have the general
energy inequality

(453) }wC ´ p0wC}D,8 ď C}pBτ ´ LqwC}D˚,8.

Hence, our task is to estimate pBτ ´ LqwC in the parabolic D˚-norm. In contrast to [ADS20, Section
6], this will require estimating several new terms coming from the intrinsic cutoff and the nonlinearities.
Specifically, rewriting the conclusion of Corollary 5.10 (evolution of truncated difference) in the form

pBτ ´ LqwC “ I ` J ` K ` eτϕCpv1qF rws,(454)

where

I “ErwCs ` Erw, ϕCpv1qs,(455)

J “pv2,τ ´ v2,yy `
y
2 v2,y ´ Erv2sqDrϕCs ´ 2v2,yByDrϕCs,(456)

K “Erv2sDrϕCs ´ Erv2DrϕCss ` v2pBτ ´ LqDrϕCs.(457)

we will now estimate theD˚-norm of I, J, K and ϕCpv1qF rws in turn. A term similar to I already appeared
in [ADS20, Section 6], but the other three terms are new. Let us recall a few basic facts that will be used
frequently for estimating the D˚-norm. By the weighted Sobolev inequality (see e.g. [ADS19, Lemma
4.12]) multiplication with 1` |y| is a bounded operator fromD to H, hence by duality

(458) }p1` |y|q f }D˚ ď C} f }H .

Consequently, By and B˚y “ ´By `
y
2 are bounded operators fromD to H and from H toD˚, in particular

(459) } fy}D˚ ď C} f }H .

Also, if g P D and h P W1,8 then by the product rule }hg}D ď 2}h}W1,8}g}D, hence by duality

(460) }h f }D˚ ď 2}h}W1,8} f }D˚ .

In the following, we write

(461) Dτ :“
 

y : 5
8θ ď v1py, τq ď 7

8θ or 5
8θ ď v2py, τq ď 7

8θ
(

for the transition region.

Lemma 5.13 (estimate for I). Given ε ą 0, there exist κ ą 0 and τ˚ ą ´8 such that for τ ď τ˚ we have

}Ipτq}D˚ ď ε
`

}wCpτq}D ` }wpτq1Dτ}H
˘

.(462)

Proof. Recall that

(463) I “ ErwCs ` Erw, ϕCpv1qs .

By Lemma 5.6 (derivative estimates), given ε ą 0 there exists τ˚ ą ´8 such that

(464) |vi,y| ` |vi,τ| ` |vi,yy| ` |vi,τy| ` |vi,ττ| ` |vi,yyy| ` |vi,τyy| ` |vi,ττy| ` |vi,τττ| ď ε
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holds on Cτ for τ ď τ˚ and i “ 1, 2. Using these derivative estimates, similarly as in [ADS20, Lemma 6.8
and Lemma 6.9] for τ ď τ˚ we get

(465) }ErwCs}D˚ ď Cε}wC}D ,

and

(466)
›

›

›
Erw, ϕCpv1qs

›

›

›

D˚
ď Cε

›

›

›

›

w1!5
8 θďv1ď

7
8 θ

)

›

›

›

›

H

ď Cε }w1Dτ}H ,

where C “ Cpθq only depends on θ. Thus, replacing Cε by ε completes the proof. �

We next bound the error terms J and K coming from the intrinsic cutoff.

Lemma 5.14 (estimate for J). Given ε ą 0, there exist κ ą 0 and τ˚ ą ´8 such that for τ ď τ˚ we have

}Jpτq}D˚ ď ε}wpτq 1Dτ}H .(467)

Proof. Recall that

(468) J “ pv2,τ ´ v2,yy `
y
2 v2,y ´ Erv2sqDrϕCs ´ 2v2,yByDrϕCs .

By Proposition 5.3 (evolution equation of profile function) and the pointwise derivative bounds from (464)
we have

(469)
›

›pv2,τ `
y
2 v2,y ´ v2,yy ´ Erv2sq

›

›

W1,8 ď C .

By definition of the dual norm, as explained in (460), this yields

(470)
›

›pv2,τ `
y
2 v2,y ´ v2,yy ´ Erv2sqDrϕCs

›

›

D˚
ď C }DrϕCs}D˚ .

By the weighted Sobolev inequality, as explained in (458), we can estimate

(471) }DrϕCs}D˚ ď C
›

›

›

›

1
1` |y|

DrϕCs
›

›

›

›

H

.

Next, note that DrϕCspτq “ 0 outside the support of 1Dτ , while on the support we have

(472) DrϕCspy, τq “
ż v2py,τq

v1py,τq
ϕ1Cpsq ds ,

hence

(473) |DrϕCs| ď C|w|1Dτ .

This yields

(474) }DrϕCs}D˚ ď C
›

›

›

›

1
1` |y|

w1Dτ

›

›

›

›

H

.

Since |y| ě |τ|1{2 on the support of 1Dτ for sufficiently large ´τ by Corollary 3.20 (uniform sharp asymp-
totics), this shows that

(475) }DrϕCs}D˚ ď
C
|τ|1{2

}w1Dτ}H .
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To bound the other term in (468), we observe that the derivative bound |v2,y| ` |v2,yy| ď ε implies that

(476)
›

›v2,yByDrϕCs
›

›

D˚
ď Cε

›

›ByDrϕCs
›

›

D˚
,

and compute

(477) ByDrϕCs “ ϕ1Cpv1qwy ` v2,yDrϕ1Cs .

Noting also that

(478) |Drϕ1Cs| “
ˇ

ˇ

ˇ

ˇ

ż v2

v1

ϕ2Cpsq ds
ˇ

ˇ

ˇ

ˇ

1Dτ ď C|w|1Dτ ,

and

(479) ϕ1Cpv1qwy “ ϕ1Cpv1qpw1Dτqy ,

arguing similarly as above we can thus estimate

(480)
›

›ByDrϕCs
›

›

D˚
ď C

›

›pw1Dτqy
›

›

D˚
`C

›

›Drϕ1Cs
›

›

D˚
ď C }w1Dτ}H ,

where we also used (459). Putting things together the assertion follows. �

Lemma 5.15 (estimate for K). Given ε ą 0, there exist κ ą 0 and τ˚ ą ´8 such that for τ ď τ˚ we have

}Kpτq}D˚ ď ε}wpτq 1Dτ}H ` }v2ϕ
1
Cpv1qeτF rws}D˚ .(481)

Proof. Recall that

(482) K “ Erv2sDrϕCs ´ Erv2DrϕCss ` v2pBτ ´ LqDrϕCs .

First, using the expression for E from (423) we compute

Erv2sDrϕCs ´ Erv2DrϕCss “
v2

1,y

1` v2
1,y

pv2B
2
y DrϕCs ` 2v2,yByDrϕCsq

`
pv1,y ` v2,yqv2,yy

p1` v2
1,yqp1` v2

2,yq
v2ByDrϕCs.(483)

Differentiating (477), we obtain

(484) B2
y DrϕCs “ ϕ1Cpv1qwyy ` ϕ2Cpv1qpv1,y ` v2,yqwy ` v2,yyDrϕ1Cs ` v2

2,yDrϕ2Cs .

Combining the above equations, and remembering also (423) and (477), we infer that

Erv2sDrϕCs ´ Erv2DrϕCss “ ´ϕ1Cpv1qv2Erws ` awy ` bw` cDrϕ1Cs ` dDrϕ2Cs ,(485)
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where

a “
v2

1,y

1` v2
1,y

`

ϕ2Cpv1qv2pv1,y ` v2,yq ` 2ϕ1Cpv1qv2,y
˘

,(486)

b “
2´ v1v2

2v1v2
ϕ1Cpv1qv2 ,(487)

c “
v2

1,y

1` v2
1,y

pv2v2,yy ` 2v2
2,yq `

pv1,y ` v2,yqv2,yy

p1` v2
1,yqp1` v2

2,yq
v2v2,y ,(488)

d “
v2

1,y

1` v2
1,y

v2v2
2,y .(489)

Now, using the pointwise derivative bounds from (464) and arguing similarly as in the proof of the previous
lemma we see that

›

›awy ` cDrϕ1Cs ` dDrϕ2Cs
›

›

D˚
ď Cε

`
›

›pw1Dτqy
›

›

D˚
`
›

›Drϕ1Cs
›

›

D˚
`
›

›Drϕ2Cs
›

›

D˚

˘

ď Cε }w1Dτ}H .(490)

Using also the weighted Sobolev inequality we can estimate

(491) }bw}D˚ ď C
›

›

›

›

1
1` |y|

w1Dτ

›

›

›

›

H

ď
C
|τ|1{2

}w1Dτ}H .

We remark that we do not have to estimate the term ϕ1
C
pv1qv2Erws as it will cancel out later. Next, to

estimate the other term in (482), using Proposition 5.9 (evolution of difference) we compute

(492) pBτ ´ LqDrϕCs “ ϕ1Cpv1q pw` Erws ` eτF rwsq ´ ϕ2Cpv1qpv1,y ` v2,yqwy

´ DrϕCs `
`

v2,τ ´ v2,yy `
y
2 v2,y

˘

Drϕ1Cs ´ v2
2,yDrϕ2Cs .

Arguing as above, we see that

(493)
›

›v2ϕ
1
Cpv1qw

›

›

D˚
`
›

›v2ϕ
2
Cpv1qpv1,y ` v2,yqwy

›

›

D˚
` }v2DrϕCs}D˚

`
›

›v2
`

v2,τ ´ v2,yy `
y
2 v2,y

˘

Drϕ1Cs
›

›

D˚
`

›

›

›
v2v2

2,yDrϕ2Cs
›

›

›

D˚
ď Cε }w1Dτ}H .

Finally, we observe that when we multiply equation (492) by v2, and add the result to equation (485) then
the term ϕ1

C
pv1qv2Erws cancels out. Putting things together the assertion follows. �

Finally, we estimate the nonlinear error term:

Lemma 5.16 (estimate for nonlinear error). There exist κ ą 0 and τ˚ ą ´8 such that for τ ď τ˚ we have

}v2ϕ
1
Cpv1qeτF rws}D˚,8pτq ` }ϕCpv1qeτF rws}D˚,8pτq ď

C
|τ|
}w}C2

exppCq
pτq.(494)

Proof. Observe that

(495) }v2ϕ
1
Cpv1qeτF rws}D˚ ` }ϕCpv1qeτF rws}D˚ ď Ceτ}F rws}H .
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Inspecting the expression for F from Proposition 5.9 (evolution of difference) and using the pointwise
derivative bounds from (464) we can estimate

(496) }F rws}H ď C sup
yPCτ

`

|w| ` |wy| ` |wτ| ` |wyy| ` |wyτ| ` |wττ|
˘

py, τq .

and the assertion follows. �

Combining the above results we can now conclude the proof of the energy estimate:

Proof of Proposition 5.12. Recall that the general energy inequality (453) tells us that

(497) }wC ´ p0wC}D,8 ď C}pBτ ´ LqwC}D˚,8.

Combining the above lemmas, we can estimate

(498) }pBτ ´ LqwC}D˚,8 ď Cε p}wC}D,8 ` }w 1D}H,8q `
C
|τ0|
}w}C2

exppCq
,

where D “
Ť

τďτ0
Dτ ˆ tτu. Replacing C2ε by ε this gives

(499) }wC ´ p0wC}D,8 ď ε p}wC}D,8 ` }w 1D}H,8q `
C
|τ0|
}w}C2

exppCq
.

Finally, by Corollary 3.20 (uniform sharp asymptotics) we have

(500) 1D ď 1tθ{2ďv1ďθu.

This concludes the proof of the proposition. �

5.5. Energy estimates in the tip region. In this subsection, we generalize the arguments from [ADS20,
Section 7] to our setting to establish the following energy estimate in the tip region:

Proposition 5.17 (energy estimate in tip region). There exist κ ą 0 and τ˚ ą ´8 with the following
significance. If M1 and M2 are κ-quadratic at time τ0 ď τ˚, then for τ ď τ0 we have

(501) }WT }2,8pτq ď
C
|τ|

´

}W1rθ,2θs}2,8pτq ` }W}C2
exppT q

pτq
¯

.

For ease of notation, we will always assume that our tip satisfies y ą 0 (considering the map y ÞÑ ´y
this implies the estimate for the second tip), and will simply write Y “ Y1. In this notation, we have

(502) W “ Y ´ Y2 .

We recall that WT “ ϕTW, where ϕT is the cutoff function from (352) that localizes in the tip region T “
tv ď 2θu. The norms appearing in the energy estimate have been briefly mentioned in the introduction.
Let us define them in detail now. To this end, fix a smooth function ζpvq satisfying 0 ď ζ1 ď 5θ´1 and

ζpvq “ 0 for v ď θ{4, ζpvq “ 1 for v ě θ{2.(503)

Then, similarly as in [ADS20] we consider the weight function

(504) µpv, τq :“ ´
1
4

Y2pθ, τq `

ż θ

v

«

ζpṽq
ˆ

Y2

4

˙

ṽ
´ p1´ ζpṽqq

1` Y2
ṽ

ṽ

ff

dṽ .
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Notice that µpv, τq “ ´1
4 Y2pv, τq for v ě θ{2. Set

(505) }Fp¨, τq}2 “
„
ż 2θ

0
F2pv, τq eµpv,τqdv

1{2

,

and

(506) }F}2,8pτq “ sup
τ1ďτ

1
|τ1|1{4

«

ż τ1

τ1´1

ż 2θ

0
F2pv, σqeµpv,σq dvdσ

ff1{2

.

As before, we simply write

(507) }F}2,8 “ }F}2,8pτ0q.

Finally, to capture the higher derivative error terms we consider the exponentially weighted C2-norm

}F}C2
exppT q

pτq :“ sup
τ1ďτ

ˆ

eτ
1

sup
vď2θ

`

|F| ` |Fv| ` |Fτ| ` |Fvv| ` |Fvτ| ` |Fττ|
˘

pv, τ1q
˙

,(508)

and we often simply write

(509) }F}C2
exppT q

:“ } f }C2
exppT q

pτ0q .

To prove Proposition 5.17 (energy estimate in the tip region), we first establish certain a priori estimates
for Y and the weight µ. The statements of these a priori estimates are similar to the ones in [ADS20,
Section 7.1], but the proofs are a bit more involved. Once these a priori estimates are established, similarly
as in [ADS20, Section 7.2], we will obtain a weighted Poincare inequality. Finally, using the weighted
Poincare inequality we will implement the energy method by generalizing [ADS20, Section 7.3].

To control some new error terms we need the following rough estimate:

Lemma 5.18 (rough tip estimate). There exist κ ą 0, τ˚ ą ´8 and C ă 8 such that

|Y| ` |Yv| ` |Yτ| ` |Yvv| ` |Yvτ| ` |Yττ| ď C|τ|
5
2(510)

holds for τ ď τ˚ and v ď 2θ.

Proof. By the tip region asymptotics from Corollary 3.20 (uniform sharp asymptotics) the estimate clearly
holds in the soliton region S “ tv ď L{

a

|τ|u. Thus, our task is to establish the estimate in the collar
region K “ tL{

a

|τ| ď v ď 2θu. To this end, note first that by convexity of our translator we have

(511) sup
vď2θ

|Yvpv, τq| ď |Yvp2θ, τq|.

Hence, together with Corollary 3.20 (uniform sharp asymptotics) we infer that

(512) |Y| ` |Yv| ď C|τ|1{2 .

Next, recall from the proof of Proposition 5.3 (evolution equation for inverse profile function) that

Yτ “ ´vτYv, Yvv “ ´vyyY3
v(513)
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and

Yτv “ ´vyvτYvYvv ´ vτyY2
v , Yττ “ ´2vτYτv ´ v2

τYvv ´ vττYv .(514)

Together with Lemma 5.6 (derivative estimates) this implies the desired result. �

We also need the following standard cylindrical estimate:

Lemma 5.19 (cylindrical estimate). Given any η ą 0, for L large enough and τ˚ negative enough in the
collar region we have

(515)
|Yvv|

1` Y2
v
ă η

ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

.

Proof. Observe that

|vYvv|

|Yv|p1` Y2
v q
“
|vvyy|

1` v2
y
“
λ1

λ2
,(516)

where λ1 and λ2 are the principal curvatures of the level set. Since λ1{λ2 “ 0 on Rˆ S 1, arguing as in the
proof of Lemma 5.6 (derivative estimates) the assertion follows. �

After these preparations we can now establish the tip estimates:

Proposition 5.20 (tip estimates, c.f. [ADS20, Lemma 7.4]). Given η ą 0, there exist θ ą 0, κ ą 0 and
τ˚ ą ´8 such that if M is κ-quadratic at time τ0 ď τ˚, then for v ď 2θ and τ ď τ0 we have

1
4

b

|τ| ď

ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

ď

b

|τ| , |Yτ| ď η

ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

.(517)

Proof. We will argue similarly as in [ADS20], but we will encounter some new error terms coming from
the fact that our profile function v is only almost quadratically concave and from the nonlinearity.
Since by the tip region asymptotics from Corollary 3.20 (uniform sharp asymptotics) the zoomed in profile
function Z is arbitrarily close to the profile function Z0 of the 2d-bowl with speed 1{

?
2 in the soliton

region S we get

1´ ε

2
?

2

b

|τ| ď

ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

ď

b

|τ| , |Yτ| ď η

ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

.(518)

Next, note that by the intermediate region asymptotics from Corollary 3.20 (uniform sharp asymptotics)
we have

(519)
ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

p2θ, τq ď
9
10

b

|τ| .

Together with the fact that the function v ÞÑ |Yv|{v is almost monotone in the collar region K by Proposi-
tion 5.5 (almost quadratic concavity), we infer that

(520)
1
4

b

|τ| ď

ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

ď

b

|τ|

holds in the whole tip region T . Indeed, using the results that we just cited, in the collar region we get

(521)
ˆ

|Yv|

v

˙

v
“
´vYvv ` Yv

v2 “ ´
pv2qyy

2v2|vy|
3 ě

eτ

v4|v3
y |
ě ´C|τ|5eτ,
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which, possibly after decreasing τ˚, yields (520).
Finally, to check that |Yτ| ď η|Yv{v| holds in the collar region K as well, we rewrite the evolution

equation from Proposition 5.4 (evolution equation for inverse profile function) in the form

(522) Yτ “
Yvv

1` Y2
v
`

Yv

v

ˆ

1`
vY
2Yv

´
v2

2

˙

` eτMrYs.

By Lemma 5.19 (cylindrical estimate) choosing L large enough we can ensure that

(523)
ˇ

ˇ

ˇ

ˇ

Yvv

1` Y2
v

ˇ

ˇ

ˇ

ˇ

ď
η

4

ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

.

By Corollary 5.8 (almost Gaussian collar), for θ small enough we get

(524)
ˇ

ˇ

ˇ

ˇ

1`
vY
2Yv

ˇ

ˇ

ˇ

ˇ

ď
η

4
.

Since v ď 2θ in the tip region, possibly after decreasing θ we have

(525)
v2

2
ď
η

4
.

And using Lemma 5.18 (rough tip estimates) for τ ď τ˚ we get

(526)
ˇ

ˇ

ˇ

ˇ

v
Yv

ˇ

ˇ

ˇ

ˇ

|eτMrYs| ď
η

4
.

Combining the above inequalities yields

(527) |Yτ| ď η

ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

,

which concludes the proof. �

Using the above, we can now establish the following estimates for the weight function:

Proposition 5.21 (weight estimates, c.f. [ADS20, Lemma 7.5]). Given η ą 0, there exist θ ą 0, κ ą 0
and τ˚ ą ´8 such that if M is κ-quadratic at time τ0 ď τ˚, then for v ď 2θ and τ ď τ0 we have

1´ η ď
vµv

1` Y2
v
ď 1` η , µτ ď η|τ| .(528)

Proof. We will argue similarly as in [ADS20], but we will encounter some new error terms coming from
the fact that our profile function v is only almost quadratically concave and from the nonlinearity.
By definition of the weight function µ we have

(529) vµv “ ζpvq
ˆ

´vYYv

2

˙

` p1´ ζpvqq p1` Y2
v q.

Hence, to prove the first estimate it suffices to show that for θ{4 ď v ď 2θ we have

(530)
ˇ

ˇ

ˇ

ˇ

vYYv

2p1` Y2
v q
` 1

ˇ

ˇ

ˇ

ˇ

ď η.

But this easily follows from Corollary 5.8 (almost Gaussian collar) since in the region under consideration
we have |Yv| " 1.
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To prove the second estimate, using the results that we already established and arguing similarly as in
[ADS20, proof of Lemma 7.5], we can obtain the estimates (7.12), (7.14) and (7.15) therein, hence

(531) µτ ď cη|τ| ` 2
ż θ

v
p1´ ζq

ˆ

Yv1

v1

˙

v1
Yτ dv1 .

Using Proposition 5.20 (tip estimates) we can estimate

(532)
ż θ

v
p1´ ζq

ˆ

Yv1

v1

˙

v1
Yτ dv1 ď η

b

|τ|

ż θ

v

ˇ

ˇ

ˇ

ˇ

ˆ

Yv1

v1

˙

v1

ˇ

ˇ

ˇ

ˇ

dv1 .

Thus, our task is to bound the latter integral by a multiple of
a

|τ|. Using the almost positivity from (521)
and Proposition 5.20 (tip estimates) we can estimate the collar region contribution to this integral via

ż θ

L?
τ

ˇ

ˇ

ˇ

ˇ

ˆ

Yṽ

v1

˙

v1

ˇ

ˇ

ˇ

ˇ

dv1 ď
ż θ

L?
τ

ˆ

Yv1

v1

˙

v1
dv1 `C|τ|5eτ ď

ˇ

ˇ

ˇ

ˇ

Yv

v

ˇ

ˇ

ˇ

ˇ

pθ, τq `C|τ|5eτ ď C
b

|τ| .(533)

To deal with the soliton region, recall first from (354) that

(534) Ypv, τq “ Yp0, τq ` |τ|´1{2Zp|τ|1{2v, τq .

Using this, we compute

(535)
Yvvpv, τq

v
´

Yvpv, τq
v2 “ |τ|

ˆ

Zρρpρ, τq
ρ

´
Zρpρ, τq
ρ2

˙

, where ρ “ |τ|1{2v .

By Corollary 3.20 (uniform sharp asymptotics) the function Zpρ, τq is ε-close in C100pBp0, ε´1qq to Z0pρq,
the profile function of the 2d-bowl with speed 1{

?
2. Thus, given any ρ0 ą 0, for τ ď τ˚ we get

(536) sup
ρ0ďρďL

ˇ

ˇ

ˇ

ˇ

Zρρpρ, τq
ρ

´
Zρpρ, τq
ρ2

ˇ

ˇ

ˇ

ˇ

ď Cpρ0q .

On the other hand, since the profile function of any surface of rotation satisfies

(537) Zρp0, τq “ 0,

for ρ ď ρ0pτq we can expand

(538) Zpρ, τq “ a0pτq ` a2pτqρ
2 ` Rpρ, τq,

with the estimate

(539) sup
ρďρ0pτq

ˆ

|Rpρ, τq|
ρ3 `

|Rρpρ, τq|
ρ2 `

|Rρρpρ, τq|
ρ

˙

ď Cpτq ,

where ρ0pτq ą 0 and Cpτq ă 8 are constants that might initially depend on τ. This yields

(540) sup
ρďρ0pτq

ˇ

ˇ

ˇ

ˇ

Zρρpρ, τq
ρ

´
Zρpρ, τq
ρ2

ˇ

ˇ

ˇ

ˇ

“ sup
ρďρ0pτq

ˇ

ˇ

ˇ

ˇ

Rρρpρ, τq
ρ

´
Rρpρ, τq
ρ2

ˇ

ˇ

ˇ

ˇ

ď Cpτq .

Now using again Corollary 3.20 (uniform sharp asymptotics) we see that for τ ď τ˚ this estimate in fact
holds with uniform constants ρ0pτq “ ρ0 ą 0 and Cpτq “ C ă 8. Hence,

(541) sup
ρďL

ˇ

ˇ

ˇ

ˇ

Zρρpρ, τq
ρ

´
Zρpρ, τq
ρ2

ˇ

ˇ

ˇ

ˇ

ď C .
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We have thus shown that

(542)
ˇ

ˇ

ˇ

ˇ

ˆ

Yv1

v1

˙

v1

ˇ

ˇ

ˇ

ˇ

ď C|τ|

for v1 ď L{
?
τ and τ ď τ˚. Integrating gives

(543)
ż L?

τ

0

ˇ

ˇ

ˇ

ˇ

ˆ

Yv1

v1

˙

v1

ˇ

ˇ

ˇ

ˇ

dv1 ď C
b

|τ| .

Putting things together, and adjusting η, this concludes the proof of the proposition. �

Corollary 5.22 (weighted Poincare inequality, c.f. [ADS20, Proposition 7.6]). There are constants C0 ă

8, κ ą 0 and τ˚ ! 0 with the following significance. If M is κ-quadratic at time τ0 ď τ˚, then for any
θ ! 1 and all τ ď τ0, we have

(544)
ż 2θ

0
F2pvqeµpv,τqdv ď

C0

|τ|

ż 2θ

0

F2
v

1` Y2
v

eµpv,τqdv

for all smooth functions F satisfying F1p0q “ 0 and sptpFq Ď r0, 2θs.

Proof. Having established Proposition 5.20 (tip estimates) and Proposition 5.21 (weight estimates), the
argument from [ADS20, proof of Proposition 7.6] goes through. �

Having established the weighted Poincare inequality, we can now implement the energy method. Recall
from Proposition 5.11 (evolution of inverse difference) that the function W “ Y ´ Y2 satisfies

(545) Wτ “
Wvv

1` Y2
v
`

ˆ

1
v
´

v
2
` D

˙

Wv `
1
2

W ` eτF rWs ,

where

(546) D “ ´
Y2,vvpYv ` Y2,vq

p1` Y2
v qp1` Y2

2,vq
.

Lemma 5.23 (energy inequality). There exist θ ą 0, κ ą 0 and τ˚ ą ´8 with the following significance.
If M1 and M2 are κ-quadratic at time τ0 ď τ˚, then for τ ď τ0 we have

d
dτ

ż

W2
T

eµdv ď´
1
2

ż

|BvWT |2

1` Y2
v

eµdv`
ż

ḠW2
T

eµdv`
Cpθq
|τ|

ż 2θ

θ
W2eµdv

` eτ sup
vď2θ

`

|W| ` |Wv| ` |Wτ| ` |Wvv| ` |Wvτ| ` |Wττ|
˘

ˆ
ż

W2
T

eµdv
˙1{2

,(547)

where

(548) Ḡ “ p1` Y2
v qG

2 ` 1` 2µτ, with G “
1
v
´

v
2
´

µv

1` Y2
v
`

2YvYvv

p1` Y2
v q

2
` D .



76 KYEONGSU CHOI, ROBERT HASLHOFER, OR HERSHKOVITS

Proof. Using (545) and integration by parts we compute

1
2

d
dτ

ż

W2
T

eµdv “´
ż

ϕ2W2
v

1` Y2
v

eµdv`
ż

Gϕ2WWveµdv´ 2
ż

ϕϕvWWv

1` Y2
v

eµdv

`

ż

`1
2 ` µτ

˘

W2
T

eµdv` eτ
ż

F ϕWT eµdv,(549)

where for simplicity we write ϕ “ ϕT . Using ab ď 1
2 a2 ` 1

2 b2 we can estimate the second term by

(550)
ż

Gϕ2WWveµdv ď
1
2

ż

ϕ2W2
v

1` Y2
v

eµdv`
1
2

ż

G2p1` Y2
v qW

2
T

eµdv .

Via absorption, and observing also that BvWT “ ϕWv ` ϕvW implies the pointwise identity

(551) ϕ2W2
v “ pBvWT q2 ´ ϕ2

vW2 ´ 2ϕϕvWWv ,

this yields

1
2

d
dτ

ż

W2
T

eµdv ď´
1
2

ż

|BvWT |2

1` Y2
v

eµdv`
1
2

ż

ϕ2
vW2

1` Y2
v

eµdv´
ż

ϕϕvWWv

1` Y2
v

eµdv

`

ż

`1
2G2p1` Y2

v q `
1
2 ` µτ

˘

W2
T

eµdv` eτ
ż

F ϕWT eµdv .(552)

We can then use

(553) ´ ϕϕvWWv “ ´ϕvWpBvWT q ` ϕ2
vW2 ď

1
4
pBvWT q2 ` 2ϕ2

vW2,

to absorb the third term into the first two terms. This yields

d
dτ

ż

W2
T

eµdv ď ´
1
2

ż

|BvWT |2

1` Y2
v

eµdv`
ż

ḠW2
T

eµdv` 5
ż

W2

1` Y2
v
ϕ2

veµdv` 2eτ
ż

F ϕWT eµdv .(554)

Now, since sptpϕvq Ă rθ, 2θs and since by Proposition 5.20 (tip estimates), for θ and κ sufficiently small
and τ˚ sufficiently negative, we have

(555) sup
θďvď2θ

1
1` Y2

v pv, τq
ď

16
θ2|τ|

,

we can estimate the third time by

5
ż

W2

1` Y2
v
ϕ2

veµdv ď
Cpθq
|τ|

ż 2θ

θ
W2eµdv .(556)

Finally, using the Cauchy-Schwarz inequality we can estimate the last term by

(557) 2eτ
ż

F ϕWT eµdv ď 2eτ
ˆ
ż

F 2ϕ2eµ
˙1{2 ˆż

W2
T

eµdv
˙1{2

.

Note that by Corollary 3.20 (uniform sharp asymptotics) for v ď 2θ we have the rough estimate

(558) eµpv,τq ď e´
1
4 τ .

Hence, remembering the structure of F and applying Lemma 5.18 (rough tip estimate) we get

(559) 2
ˆ
ż

F 2ϕ2eµ
˙1{2

ď sup
vď2θ

`

|W| ` |Wv| ` |Wτ| ` |Wvv| ` |Wvτ| ` |Wττ|
˘

.
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Putting everything together, this proves the lemma. �

We can now prove the main result of this subsection:

Proof of Proposition 5.17. Recall that by Lemma 5.23 (energy inequality) we have

d
dτ
}WT }22 ď ´

1
2

ż

|BvWT |2

1` Y2
v

eµdv`
ż

ḠW2
T

eµdv`
C
|τ|
}W1rθ,2θs}

2
2 ` eτ}W}C2|Tτ}WT }2 ,(560)

where

(561) }W}C2|Tτ :“ sup
vď2θ

`

|W| ` |Wv| ` |Wτ| ` |Wvv| ` |Wvτ| ` |Wττ|
˘

.

Now for κ and θ sufficiently small, L sufficiently large, and τ˚ sufficiently negative, similarly as in [ADS20,
Claim 7.7] we can estimate

(562) Ḡ ď η|τ| .

Moreover, possibly after adjusting the constants, by Proposition 5.22 (weighted Poincare inequality) we
have

(563) }WT }22 ď
C0

|τ|

ż

|BvWT |2

1` Y2
v

eµdv .

Combining the above facts and taking η “ 1
4C0

we infer that

(564)
d
dτ
}WT }22 ď ´η|τ|}WT }

2
2 `

C
|τ|
}W1rθ,2θs}

2
2 ` eτ}W}C2|Tτ}WT }2 .

Using the Peter-Paul inequality the last term can be estimated by

(565) eτ}W}C2|Tτ}WT }2 ď
η

2
|τ|}WT }22 `

1
2η|τ|

e2τ}W}2C2|Tτ
.

Hence, setting c “ η{2 we obtain

(566)
d
dτ
}WT }22 ď ´c|τ|}WT }22 `C|τ|´1}W1rθ,2θs}

2
2 `C|τ|´1}W}2C2

exppT q
pτq

for all τ ď τ0.

To analyze this differential inequality, similarly as in [ADS20], we define

f pτq “ }WT }22 , gpτq “ }W1rθ,2θs}
2
2 ,(567)

and

Fpτq “
ż τ

τ´1
f pτ1qdτ1, Gpτq “

ż τ

τ´1
gpτ1qdτ1.(568)

Then, we obtain
d
dτ

Fpτq “
ż τ

τ´1

d
dτ1

f pτ1q dτ1 ď ´c|τ|Fpτq `C|τ|´1Gpτq `C|τ|´1}W}2C2
exppT q

pτq.(569)

We rewrite this as

(570)
d
dτ

„

e´
cτ2

2 Fpτq


ď e´
cτ2

2

´

C|τ|´1Gpτq `C|τ|´1}W}2C2
exppT q

pτq
¯

.
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Observing also that thanks to (558) the functions Fpτq and Gpτq converge (exponentially fast) to zero as
τÑ ´8, we thus infer that

e´
cτ2

2 Fpτq ď C
ż τ

´8

e´
cτ12

2

´

|τ1|´1Gpτ1q ` |τ1|´1}W}2C2
exppT q

pτ1q
¯

dτ1

ď C
ˆ
ż τ

´8

|τ1|e´
cτ12

2 dτ1
˙

˜

sup
τ1ďτ

|τ1|´2Gpτ1q ` |τ1|´2}W}2C2
exppT q

pτq

¸

(571)

ď Ce´
cτ2

2

˜

|τ|´
3
2 sup
τ1ďτ

|τ1|´
1
2 Gpτ1q ` |τ|´2}W}2C2

exppT q
pτq

¸

.

Hence, we conclude that

(572) |τ|´
1
2 Fpτq ď C|τ|´2 sup

τ1ďτ

|τ1|´
1
2 Gpτ1q `C|τ|´5{2}W}2C2

exppT q
pτq ,

from which

(573) }WT }2,8pτq ď
C
|τ|

´

}W1rθ,2θs}2,8pτq ` }W}C2
exppT q

pτq
¯

readily follows. This finishes the proof of the proposition. �

5.6. Decay estimate. The goal of this subsection is to prove the following estimate:

Proposition 5.24 (decay estimate). There exist κ ą 0 and τ˚ ą ´8 with the following significance. If
M1 and M2 are are κ-quadratic from time τ0 ď τ˚, and if wC “ v1ϕCpv1q ´ v2ϕCpv2q satisfies

(574) p`wCpτ0q “ 0 and p0wCpτ0q “ 0,

then

(575) }wC}D,8 ` }WT }2,8 ď C
´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

To show this we will adapt the argument from [ADS20, Section 8] to our setting. To begin with,
combining the energy estimates from the previous subsections, and observing also that the norms in the
transition region are equivalent similarly as in [ADS20, Lemma 8.1], we obtain:

Lemma 5.25 (coercivity estimate). For every ε ą 0 there exist κ ą 0 and τ˚ ą ´8 such that if M1 and
M2 are κ-quadratic form time τ0 ď τ˚, and if the spectral condition (574) holds, then

(576) }wC ´ p0wC}D,8 ` }WT }2,8 ď ε}p0wC}D,8 `C
´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

Proof. First, using Corollary 3.20 (uniform sharp asymptotics) and arguing similarly as in [ADS20, proof
of Lemma 8.1] we see that for κ ą 0 small enough and τ negative enough we get

(577) Cpθq´1}Wpτq1rθ,2θs}2 ď }wpτq 1tθďv1pτqď2θu}H ď Cpθq}Wpτq1rθ,2θs}2 .

Now, recall that by Proposition 5.17 (energy estimate in tip region) we have

(578) }WT }2,8pτq ď
C
|τ|

´

}W1rθ,2θs}2,8pτq ` }W}C2
exppT q

pτq
¯

.
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Together with (577) and the observation that ϕCpv1p¨, τqq ” ϕCpv2p¨, τqq ” 1 when θ ď v1 ď 2θ by
Corollary 3.20 (uniform sharp asymptotics) provided κ is small enough and τ is negative enough, this
yields

(579) }WT }2,8 ď ε
´

}wC}D,8 ` }W}C2
exppT q

¯

.

Next, recall that by Proposition 5.12 (energy estimate in the cylindrical region) we have

(580) }wC ´ p0wC}D,8 ď ε
`

}wC}D,8 ` }w 1tθ{2ďv1ďθu}H,8
˘

`C}w}C2
exppCq

.

Using again (577), this time with θ replaced by θ{2, and the fact that ϕT pvq ” 1 for v ď θ, this yields

(581) }wC ´ p0wC}D,8 ď ε p}wC}D,8 `C}WT }2,8q `C}w}C2
exppCq

.

Finally, by the triangle inequality we clearly have

(582) }wC}D,8 ď }wC ´ p0wC}D,8 ` }p0wC}D,8 .

Combining the above inequalities, choosing τ˚ negative enough, and replacing Cε by ε, the assertion
follows. �

We can now establish the decay estimate:

Proof of Proposition 5.24. In light of Lemma 5.25 (coercivity estimate) our task boils down to controlling
the expansion coefficient

(583) apτq :“ xwCpτq, ψ0yH ,

where ψ0 “ cpy2 ´ 2q with c “ }y2 ´ 2}´1
H

. To this end, recall from equation (454) that wC evolves by

pBτ ´ LqwC “ ErwCs ` Erw, ϕCpv1qs ` J ` K ` eτϕCpv1qF rws .(584)

Using also that Lψ0 “ 0, this implies

(585)
d
dτ

apτq “
A

ErwCs ` Erw, ϕCs ` J ` K ` eτϕCF rws, ψ0

E

H
.

Since xψ0, ψ
2
0y “ 8, we can rewrite this as

(586)
d
dτ

apτq “
2apτq
|τ|

` Fpτq,

where

(587) Fpτq :“
B

ErwCs ´
apτq
4|τ|

ψ2
0, ψ0

F

H

`

A

Erw, ϕCs, ψ0

E

H
` xJ ` K ` eτϕCpv1qF rws, ψ0yH .

Solving the ODE (586), and using that apτ0q “ 0 thanks to the spectral condition (574), we obtain

(588) apτq “ ´
1
τ2

ż τ0

τ
Fpσqσ2 dσ.

In the following, we use the notation

(589) Apτq :“ sup
τ1ďτ

˜

ż τ1

τ1´1
apσq2dσ

¸1{2

.
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Claim 5.26. For every ε ą 0, there exist κ ą 0 and τ˚ ą ´8, such that assuming κ-quadraticity at some
τ0 ď τ˚, the estimate

(590)
ż τ

τ´1
|Fpσq| dσ ď

ε

|τ|
Apτ0q `

C
|τ|

´

}w}C2
exppCq

` }W}C2
exppT q

¯

holds for τ ď τ0.

Proof of the claim. We will adapt the argument from [ADS20, proof of Claim 8.3] to our setting. During
the proof we will frequently use the bound

(591) }wC ´ p0wC}D,8 ` }WT }2,8 ď εApτ0q `C
´

}w}C2
exppCq

` }W}C2
exppT q

¯

,

which follows from Proposition 5.25 (coercivity estimate).

Let us first estimate the terms that are not present in [ADS20]. To this end, let us fix a smooth cutoff

function χ : R` Ñ r0, 1s such that

χpvq “ 1 if v P r 9
16θ,

15
16θs, χpvq “ 1 if v ‰ r θ2 , θs,(592)

and such that |χ1| ` |χ2| ď Cpθq. Observe that since sptpϕ1
C
q Ă r5

8θ,
7
8θs we have

(593) J “ χpv1qJ, K “ χpv1qK .

Hence, using Lemma 5.14 (estimate for J) and Lemma 5.15 (estimate for K) we can estimate
ˇ

ˇxJpτq ` Kpτq, ψ0yH

ˇ

ˇ ď p}Jpτq}D˚ ` }Kpτq}D˚q } χpv1pτqqψ0}D

ď
`

ε}wpτq1tθ{2ďv1ďθu}H ` }v2ϕ
1
Cpv1qeτF rws}D˚

˘

} χpv1pτqqψ0}D .(594)

Now, considering the support of y ÞÑ χpv1py, τqq and using Corollary 3.20 (uniform sharp asymptotics)
we see that for τ negative enough we get the Gaussian tail estimate

(595) } χpv1pτqqψ0}D ď eτ{4 .

Also, similarly as in (577) by the equivalence of norms in the transition region we have

(596) }wpτq 1tθ{2ďv1ďθu}H ď C}WT }2 .

Moreover, using Lemma 5.16 (estimate for nonlinear error) we can estimate

}v2ϕ
1
Cpv1qeτF rws}D˚,8pτq ` }ϕCpv1qeτF rws}D˚,8pτq ď

C
|τ|
}w}C2

exppCq
pτq.(597)

Combining the above inequalities, and remembering also (591), we infer that

(598)
ż τ

τ´1

ˇ

ˇxpJ ` K ` eτϕCpv1qF rwsqpσq, ψ0yH

ˇ

ˇ dσ ď
ε

|τ|
Apτ0q `

C
|τ|

´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

Next, arguing similarly as above, and using also (466), we see that
ˇ

ˇ

ˇ

ˇ

A

Erw, ϕCspτq, ψ0

E

H

ˇ

ˇ

ˇ

ˇ

ď }Erw, ϕCspτq}D˚} χpv1pτqqψ0}D ď C}WT }2eτ{4 ,(599)
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and consequently, remembering again (591), that

(600)
ż τ

τ´1

ˇ

ˇ

ˇ

ˇ

A

Erw, ϕCspσq, ψ0

E

H

ˇ

ˇ

ˇ

ˇ

dσ ď
ε

|τ|
Apτ0q `

C
|τ|

´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

Finally, let us estimate the first term on the right hand side of (587). Broadly speaking, we argue
similarly as in [ADS20, proof of Claim 8.3]. However, since there are quite many technical tweaks (and
also to fix some minor glitches in the quoted proof) let us provide full details. Recall from (423) that

(601) ErwCs ´
apτq
4|τ|

ψ2
0 “

ˆ

2´ v1v2

2v1v2
wC ´

apτq
4|τ|

ψ2
0

˙

´
pv1,y ` v2,yqv2,yy

p1` v2
1,yqp1` v2

2,yq
pwCqy ´

v2
1,y

1` v2
1,y

pwCqyy,

The inner product of the first term on the right hand side with ψ0 can be estimated by
ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
wC ´

apτq
4|τ|

ψ2
0, ψ0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
ϕCpv1qpwC ´ apτqψ0q, ψ0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

` |apτq|

ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
ϕCpv1q ´

1
4|τ|

ψ0, ψ
2
0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
p1´ ϕCpv1qqwC, ψ0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

.(602)

To estimate the first term on the right hand side of (602) we write
ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
ϕCpwC ´ apτqψ0q, ψ0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

C

p
?

2´ v1qp
?

2` v1q

2v1v2
ϕCpwC ´ apτqψ0q, ψ0

G

H

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

C

v1 ´
?

2
2v2

ϕCpwC ´ apτqψ0q, ψ0

G

H

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

C ?
2´ v2

2v2
ϕCpwC ´ apτqψ0q, ψ0

G

H

ˇ

ˇ

ˇ

ˇ

ˇ

.(603)

Using this decomposition, and observing that vi ě θ{2 on the support of ϕCpv1qpwC´apτqψ0q by Corollary
3.20 (uniform sharp asymptotics), we can estimate

ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
ϕCpv1qpwC ´ apτqψ0q, ψ0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
2
ÿ

i“1

›

›

›

›

p
?

2´ viqϕCpv1q

b

|ψ0|

›

›

›

›

H

›

›

›

›

pwC ´ apτqψ0q

b

|ψ0|

›

›

›

›

H

(604)

ď C
2
ÿ

i“1

›

›

›
p
?

2´ viqϕCpv1q

›

›

›

D
}pwC ´ apτqψ0q}D ,(605)

where in the last step we used the weighted Sobolev inequality. Now, since the vi are κ-quadratic at time
τ0, we have

(606)
›

›

›

?
2´ vi

›

›

›

H
ď

C
|τ|

Furthermore, arguing similarly as in the proof of Claim 3.18 (error estimate) we see that

(607)
›

›vi,y1Cτ

›

›

H
ď

C
|τ|

.
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This yields

(608)
›

›

›
p
?

2´ viqϕCpv1q

›

›

›

D
ď

C
|τ|
.

Together with Lemma 5.25 (coercivity estimate), remembering also that aψ0 “ p0wC, this implies

(609)
ż τ

τ´1

ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
ϕCpv1qpwC ´ apσqψ0q, ψ0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

dσ ď
ε

|τ|
Apτ0q `

C
|τ|

´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

Next, similarly as in [ADS20, Equation (8.20) and (8.21)] we can estimate the contribution from the
second term of the right hand side of (602) by

ż τ

τ´1
|apσq|

ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
ϕCpv1q ´

ψ0

4|τ|
, ψ2

0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

dσ ă
ε

|τ|
Apτ0q,(610)

provided κ is small enough and τ ď τ0 ď τ˚, with τ˚ negative enough.
Furthermore, considering the support of p1´ ϕCpv1qqwC we can estimate the third term of the right hand
side of (602) by

ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
p1´ ϕCpv1qqwC, ψ0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

ď Ceτ{4
›

›wpτq1tθ{2ďv1ďθu

›

›

H
.(611)

Together with the equivalence of norms in the transition region, and (591), this yields

(612)
ż τ

τ´1

ˇ

ˇ

ˇ

ˇ

ˇ

B

2´ v1v2

2v1v2
p1´ ϕCpv1qqwC, ψ0

F

H

ˇ

ˇ

ˇ

ˇ

ˇ

dσ ď
ε

|τ|
Apτ0q `

C
|τ|

´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

To finish, similarly as in [ADS20, Equation (8.23) and (8.25)] we get

(613)
ż τ

τ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

pv1,y ` v2,yqv2,yy

p1` v2
1,yqp1` v2

2,yq
pwCqy, ψ0

G

H

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε

|τ|
}wC}D,8 ,

and

(614)
ż τ

τ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

v2
1,y

1` v2
1,y

pwCqyy, ψ0

G

H

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε

|τ|
}wC}D,8 ,

provided κ is small enough and τ ď τ0 ď τ˚, with τ˚ negative enough. Together with (591) this shows
that

(615)
ż τ

τ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

pv1,y ` v2,yqv2,yy

p1` v2
1,yqp1` v2

2,yq
pwCqy, ψ0

G

H

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

v2
1,y

1` v2
1,y

pwCqyy, ψ0

G

H

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε

|τ|
Apτ0q `

C
|τ|

´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

Combining the above inequalities establishes the claim. �
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Now, using the claim we can estimate
ˇ

ˇ

ˇ

ˇ

ż τ0

τ
Fpσqσ2dσ

ˇ

ˇ

ˇ

ˇ

ď

rτ0s
ÿ

j“tτu

ż j

j´1
|Fpσq|σ2dσ

ď

rτ0s
ÿ

j“tτu

p| j| ` 1q2

| j|

´

εApτ0q `Cp}w}C2
exppCq

` }W}C2
exppT q

q

¯

(616)

ď |τ|2
´

εApτ0q `Cp}w}C2
exppCq

` }W}C2
exppT q

q

¯

.

Remembering (588), this shows that

(617) |apτq| ď εApτ0q `Cp}w}C2
exppCq

` }W}C2
exppT q

q

for τ ď τ0. Choosing ε “ 1{2 this implies

(618) Apτ0q ď C
´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

Combining this with Lemma 5.25 (coercivity estimate) we conclude that

(619) }wC}D,8 ` }WT }2,8 ď C
´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

This finshes the proof of the proposition. �

5.7. Interior estimates in the cylindrical region. In this subsection, we establish interior C2-estimates
in the cylindrical region starting from bounds for the Gaussian L2-norm. Specifically, we will first prove
the following weighted L8-estimate.

Proposition 5.27 (L8-estimate in cylindrical region). There exist κ ą 0, τ˚ ą ´8 and C ă 8, such that
whenever M1 and M2 are κ-quadratic at time τ0 ď τ˚, then for all τ ď τ0 ´ 1 we have

(620) sup
τ1ďτ

e
τ1

4 sup
 

|wpy, τ1q| : v1py, τ1q ě 8
9θ
(

ď C}wC}H,8pτ` 1q .

And then we prove the following C2-estimate.7

Proposition 5.28 (C2-estimate in cylindrical region). There exist κ ą 0 and τ˚ ą 0, such that whenever
M1 and M2 are κ-quadratic at time τ0 ď τ˚, then for all τ ď τ0 ´ 1 we have

(621) }w}C2|Cτ
ď e´

τ
100 sup

 

|wpy, τ1q| : τ´ 1 ď τ1 ď τ` 1
100 , v1py, τ1q ě 1

2θ
(

.

We recall that we use the notation

(622) }w}C2|Cτ
:“ sup

yPCτ

`

|w| ` |wy| ` |wτ| ` |wyy| ` |wyτ| ` |wττ|
˘

,

where the time τ-slice of the cylindrical region is defined by

(623) Cτ “
 

y : v1py, τq ě 5
8θ or v2py, τq ě 5

8θ
(

.

7The supremum in the C2-estimate is taken over a somewhat larger spatial region than in the L8-estimate, but this does not
cause problems for applications since we will establish corresponding estimates in the tip region in the next subsection.
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Loosely speaking, both estimates follow from standard parabolic estimates for the mean curvature flow
near a bubble-sheet. However, since some care is needed to scale and convert estimates for the bubble-
sheet function to estimates for the profile function of the level sets, we provide the details.

To bring the translator equation back into parabolic form, we define

(624) Ṽpx, s, tq “ Vpx, s` tq,

and consider the difference

(625) VDpx, s, tq “ Ṽ1px, s, tq ´ Ṽ2px, s, tq.

Then, using Proposition 5.3 (evolution equation for profile function) we see that

VD
t “

1`Ṽ2
1,x

1`Ṽ2
1,x`Ṽ2

1,s
VD

ss `
1`Ṽ2

1,s

1`Ṽ2
1,x`Ṽ2

1,s
VD

xx ´
2Ṽ1,xṼ1,s

1`Ṽ2
1,x`Ṽ2

1,s
VD

xs `
1

Ṽ1Ṽ2
VD

`
pṼ1,x`Ṽ2,xqpṼ2,ss´Ṽ2,t`1{Ṽ2q´2Ṽ1,sṼ2,xs

1`Ṽ2
1,x`Ṽ2

1,s
VD

x `
pṼ1,s`Ṽ2,sqpṼ2,xx´Ṽ2,t`1{Ṽ2q´2Ṽ2,xṼ2,xs

1`Ṽ2
1,x`Ṽ2

1,s
VD

s .(626)

Let us introduce some notation for weighted parabolic Hölder norms. Given α P p0, 1q, a nonnegative
integer k, and a region U, we set

(627) r f sWk;U “ sup
px,s,tqPU

sup
i` j`2m“k

|t|
k´1

2

ˇ

ˇ

ˇ
Bi

xB
j
sB

m
t f px, s, tq

ˇ

ˇ

ˇ
,

and

(628) r f sWk,α;U “ sup
X,X1PU

sup
i` j`2m“k

ˇ

ˇ

1
2pt ` t1q

ˇ

ˇ

k`α´1
2
|Bi

xB
j
sB

m
t f pXq ´ Bi

xB
j
sB

m
t f pX1q|

|dpX, X1q|α
,

where for X “ px, s, tq and X1 “ px1, s1, t1q we work with the parabolic distance

(629) dpX, X1q “
b

|x´ x1|2 ` |s´ s1|2 ` |t ´ t1|.

Then, we can define weighted Ck,α
W norms by

} f }Ck,α
W pUq

“ } f }Ck
WpUq

` r f sWk,α;U , where } f }Ck
WpUq

“

k
ÿ

m“0

r f sWm;U .(630)

Moreover, we consider the parabolic cube Qr given by

(631) Qrpx1, s1, t1q “ tpx, s, tq : |x´ x1| ď r, |s´ s1| ď r, t1 ´ r2 ď t ď t1u.

Lemma 5.29 (interior estimates in cylindrical region). There exist κ ą 0 and τ˚ ą ´8, as well as a
constant C ă 8, such that whenever M1 and M2 are κ-quadratic at time τ0 ď τ˚, then

(632) sup
Qλ{2px1,0,t1q

|VD| ď
C
λ2

ˆ
ż

Qλpx1,0,t1q
pVDq2 dx ds dt

˙
1
2

,

and

(633) }VD}C4,α
W pQλ{2px1,0,t1qq

ď C}VD}C0
WpQλpx1,0,t1qq ,

hold if λ´1x1 P C´ logp´t1q and t1 ď ´e´τ0 , where λ “ p´t1q
1
2 .
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We note that to control the second time derivative wττ in (622) we need the parabolic C4-norm.

Proof. We consider the rescaling

(634) V̂Dpx̂1, x̂2, t̂q “
1
λ

VDpx, s, tq, where px̂1, x̂2, t̂q “
ˆ

x´ x1

λ
,

s
λ
,

t ´ t1

λ2

˙

.

The evolution equation (626) and Lemma 5.6 (derivative estimates) imply

(635) B

Bt̂ V̂
Dpx̂, t̂q “ ai jpx̂, t̂q B2

B x̂iB x̂ j
V̂Dpx̂, t̂q ` bipx̂, t̂q BB x̂i

V̂Dpx̂, t̂q ` cpx̂, t̂qV̂Dpx̂, t̂q,

where for sufficiently large ´τ˚ the smooth functions ai j, bi, c satisfy

(636)
ÿ

i, j

}ai j}C2,αpQ1p0qq `
ÿ

i

}bi}C2,αpQ1p0qq ` }c}C2,αpQ1p0qq ď C, ai jξ
iξ j ě C´1|ξ|2 .

Therefore, standard interior L8-estimates yield

(637) sup
Q1{2p0q

|V̂D| ď C
ˆ
ż

Q1p0q
pV̂Dq2 dx̂ dŝ dt̂

˙
1
2

,

and standard interior Schauder estimates yield

(638) }V̂D}C4,αpQ1{2p0qq ď C}V̂D}C0pQ1p0qq ,

These imply the desired results. �

We can now establish the two estimates stated at the beginning of this subsection:

Proof of Proposition 5.27. For any point px1, 0, t1q with p´t1q´1{2x1 P C´ logp´t1q denote the corresponding
point in the renormalized flow by py1, τ1q. The L2-norm of VD is related to norms of w by

ż

Q?
´t1
px1,0,t1q

pVDq2 dx ds dt “
ż

?
|t1|

´
?
|t1|

ż t1

2t1

ż x1`
?
|t1|

x1´
?
|t1|
pVDq2px, s, tq dx dt ds

ď C|t1|1{2
ż t1`

?
|t1|

2t1´
?
|t1|

ż x1`
?
|t1|

x1´
?
|t1|
pV1px, rq ´ V2px, rqq2 dx dr

ď C|t1|1{2
ż τ1`1

τ1´2

ż y1`2

y1´2
e
´5τ

2 w2py, τq dy dτ(639)

ď C|t1|7{2
ż τ1`1

τ1´2

ż y1`2

y1´2
w2py, τqe

τ
2 dy dτ,

whenever t1 ď ´10. Now, for κ sufficiently small and τ˚ sufficiently negative, assuming κ-quadraticity at
time τ0 ď τ˚, by Corollary 3.20 (uniform sharp asymptotics) if v1py1, τ1q ě 8

9θ and τ1 “ ´ logp´t1q ď
τ0 ´ 1, then in the region under consideration we have

(640) ϕCpviq “ 1 and y2 ď ´2τ .
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Therefore, we obtain
ż

Q?
´t1
px1,0,t1q

pVDq2 dx ds dt ď C|t1|7{2
ż τ1`1

τ1´2

ż

w2
Cpy, τqe

´
y2

4 dy dτ ď C|t1|7{2}wC}2H,8pτ
1 ` 1q.

Thus, Lemma 5.29 (interior estimates in cylindrical region) yields

(641)
b

|t1|wpy1, τ1q ď C|t1|3{4}wC}H,8pτ1 ` 1q,

from which the result follows. �

Proof of Proposition 5.28. Using the definition of VD we see that

(642) |t|´
1
2 VDpx, 0, tq “ wp|t|´

1
2 x,´ logp´tqq.

As in the proof of Proposition 5.3 (evolution equation for profile function), this yields

VD
x “ wy, |t|

1
2 VD

xx “ wyy, |t|VD
xt “ wyτ `

y
2

wyy,(643)

and

|t|
1
2 VD

t “ wτ `
y
2

wy ´
w
2
, |t|

3
2 VD

tt “ wττ ` ywτy `
y2

4
wyy `

y
4

wy ´
w
4
.(644)

Therefore, Lemma 5.29 (interior estimates in cylindrical region), taking also into account that

(645) |y|2 ď 2p1` op1qq|τ|

by Corollary 3.20 (uniform sharp asymptotics), as well as the elementary inequality

(646) ´ logp´t ` |t|1{2q ď ´ logp´tq ` 1
100

for t ! 0, implies the desired result. �

5.8. Interior estimates in the tip region. In this subsection, we establish interior C2-estimates in the
tip region starting from bounds for the Gaussian L2-norm. Specifically, we will first prove the following
weighted L8-estimate:

Proposition 5.30 (L8-estimate in tip region). There exist κ ą 0 and τ˚ ą ´8 such that if M1 and M2

are κ-quadratic at time τ0 ď τ˚, then for any τ ď τ0 ´ 1 we have

(647) sup
τ1ďτ

e
26
100 τ

1

sup
 

|Wpv, τ1q| : v ď 9
10θ

(

ď }WT }2,8pτ` 1q .

And then we prove the following C2-estimate:

Proposition 5.31 (C2-estimate in tip region). There exist κ ą 0 and τ˚ ą ´8 such that if M1 and M2 are
κ-quadratic at time τ0 ď τ˚, then for any τ ď τ0 ´ 1 we have

}W}C2|Tτ ď e´
τ

100 sup
 

|Wpv, τ1q| : τ´ 1 ď τ1 ď τ` 1
100 , v ď 3θ

(

.(648)
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We recall that we use the notation

(649) }W}C2|Tτ :“ sup
vď2θ

`

|W| ` |Wv| ` |Wτ| ` |Wvv| ` |Wvτ| ` |Wττ|
˘

.

To put the translator equation into convenient form for establishing these interior estimates, for h " 1 we
define positive functions Xk by

(650) ph, Xkp´h, x3, x4q, x3, x4q P Mk ,

and then define X̃k by

(651) X̃kpx1, x2, x3, tq “ Xkpx1 ` t, x2, x3q.

The functions X̃k satisfy the parabolic equation

(652) X̃k
t “

ˆ

δi j ´
X̃k

i X̃k
j

1`|∇X̃k|2

˙

X̃k
i j ,

and the difference XD “ X̃1 ´ X̃2 evolves by

(653) XD
t “

˜

δi j ´
X̃1

i X̃1
j

1` |DX̃1|2

¸

XD
i j `

X̃1
i X̃2

i jX
D
j ` X̃2

i X̃2
i jX

D
j

1` |DX̃1|2
´

X̃2
i X̃2

j X̃2
i jpX̃

1
k ` X̃2

k qX
D
k

p1` |DX̃1|2qp1` |DX̃2|2q
.

Similarly as before, writing X “ px1, x2, x3, tq “ px, tq, we set

(654) r f sWk;U “ sup
XPU

sup
i` j```2m“k

|t|
k´1

2

ˇ

ˇ

ˇ
Bi

x1
B

j
x2B

`
x3
Bm

t f pXq
ˇ

ˇ

ˇ
,

and

(655) r f sWk,α;U “ sup
X,X1PU

sup
i` j```2m“k

ˇ

ˇ

1
2pt ` t1q

ˇ

ˇ

k`α´1
2
|Bi

x1
B

j
x2B

`
x3
Bm

t f pXq ´ Bi
x1
B

j
x2B

`
x3
Bm

t f pX1q|

|dpX, X1q|α
,

where

(656) dpX, X1q “
b

|x´ x1|2 ` |t ´ t1| .

Then, we work with the weighted Ck,α
W norm given by

} f }Ck,α
W pUq

“ } f }Ck
WpUq

` r f sWk,α;U where } f }Ck
WpUq

“

k
ÿ

m“0

r f sWm;U .(657)

Finally, we denote the parabolic cube Qr by

(658) Qrpx1, t1q “
 

px, tq : t1 ´ r2 ď t ď t1, |xx´ x1, eiy| ď r for each i “ 1, 2, 3
(

.

Lemma 5.32 (interior estimates in soliton region). There exist constants κ ą 0, τ˚ ą ´8, and C ă 8

with the following significance. If M1 and M2 are κ-quadratic at time τ0 ď τ˚, then

(659) sup
Qλ{2px1,t1q

|XD| ď
C

λ
5
2

ˆ
ż

Qλpx1,t1q
pXDq2 dx dt

˙
1
2

,

and

(660) }XD}C4,α
W pQλ{2px1,t1qq

ď | logp´t1q|10}XD}C0
WpQλpx1,t1qq
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hold whenever xx1, e1y “ 0, |x1| ď λL and ´ logp´t1q ď τ0 ´ 1, where λ “ | logp´t1q|´1{2p´t1q1{2.

Proof. We consider the rescaled function

(661) X̂Dpx̂, t̂q “
1
λ

XDpx1 ` λx̂, t1 ` λ2 t̂q.

Then, the evolution equation (652) and Corollary 3.20 (uniform sharp asymptotics) imply that there exist
constants C ă 8 and τ˚ ą ´8 such that the smooth functions ai j and bi defined by

(662) X̂D
t “ ai jX̂D

i j ` biX̂D
i

satisfy

(663)
ÿ

i, j

}ai j}C2,αpQ1p0qq `
ÿ

i

}bi}C2,αpQ1p0qq ď C, ai jξiξ j ě C´1|ξ|2

at the points and times under consideration. Thus, standard interior L8-estimates yield

(664) sup
Q1{2p0q

|X̂D| ď C}X̂D}L2pQ1p0qq ,

and standard interior Schauder estimates yield

(665) }X̂D}C4,αpQ1{2p0qq ď C}X̂D}C0pQ1p0qq .

These estimates imply the assertion. �

Lemma 5.33 (interior estimates in collar region). There exist κ ą 0 and τ˚ ą ´8, as well as positive
integers p, q and a constant C ă 8 with the following significance. If M1 and M2 are κ-quadratic at time
τ0 ď τ˚, then

(666) sup
Qλ{2px1,t1q

|XD| ď
C

λ
5
2

ˆ
ż

Qλpx1,t1q
pXDq2 dx dt

˙
1
2

,

and

(667) }XD}C4
WpQλ{2px1,t1qq ď | logp´t1q|p}XD}C0

WpQλpx1,t1qq

hold whenever xx1, e1y “ 0, L| logp´t1q|´
1
2 ď p´tq´1{2|x1| ď 4θ, and ´ logp´t1q ď τ0 ´ 1, where

λ “ | logp´t1q|´qp´tq1{2.

Proof. To take care of the degenerating ellipticity, we set

(668) ρ “ |DX1px1, t1q| ,

and consider the anisotropic rescaling

(669) X̂Dpx̂, t̂q “
1
λ

XDpx11 ` p1` ρqλx̂1, x12 ` λx̂2, x13 ` λx̂3, t1 ` λ2 t̂q .

Using the evolution equation (652) we see that

(670) X̂D
t “ ai jX̂D

i j ` biX̂D
i ,
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for some coefficients ai j, bi. Now, by definition of Xk we have

(671) Xkpt,Vkpx, tq cos θ,Vkpx, tq sin θq “ x ,

and Corollary 3.20 (uniform sharp asymptotics) shows that

(672) pVkq
´1 ď CpLq

b

|t|´1 log |t|

for some constant CpLq ă 8 depending only on L. Therefore, applying Lemma 5.6 (derivative estimates),
we infer that there are a positive integer p1 and a constant C ă 8 such that

(673) }X̃k}C4,α
W pQλpx1,t1qq

ď C| logp´t1q|p
1

for sufficiently large logp´t1q and sufficiently large q. For the coefficients of the rescaled difference,
possibly after increasing q, this yields

(674)
ÿ

i, j

}ai j ´ δi j}C2,αpQ1p0qq `
ÿ

i

}bi}C2,αpQ1p0qq ď C,
ÿ

i, j

ai jξiξ j ě C´1|ξ|2 .

Thus, similarly as in the proof of the previous lemma, interior L8-estimates and interior Schauder esti-
mates yield the desired result. �

As a final preparation, we need the following bound for the weight function:

Lemma 5.34 (density bound). There exist κ ą 0 and τ˚ ą ´8 with the following significance. Assuming
κ-quadraticity at time τ0 ď τ˚, for τ ď τ0 and v ď 5θ we have

(675) eµpv,τq ě ve
51

100 τ .

Proof. By definition of the weight function we have

µv “ ´
1
4
ζpvqpY2qv ` p1´ ζpvqq

1` Y2
v

v

“
1´ ζpvq

v
`

ˆ

p1´ ζpvqqYv

2vY
´
ζpvq

4

˙

pY2qv .(676)

Since Yp0, τq “ p
?

2 ` op1qq|τ|
1
2 by Corollary 3.20 (uniform sharp asymptotics) and |Yv{v| ď

?
τ by

Proposition 5.20 (tip estimates), possibly after decreasing θ and τ˚, for τ ď τ0 and v ď 5θ this yields

(677) µv ď
1
v
´

3
8
pY2qv .

Therefore, we get

µpv, τq “ ´
1
4

Y2pθ, τq ´

ż θ

v
µv1pv1, τq dv1 ě log

´v
θ

¯

`
1
8

Y2pθ, τq ´
3
8

Y2pv, τq .

Using again Corollary 3.20 (uniform sharp asymptotics), this implies the assertion. �

We can now prove the propositions stated at the beginning of this subsection.
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Proof of Proposition 5.30. By definition of XD we have

(678) XDpx1, x2, x3, tq “ e´
τ
2 Wpv, τq ,

where

(679) τ “ ´ logp´x1 ´ tq and v “ e
τ
2
`

x2
2 ` x2

3

˘

1
2 .

Notice also that

(680)
ż ż

dx2 dx3 “ 2πe´τ
ż

v dv .

Suppose that x1 “ p0, x12, x
1
3q and t1 “ ´e´τ

1

satisfy |x1|e
τ1

2 ď 9
10θ and τ1 ď τ0´1. For any R ď |τ1|´

1
2 e´

τ1

2

we can compute

1
R

ż

QRpx1,t1q
pXDq2 dx dt “

1
R

ż R

´R

ż t1

t1´R2

ż x12`R

x12´R

ż x13`R

x13´R
pXDq2 dx2 dx3 dt dx1

ďCe´3τ1 sup
|x1|ďR

ż ´ logp´t1´x1q

´ logp´t1´x1q´1

ż θ

0
W2pv, τqv dv dτ.(681)

Using also Lemma 5.34 (density bound) and the fact that φT “ 1 when v ď θ, this yields

(682)
1
R

ż

QRpx1,t1q
pXDq2 dx dt ď C|τ1|

1
2 e´

351
100 τ

1

}WT }22,8pτ
1 ` 1q .

Combining the above inequality with Lemma 5.32 (interior estimates in soliton region) and Lemma 5.33
(interior estimates in collar region) implies that there exists some positive integer m such that

(683) |Wpv1, τ1q|2 “ eτ
1

|XDpx1, t1q|2 ď |τ1|me´
51

100 τ
1

}WT }22,8pτ
1 ` 1q .

Namely,

(684) e
26
100 τ

1

|Wpv1, τ1q| ď }WT }2,8pτ1 ` 1q

holds for τ1 ď τ0 ´ 1 and v1 ď 9
10θ. This proves the proposition. �

Proof of Proposition 5.31. By definition of XD we have

(685) Wpv, τq “ e
τ
2 XDp0, e´

τ
2 v cos θ, e´

τ
2 v sin θ,´e´τq .

This implies

Wv “ XD
r , Wvv “ e´

τ
2 XD

rr , Wvτ “ ´
v
2 e´

τ
2 XD

rr ` e´τXD
rt ,(686)

where

(687) XD
r “ cos θ XD

2 ` sin θ XD
3 , XD

rr “ cos2 θ XD
22 ` 2 cos θ sin θ XD

23 ` sin2 θ XD
33 .

Similarly, we can compute

(688) Wτ “
1
2 e

τ
2 XD ´ v

2 XD
r ` e´

τ
2 XD

t ,

and

(689) Wττ “
1
4 e

τ
2 XD ´ v

4 XD
r `

v2

4 e´
τ
2 XD

rr ´ ve´τXD
rt ` e´

3τ
2 XD

tt .
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Hence, applying Lemma 5.32 (interior estimates in soliton region) and Lemma 5.33 (interior estimates in
collar region), we obtain the desired result. �

5.9. Conclusion of the proof. In this subsection we conclude the proof of Theorem 5.1 (spectral unique-
ness theorem).

Denoting the level sets by Σi
h “ Mi X tx1 “ hu, we consider their Hausdorff distance

(690) Dphq :“ dHausdorff
`

Σ1
h , Σ2

h

˘

.

Proposition 5.35 (Hausdorff-estimate). There exist κ ą 0 and τ˚ ą ´8 such that if M1 and M2 are
κ-quadratic at time τ0 ď τ˚, then for every τ ď τ0 ´ 1 we have

(691) sup
hěe´τ

h´
76

100 Dphq ď }wC}H,8pτ` 1q ` }WT }2,8pτ` 1q .

Proof. Setting τh “ ´ log h, by definition of the Hausdorff distance we always have

(692) h´
1
2 Dphq ď max

´

sup
 

|wpy, τhq| : v1py, τhq ě
8
9θ
(

, sup
 

|Wpv, τhq| : v ď 9
10θ

(

¯

.

Now, by Proposition 5.27 (L8-estimate in cylindrical region) and Proposition 5.30 (L8-estimate in tip
region) if the solution are κ-quadratic from time τ0 ď τ˚, and τh ď τ0 ´ 1, then we can estimate

(693) e
1
4 τh sup

 

|wpy, τhq| : v1py, τhq ě
8
9θ
(

ď C}wC}H,8pτh ` 1q ,

and

(694) e
26
100 τh sup

 

|wpy, τhq| : v1py, τhq ě
8
9θ
(

ď }WT }2,8pτh ` 1q .

This implies the assertion. �

Proposition 5.36 (C2-estimate). There exist κ ą 0 and τ˚ ą ´8 such that if M1 and M2 are κ-quadratic
at time τ0 ď τ˚, then for every τ ď τ0 ´ 1 we have

(695) }w}C2|Cτ
` }W}C2|Tτ ď e

48
100 τ sup

 

Dphq : τ´ 1 ď ´ log h ď τ` 1
100

(

.

Proof. Set τh “ ´ log h. Observe first that by Corollary 3.20 (uniform sharp asymptotics), for κ suffi-
ciently small and τ˚ sufficiently negative, and τh ď τ0 ´ 1, we have

(696) sup t|wpy, τhq| : v1py, τhq ě θ{2u ď 2h´
1
2 Dphq .

Our next goal is to show that

(697) sup t|Wpv, τhq| : v ď 3θu ď 2plog hq
1
2 h´

1
2 Dphq .

To this end, considering Ai P Σi
h X tx3 “ h1{2v, x4 “ 0u we have

(698) dpA1, A2q “ |xA1 ´ A2, e2y| “ h1{2 |Wpv, τhq| .

Let B P Σ2
h be a point such that dpB, A1q “ dpΣ2

h , A1q, and observe that x3pBq ě 0 and x4pBq “ 0. We
may assume A1 ‰ A2. Then, A1 ‰ B. So, applying the sine law to triangle spanned by A1, A2, B yields

(699) dpA1, A2q “
sin =A1BA2

sin =A1A2B
dpA1, Bq ď

1
sin =A1A2B

Dphq.
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On the other hand, denoting by ~T the tangent vector to graphpY2q at v, by convexity we have

(700) sin =A1A2B ě sin =p~T ,´e2q “
1

a

1` Y2,vpv, τhq
2
.

Moreover, applying Proposition 5.20 (tip estimates), with θ replaced by 3
2θ, we can estimate

(701) Y2,vpv, τhq
2 ď | log h|v2 .

Combining the above formulas proves the estimate (697).
Having established the sup-bounds (696) and (697) we can now apply Proposition 5.28 (C2-estimate in

cylindrical region) and Proposition 5.31 (C2-estimate in tip region) to conclude that

(702) }w}C2|Cτ
` }W}C2|Tτ ď e´

1
100 τ sup

τ´1ďτhďτ`
1

100

2plog hq1{2h´1{2Dphq .

This implies the assertion. �

To proceed, we denote by Ki Ă R4 the convex hull of Mi, and set

(703) Ki
h :“ Ki X tx1 “ hu .

Then, by the comparison principle for translators we have the implication

(704) K1
h1 Ď K2

h1 ñ K1
h Ď K2

h for all h ď h1 ,

and similarly with K1 and K2 interchanged.

Lemma 5.37 (almost congruent levels). There exist κ ą 0 and τ˚ ą ´8 such that if M1,M2 are κ-
quadratic from time τ0 ď τ˚, and if h1 ě e´τ0 satisfies Dph1q ď 1

30 h11{2, then we have

(705) Dphq ď 10 plog h1q
1
2 Dph1q

for all h P rh1{e2, h1s.

Proof. Note first that by Corollary 3.20 (uniform sharp asymptotics), provided κ and τ˚ are chosen appro-
priately, the mean curvature H “ xν, e1y of Mi satisfies

(706)
0.99
?

2h
ď xν, e1y ď

1.01
?

2

c

log h
h

,

for h ě e´τ0´3 (here we observed that the conclusion can be propagated a bit forward in time). Now, if
h1 ě e´τ0 satisfies Dph1q ď 1

30 h11{2, then

(707) h1 ´ 2
?

h1Dph1q ě e´1h1 ě e´τ0´1 .

Hence, the lower bound in (706) implies

pK1 ` 2
?

h1Dph1qe1qh1 Ď K2
h1 .(708)

Thus, by the comparison principle for all h ď h1 we get the inclusion

pK1 ` 2
?

h1Dph1qe1qh Ď K2
h ,(709)
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and, interchanging the role of K1 and K2, also the inclusion

pK2 ` 2
?

h1Dph1qe1qh Ď K1
h .(710)

On the other hand, if h ě h1{e2 then h ´ 2
?

h1Dph1q ě e´τ0´3, so it follows from the upper bound in
(706) that

(711) distHausdorff

´

Σi
h´2

?
h1Dph1q

, Σi
h

¯

ď 4 plog h1q
1
2 Dph1q.

Hence, we conclude that

(712) Dphq ď 10 plog hq
1
2 Dph1q

for all h P rh1{e2, h1s. This proves the lemma. �

We can now conclude the proof of the spectral uniqueness theorem:

Proof of Theorem 5.1. Let κ be small enough and τ˚ negative enough such that all the preceding estimates
hold for M1 and M2 that are κ-quadratic from time τ0 ď τ˚. Applying Proposition 5.24 (decay estimate)
and Proposition 5.35 (Hausdorff-estimate) we see that

(713) sup
hěe´τ0`1

h´
76
100 Dphq ď C

´

}w}C2
exppCq

` }W}C2
exppT q

¯

.

On the other hand, by definition of our exponentially weighted norms there exists some τ1 P p´8, τ0s

such that

(714) }w}C2
exppCq

` }W}C2
exppT q

ď 2eτ
1
´

|τ1|}w}C2|Cτ1
` }W}C2|Tτ1

¯

,

and by Lemma 5.6 (derivative estimates) and Lemma 5.18 (rough tip estimates), for all τ ď τ0 we have

(715) }w}C2|Cτ
` }W}C2|Tτ ď |τ|

100 .

In particular, for h1 :“ e´τ
1`1 this yields

(716) Dph1q ď h1´
23
100 .

Hence, we can safely apply Lemma 5.37 (almost congruent levels) to obtain

(717) Dphq ď 10plog h1q1{2Dph1q

for τ1 ´ 1 ď ´ log h ď τ1 ` 1. Together with Proposition 5.36 (C2-estimates) it follows that

(718) }w}C2|Cτ1
` }W}C2|Tτ1 ď h1´

47
100 Dph1q .

In combination with (713) and (714) this yields

(719) h1´
76
100 Dph1q ď h1´

146
100 Dph1q .

Since h1 " 1, this implies Dph1q “ 0, and consequently

(720) }w}C2
exppCq

` }W}C2
exppT q

“ 0 .

Namely,

(721) Σ1
h “ Σ2

h
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holds for h ě e´τ0 . Finally, applying the comparison principle again we conclude that M1 “ M2. This
finishes the proof of the spectral uniqueness theorem. �
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