
LECTURES ON CURVE SHORTENING FLOW

ROBERT HASLHOFER

Abstract. These are the lecture notes for the last three weeks of
my PDE II course from Spring 2016. The curve shortening flow
is a geometric heat equation for curves and provides an accessi-
ble setting to illustrate many important concepts from nonlinear
PDE, including maximum principle estimates, monotonicity for-
mulas, Harnack inequalities and blowup analysis. All these tech-
niques will be combined to give an exposition of Huisken’s proof of
Grayson’s beautiful theorem that the curve shortening flow shrinks
any closed embedded curve in the plane to a round point.
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1. Curve shortening flow basics

A one-parameter family of embedded curves {Γt ⊂ R2}t∈I moves by
curve shortening flow if the normal velocity at each point is given by
the curvature vector:

(1.1) ∂tp = ~κ(p)

for all p ∈ Γt and all t ∈ I. Here, I is an interval, ∂tp is the normal
velocity at p, and ~κ(p) is the curvature vector at p.

Date: March 31, 2016.
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Example 1.2 (Round shrinking circles). If Γt = ∂B2
r(t) ⊂ R2, then

(1.1) reduces to an ODE for the radius, namely ṙ = −1/r. The solution
with r(0) = R is given by r(t) =

√
R2 − 2t, t ∈ (−∞, R2/2).

Example 1.3 (Grim reaper). Another explicit solution is given by
Γt = graph(− log cos p) + t where p ∈ (−π

2
, π

2
) and t ∈ (−∞,∞).

Example 1.4 (Paperclip and hairclip). Despite the nonlinear nature of
the curve shortening flow, the upwards translating grim reaper given by
e−y(t) = e−t cosx(t) and the downwards translating grim reaper given
by ey(t) = e−t cosx(t) can be combined to give another pair of solutions
given implicitly as the solution set of

(1.5) cosh y(t) = e−t cosx(t),

respectively

(1.6) sinh y(t) = e−t cosx(t).

The paperclip, given as solution of (1.5) restricted to |x| < π/2 desribes
a compact ancient solution that for t→ 0 becomes extinct in a round
point and for t → −∞ looks like two copies of the grim reaper glued
together smoothly. The hairclip (1.6) is an eternal solution, which for
t→ −∞ looks like an infinite row of grim reapers, alternating between
translating up and translating down, and for t → +∞ converges to a
horizontal line.

From now on we will focus on the evolution of closed embedded
curves. It is often most convenient to describe the evolution (1.1) in
terms of a one-parameter family of embeddings

(1.7) γ = γ(·, t) : S1 × I → R2

with Γt = γ(S1, t). Setting p = γ(x, t), the curve shortening flow
equation then takes the form

(1.8) ∂tγ(x, t) = κ(x, t)N(x, t),

where we have expressed the curvature vector ~κ as a product of the
curvature κ and the inward pointing unit normal vector N .

Remark 1.9. The evolution can also be written in the form

(1.10) ∂tγ = ∂2
sγ,

where s denotes arc length. Even though this almost looks like the
linear heat equation, the curve shortening flow is of course a nonlinear
PDE since the arc length s depends in a nonlinear way on x and t.
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We will for now assume that we have a smooth solution of (1.8) on
a time interval [0, T ) and derive various elementary consequences.1

Let A(t) be the area of the domain enclosed by Γt. Then

(1.11)
d

dt
A(t) = −

∫
Γt

κ ds = −2π,

and thus A(t) = A(0) − 2πt. In particular, T ≤ A(0)/2π. We will
see at the end of the semester (and this is a big theorem due to
Grayson [Gra87], combined with earlier work in the convex case by
Gage-Hamilton [GH86]) that the evolution actually can be continued
smoothly until time A(0)/2π, where the flow becomes extinct in a round
point.

A geometric incarnation of the maximum principle is the follow-
ing comparison principle: If {Γt}t∈[t0,t1] and {Γ′t}t∈[t0,t1] are two curve
shortening flows (say at least one of them compact) which are initially
disjoint, then they stay disjoint under the evolution, i.e.

(1.12) Γt0 ∩ Γ′t0 = ∅ ⇒ Γt ∩ Γ′t = ∅ ∀t ≥ t0.

In fact, it is easy to check that dist(Γt,Γ
′
t) is nondecreasing in time. In

particular, any closed embedded curve which is contained in B1, even a
curve spiraling around millions of times, will unwind itself and become
round in time T ≤ 1

2
. This vividly illustrates the strength of Grayson’s

theorem and the power of geometric heat equations in general.

We will next derive the evolution equation for the length L(t) =∫
Γt
ds. To this end, we start by computing

d

dt
L(t) =

d

dt

∫
S1

〈∂xγ, ∂xγ〉1/2dx(1.13)

=

∫
S1

〈∂x∂tγ, T 〉dx(1.14)

=

∫
S1

〈∂x(κN), T 〉dx,(1.15)

where T = ∂xγ/|∂xγ| denotes the unit tangent and where we used (1.8)
in the last step. Since 〈N, T 〉 = 0 and since 〈∂xN, T 〉 = −κ ds

dx
by the

1The assumption that the initial curve is smooth is not really necessary. As a
consequence of the estimates we’ll discuss any C2-curve becomes instantaneously
smooth under the curve shortening flow. In fact, the Cauchy problem for the curve
shortening flow is well posed starting with any finite length Jordan curve [Lau13].
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definition of curvature, we conclude that

(1.16)
d

dt
L(t) = −

∫
Γt

κ2ds.

Equation (1.16) has the interpretation that the curve shortening flow is
the gradient flow of the length functional, i.e. indeed deserves its name
since it shortens curves as efficiently as possible (in general the variation
of the length functional with normal speed v is given by −

∫
Γ
κvds).

Proposition 1.17 (Evolution equation for the curvature). If {Γt ⊂
R2} evolves by curve shortening flow, then its curvature evolves by

(1.18) κt = κss + κ3,

where s denotes arc length.

Proof. For convenience we work with a parametrization that satisfies
|∂xγ| = 1 and 〈∂2

xγ, T 〉 = 0 at the point (x, t) under consideration.
Since κ = |∂xγ|−2〈∂2

xγ,N〉, at the point (x, t) we can compute

κt = ∂t〈∂2
xγ,N〉 − 2〈T, ∂x∂tγ〉〈∂2

xγ,N〉(1.19)

= 〈∂2
x∂tγ,N〉 − 2κ〈T, ∂x∂tγ〉,(1.20)

since ∂tN is tangential and ∂2
xγ is normal. Using equation (1.8) for ∂tγ

and using 〈∂xN,N〉 = 0 we can continue our computation at (x, t) and
obtain

∂tκ = ∂2
xκ+ κ〈∂2

xN,N〉 − 2κ2〈T, ∂xN〉(1.21)

= ∂2
xκ− κ〈∂xN, ∂xN〉+ 2κ3.(1.22)

Noting that ∂2
xκ = κss and 〈∂xN, ∂xN〉 = κ2 at the point (x, t), this

proves the proposition. �

Using Proposition 1.17 and the maximum principle we obtain:

Corollary 1.23. Convexity is preserved under curve shortening flow,
i.e. if κ > 0 at t = 0 then κ > 0 for all t ∈ [0, T ).

More precisely, if κmin(t) := minΓt κ is positive at t = 0, then it is
nondecreasing in time and satisfies

(1.24) κmin(t) ≥ κmin(0)

1− 2tκ2
min(0)

.

In particular, this gives the (non sharp) estimate T ≤ 1/(2κ2
min(0)).

We finish this first lecture by proving that the supremum of the
curvature controls all the higher derivatives:
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Theorem 1.25 (Derivative estimates). There exist constants C` =
C`(K,T ) < ∞ such that if {Γt} is a solution of the curve shortening
flow with supt∈[0,T ) supΓt |κ| ≤ K, then

(1.26) sup
Γt

|∂`sκ| ≤
C`
t`/2

.

Proof (sketch). Using the evolution equation (1.18) we compute

(1.27) (∂t − ∂2
s )κ

2 = −2κ2
s + 2κ(∂t − ∂2

s )κ = −2κ2
s + 2κ4.

Next, differentiating (1.18) with respect to arc length we obtain

(κt)s = κsss + 3κ2κs,(1.28)

which together with the commutator identity (κs)t = (κt)s + κ2κs im-
plies

(1.29) (∂t − ∂2
s )κs = 4κ2κs,

and thus

(1.30) (∂t − ∂2
s )κ

2
s = −2κ2

ss + 8κ2κ2
s.

Combining the evolution equations (1.27) and (1.30) we obtain

(1.31) (∂t − ∂2
s )(tκ

2
s + βκ2) ≤ (8tκ2 + 1− 2β)κ2

s + 2βκ4 ≤ 2βK4,

provided we chose β ≥ (8TK2 + 1)/2. Thus, the maximum principle
implies that

(1.32) tκ2
s ≤ βK2 + 2βK4T,

which proves the derivative estimate for ` = 1.

For general `, by induction one obtains the differential inequality
(1.33)

(∂t − ∂2
s )|∂`sκ|2 ≤ −2|∂`+1

s κ|2 + α`

( ∑
i+j+k=`

|∂isκ||∂jsκ||∂ksκ|

)
|∂`sκ|,

where α` are some numerical constants. The derivative estimates then
follow by considering the evolution of

(1.34) F` = t`|∂`sκ|2 +
`−1∑
i=0

β`,it
i|∂isκ|2

for suitable constants β`,i and arguing by induction. The details are
left as an exercise. �
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2. Existence and uniqueness

The goal of this lecture is to explain how to prove existence and
uniqueness for the curve shortening flow.

Theorem 2.1 (Existence and Uniqueness). Let γ0 : S1 → R2 be an
embedded curve. Then there exists a unique smooth solution γ : S1 ×
[0, T )→ R2 of the curve shortening flow

(2.2) ∂tγ = ∂2
sγ, γ|t=0 = γ0,

defined on a maximal time interval [0,T). The maximal existence time
is characterized by

(2.3) sup
S1×[0,T )

|κ|(x, t) =∞.

We start by explaining that the curve shortening flow is not strictly
parabolic. If γ : S1× [0, T )→ R2 evolves by curve shortening flow then

∂tγ = ∂2
sγ = |∂xγ|−1∂x(|∂xγ|−1∂xγ)(2.4)

= |∂xγ|−2

(
∂2
xγ −

〈
∂xγ

|∂xγ|
, ∂2

xγ

〉
∂xγ

|∂xγ|

)
.(2.5)

In components γ = (γ1, γ2) this reads(
∂tγ

1

∂tγ
2

)
= |∂xγ|−4

(
(∂xγ

2)2 ∂xγ
1∂xγ

2

∂xγ
1∂xγ

2 (∂xγ
1)2

)(
∂2
xγ

1

∂2
xγ

2

)
.

Note that the matrix is positive semidefinite, but not positive definite
(it has vanishing determinant). Thus the standard theory for strictly
parabolic systems cannot be applied.

Degeneracies like above are actually quite typical for geometric PDEs.
For the curve shortening flow, the underlying reason is that geomet-
rically only the normal component of the velocity is meaningful, i.e.
the velocity is only determined up to tangential motion / change of
parametrization. To overcome this degeneracy we have to fix a gauge.
To this end, we represent the flow as evolving graph over γ0 (if γ0 is
not smooth, one can instead choose a smooth curve nearby), i.e. we
make the ansatz

(2.6) γ̃(x, t) = γ0(x) + u(x, t)N(x).

Assume for convenience that γ0 is parametrized by arc length. We
compute

(2.7) γ̃′ = u′N + (1− ku)T,
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where k is the curvature of γ0, and T and N are the unit tangent and
unit normal of γ0, respectively. Differentiating again we obtain

(2.8) γ̃′′ = (u′′ + k(1− ku))N − (k′u+ 2ku′)T.

Using the formula κ = |γ̃′|−3 det(γ̃′, γ̃′′) we obtain the curvature of γ̃,

(2.9) κ =
(1− ku)u′′ + 2ku′2 + k′uu′ − 2k2u+ k3u2 + k

((1− ku)2 + u′2)3/2
.

The unit normal vector Ñ of γ̃ is obtained by rotating γ̃′/|γ̃′| by π/2
and thus equal to

(2.10) Ñ =
(1− ku)N − u′T

((1− ku)2 + u′2)1/2
.

Finally, observing that Γt = γ̃(S1, t) moves by curve shortening flow if
and only if 〈Ñ , u′N〉 = κ, we obtain the evolution equation

(2.11) ut =
u′′ + (1− ku)−1(2ku′2 + k′uu′ − 2k2u+ k3u2 + k)

((1− ku)2 + u′2)
.

Equation (2.11) is a quasilinear strictly parabolic equation (as long as
say |ku| ≤ 1/2), and thus has a unique solution on some time interval
[0, ε), c.f. the previous PDE lectures (this can be done e.g by using
Picard iteration combined with the theory for the inhomogenous linear
heat equation and energy estimates in Hj for j sufficiently large).

In general, γ̃ only solves the equation up to tangential motion, i.e.

(2.12) ∂tγ̃ = κÑ + f∂xγ̃,

for some function f = f(x, t). To get a parametrization γ(x, t) that
literally solves the equation ∂tγ = ∂2

sγ we let

(2.13) γ(x, t) = γ̃(ϕt(x), t),

where ϕt : S1 → S1 is the unique solution of the family of ODEs

(2.14) d
dt
ϕt(x) = −f(x, t)

∂xγ̃(x, t)

∂xγ̃(ϕt(x), t)
, ϕ0(x) = x.

We have thus proved short time existence and uniqueness for the
curve shortening flow. Note also that embeddedness is preserved by
the maximum principle. Now let {Γt}t∈[0,T ) be a solution on a maximal
time interval [0, T ). If

(2.15) lim sup
t→T

sup
Γt

|κ| <∞,

then by Theorem 1.25 all derivatives of the curvatures are bounded also
up to time T . We can thus pass to a smooth limit ΓT , and applying
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the short time existence result we can continue the evolution until time
T + ε; this contradicts the fact that T was maximal and finishes the
proof of Theorem 2.1.

3. Huisken’s monotonicity formula and applications

Recall that under curve shortening flow the length evolves by

(3.1)
d

dt

∫
Γt

ds = −
∫

Γt

κ2 ds.

However, since Length(λΓ) = λLength(Γ), this is not that useful when
considering blowup sequences with λ→∞. A great advance was made
by Huisken, who discovered a scale invariant monotone quantity. To
describe this, let {Γt ⊂ R2} be a curve shortening flow (say of closed
curves, or complete curves with at most polynomial length growth), let
X0 = (x0, t0) be a point in space-time, and let

(3.2) ρX0(x, t) = (4π(t0 − t))−1/2e
− |x−x0|

2

4(t0−t) (t < t0),

be the 1-dimensional backwards heat kernel centered at X0.

Theorem 3.3 (Huisken’s monotonicity formula [Hui90]).

(3.4)
d

dt

∫
Γt

ρX0 ds = −
∫

Γt

∣∣∣∣κ+
〈γ,N〉

2(t0 − t)

∣∣∣∣2 ρX0 ds (t < t0).

Huisken’s monotonicity formula (3.4) can be thought of as weighted
version of (3.1). A key property is its invariance under paraboloc rescal-
ing (cf. homework). Moreover, the equality case of (3.4) exactly char-
acterizes the selfsimilarly shrinking solutions (cf. homework).

Proof. Without loss of generality X0 = (0, 0). The proof essentially
amounts to deriving belows pointwise identity (3.7) for ρ = ρ0.

Since the tangential gradient of ρ is given by ∂sρ = ∇ρ−〈∇ρ,N〉N ,
the intrinsic Laplacian of ρ can be expressed as

(3.5) ∂2
sρ = 〈T,∇T∂sρ〉 = 〈T,∇T∇ρ〉+ κ〈N,∇ρ〉.

Observing also that d
dt
ρ = ∂tρ+ κ〈N,∇ρ〉, we compute

( d
dt

+ ∂2
s )ρ = ∂tρ+ 〈T,∇T∇ρ〉+ 2κ〈N,∇ρ〉

= ∂tρ+ 〈T,∇T∇ρ〉+
〈N,∇ρ〉2

ρ
−
∣∣∣∣κ− 〈N,∇ρ〉ρ

∣∣∣∣2 ρ+ κ2ρ.(3.6)
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We can now easily check that ∂tρ+ 〈T,∇T∇ρ〉+ 〈N,∇ρ〉2
ρ

= 0. Thus

(3.7)

(
d

dt
+ ∂2

s − κ2

)
ρ = −

∣∣∣∣κ− 〈γ,N〉2t

∣∣∣∣2 ρ.
Using also the evolution equation d

dt
ds = −κ2ds, we conclude that

(3.8)
d

dt

∫
Γt

ρ ds = −
∫

Γt

∣∣∣∣κ− 〈γ,N〉2t

∣∣∣∣2 ρ ds (t < 0).

This proves the theorem. �

We will now explain how Huisken’s monotonicity formula can be
used to study singularities via blowup analysis. Let {Γt ⊂ R2}t∈[0,T )

be a curve shortening flow of closed embedded curves, defined on a
maximal time interval [0, T ). From the previous lecture we know that
the curvature blows up at the singular time, i.e.

(3.9) lim sup
t→T

max
Γt
|κ| =∞.

In the following we will assume that the singularity forms with the so
called type I blowup rate

(3.10) max
Γt
|κ| ≤ C√

T − t
,

for some C <∞ (this assumption will be justified in later lectures).

We say that x0 ∈ R2 is a blowup point if there are sequences ti → T ,
pi ∈ Γti such that |κ|(pi) → ∞ and pi → x0. By (3.9) there indeed
exists a blowup point x0. We now rescale parabolically with center
(x0, T ), i.e. for λ > 0 consider the rescaled flow

(3.11) Γλt := λ · (ΓT+λ−2t − x0) , t ∈ [−λ2T, 0).

Claim 3.12. For λ→∞ the flows {Γλt }t∈[−λ2T,0) converge smoothly to
the family of round shrinking circles {∂B√−2t(0)}t∈(−∞,0).

Proof. Rescaling the blowup rate (3.10) gives

(3.13) max
Γλt

|κ| ≤ C√
−t
, t ∈ [−λ2T, 0).

In particular, given any compact time interval I ⊂ (−∞, 0), the flow
{Γλt } is defined on I for λ large enough, and has uniformly bounded
curvature on I. By the derivative estimates (Theorem 1.25) we also
have locally uniform bounds for all the derivatives of the curvatures.
Thus for any sequence λi →∞ we can find a subsequence λik such that

{Γλikt } converges smoothly to a limit {Γt}t∈(0,∞).
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We will now analyze the limit {Γt}t∈(0,∞): By construction, the
limit is an ancient solution of the curve shortening flow. The limit
is embedded with multiplicity one (this follows e.g. from the quanti-
tative embeddedness estimate from Lecture 5). Using the definition of
blowup point and comparison with round shrinking circles we see that
Γλ−1 ∩B2(x0) 6= ∅ for λ large enough. Thus, the limit is nonempty. By
Huisken’s monotonicity formula for every t1 < t2 < 0 we have

(3.14)

∫ t2

t1

∫
Γλt

∣∣∣∣κ− 〈γ,N〉2t

∣∣∣∣2 ρ ds dt =

[
−
∫

Γt

ρ(x0,T ) ds

]T−t2/λ2

T−t1/λ2

→ 0

as λ → ∞. Thus, {Γt}t∈(0,∞) is selfsimilarly shrinking and completely
determined by its time slice Γ−1 which satisfies

(3.15) κ+
〈γ,N〉

2
= 0.

Since x0 is a blowup point, Γ−1 cannot be a straight line by the local
regularity theorem (see Theorem 3.17). Thus, Γ−1 must be a round
circle of radius

√
2 (c.f. homework).

Finally, by uniqueness of the blowup limit, x0 is unique and the
subsequential convergence actually entails full convergence. �

To finish this lecture, let us discuss the local regularity theorem which
says if the density

(3.16) Θ({Γt}, (x0, t0), r) :=

∫
Γt0−r2

ρ(x0,t0) ds

is close to one, then the curvature is controlled. We write X = (x, t) for
points in space-time and Pr(X) = Br(x)× (t− r2, t] for the parabolic
ball with center X and radius r.

Theorem 3.17 (Local regularity theorem [Bra78, Whi05]). There exist
universal constants ε > 0 and C < ∞ with the following property: If
{Γt ⊂ R2}t∈(t0−2r2,t0] is a curve shortening flow (say of closed curves,
or complete curves with at most polynomial length growth) with

(3.18) sup
X0∈Pr(X0)

Θ({Γt}, X0, r) < 1 + ε,

then

(3.19) sup
Pr/2(X0)

|κ| ≤ Cr−1.
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Proof. Suppose the assertion fails. Then there exist a sequence of curve
shortening flows {Γjt ⊂ R2}t∈(−2,0], with

(3.20) sup
X0∈P1(0)

Θ({Γt}, X0, 1) < 1 + j−1,

but such that there are points Xj ∈ P1/2(0) with |κ|(Xj) > j.

By point selection, we can find Yj ∈ P3/4(0) with Kj = |κ|(Yj) > j
such that

(3.21) sup
Pj/(10Kj)(Yj)

|κ| ≤ 2Kj.

Let us explain how the point selection works: Fix j. If Y 0
j = Xj already

satisfies (3.21) with K0
j = |κ|(Y 0

j ), we are done. Otherwise, there is

a point Y 1
j ∈ Pj/(10K0

j )(Y
0
j ) with K1

j = |κ|(Y 1
j ) > 2K0

j . If Y 1
j satisfies

(3.21), we are done. Otherwise, there is a point Y 2
j ∈ Pj/(10K1

j )(Y
1
j )

with K2
j = |κ|(Y 2

j ) > 2K1
j , etc. Note that 1

2
+ j

10K0
j
(1+ 1

2
+ 1

4
+ . . .) < 3

4
.

By smoothness, the iteration terminates after a finite number of steps,
and the last point of the iteration lies in P3/4(0) and satisfies (3.21).

Continuing the proof of the theorem, let {Γ̂jt} be the flows obtained
by shifting Yj to the origin and parabolically rescaling by Kj = |κ|(Yj).
Since the rescaled flow satisfies |κ|(0) = 1 and supPj/10(0)|κ| ≤ 2, we

can pass smoothly to a global limit. On the one hand, the limit is
non-flat. On the other hand, by the rigidity case of Huisken’s mono-
tonicity formula and equation (3.20) the the limit is a straight line; a
contradiction. �

4. Hamilton’s Harnack inequality

Theorem 4.1 (Hamilton’s Harnack inequality [Ham95]). If {Γt ⊂
R2}t∈[0,T ) is a convex solution of the curve shortening flow (say closed
or complete with bounded curvature) then

(4.2)
κt
κ
− κ2

s

κ2
+

1

2t
≥ 0.

Proof. The proof is very similar to the one of the Li-Yau Harnack. It
suffices to consider the case where the solution existed since time −ε
and κ ≥ ε. Let f := log κ and F := t(f 2

s − ft). We want to use the
maximum principle to show that F ≤ 1/2 for all t ∈ [0, T ). Note that
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F ≤ 1/2 for small t. We compute

Fss = t(2fsfsss + 2f 2
ss − (ft)ss)(4.3)

= t(2fsfsss + 2f 2
ss − (fss)t + 2κ2fss + 2κ2f 2

s ),(4.4)

where we used the commutator formula [∂t, ∂s] = κ2∂s. Using the
evolution equation for κ we see that fss = −F/t− κ2 and thus

(4.5) Fss = −2fsFs + 2F 2

t
− F

t
+ Ft

− 4tκ2f 2
s + 4Fκ2 + 2tκ4 + 2tκ2ft − 2κ2F − 2tκ4 + 2tκ2f 2

s .

Miraculously, the nonlinear terms cancel and the quantity on the last
line is identically zero, i.e.

(4.6) Fss − Ft = −2fsFs + 1
t
F (2F − 1)

If there is a maximum point (x0, t0) with F (x0, t0) > 1/2, then

(4.7) 0 ≥ (Fss − Ft)|(x0,t0) ≥ 0 + 1
t
F (x0, t0)(2F (x0, t0)− 1) > 0;

a contradiction. This proves the theorem. �

Applying the Harnack inequality with t replaced by t− t0 and taking
the limit t0 → −∞ we obtain:

Corollary 4.8. If {Γt ⊂ R2}t∈(−∞,T ) is an ancient convex solution of
the curve shortening flow then

(4.9)
κt
κ
− κ2

s

κ2
≥ 0,

in particular κt ≥ 0.

Theorem 4.10 (Translating solitons [Ham95]). Any eternal strictly
convex solution {Γt ⊂ R2}t∈(−∞,∞) of the curve shortening flow such
that κ has a critical point somewhere in space time, must be a translat-
ing soliton, i.e. there exists some vector V ∈ R2 such that Γt = Γ0+tV .

Remark 4.11. The only strictly convex translating soliton, up to scaling
and rigid motion, is the grim reaper (c.f. homework).

Proof. Assume κ has a critical point at (x0, t0), i.e. κt = 0 = κs at
(x0, t0). The Harnack quantity

(4.12) Z =
κt
κ
− κ2

s

κ2
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satisfies Z ≥ 0 and Z(x0, t0) = 0. Using the strict maximum principle
(c.f. the evolution equations in the above proof), we see that Z ≡ 0
for all t ≤ t0, i.e.

(4.13) κt =
κ2
s

κ
.

Consider the vector field

(4.14) V := −κs
κ
T + κN.

We compute

(4.15) Vs =

(
−κss
κ

+
κ2
s

κ2
− κ2

)
T + (κs − κs)N.

Using equation (4.13) we see that Vs ≡ 0. Similarly, Vt ≡ 0. Thus V is
a constant vector. Since the normal component of V is given by κN ,
this implies that Γt = Γt0 + (t− t0)V for t ≤ t0. By uniqueness of the
curve shortening flow we conclude that Γt = Γ0 + tV for all t. �

5. Huisken’s distance comparison principle

In this lecture, we discuss Huisken’s estimate for the ratio between
the intrinsic and extrinsic distance along the curve shortening flow.
This can be thought of as quantitative version of the fact that em-
beddedness is preserved along the curve shortening flow. Let X :
S1 × [0, T ) → R2 be a family of embedded curves evolving by curve
shortening flow. Let L(t) be the total length of the curve at time t.
Given two points x, y ∈ S1, denote by `(x, y, t) the intrinsic distance
between X(x, t) and X(y, t), and by d(x, y, t) = |X(x, t)−X(y, t)| the
extrinsic distance. Following Huisken, we consider the quantity

(5.1) R(t) := sup
x 6=y

L(t)

πd(x, y, t)
sin

π`(x, y, t)

L(t)
.

Remark 5.2. Note that R ≥ 1, and R = 1 only on the round circle.

Remark 5.3. Note that for ` � L we get L
πd

sin π`
L
∼ `

d
, i.e. the ratio

between intrinsic and extrinsic distance. Since sin(π
2

+ϕ) = sin(π
2
−ϕ),

the function sin π`(x,y,t)
L(t)

is smooth even at points with `(x, y, t) = L(t)/2.

Theorem 5.4 (Huisken’s distance comparison principle [Hui98]). If a
family of closed embedded curves in the plane evolves by curve short-
ening flow, then the function R(t) is nonincreasing in time.
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Proof. Let us describe the proof following [Hui98] and [Bre14]. If the
assertion is false, we can find times t1 < t2 and a real number r > 1
such that

(5.5) R(t1) < r and R(t2) > r.

We now consider the function

(5.6) Z(x, y, t) := rd(x, y, t)− L(t)

π
sin

π`(x, y, t)

L(t)
.

By (5.5) there exists a time t̄ ∈ (t0, t1) and a pair of points x̄ 6= ȳ such
that Z(x̄, ȳ, t̄) = 0, and Z(x, y, t) ≥ 0 for all x, y ∈ S1 and all t ∈ (t0, t̄).

Without loss of generality we can assume that the parametrization
at time t̄ is by arc length, and that the orientation is chosen such that
∂x`(x̄, ȳ, t̄) = −1 and ∂y`(x̄, ȳ, t̄) = +1.

We start by computing the first derivatives

(5.7)
∂Z

∂x
(x, y, t̄) = r

〈X(x, t̄)−X(y, t), ∂X
∂x

(x, t̄)〉
|X(x, t̄)−X(y, t̄)|

+ cos
π `(x, y, t̄)

L(t̄)
,

and

(5.8)
∂Z

∂y
(x, y, t̄) = −r

〈X(x, t̄)−X(y, t), ∂X
∂y

(y, t̄)〉
|X(x, t̄)−X(y, t̄)|

− cos
π `(x, y, t̄)

L(t̄)
.

These first derivatives vanish when evaluated at (x̄, ȳ, t). In particular,
adding these two identities gives

(5.9)
〈
X(x̄, t̄)−X(ȳ, t̄),

∂X

∂x
(x̄, t̄)− ∂X

∂y
(ȳ, t̄)

〉
= 0.

To keep the notation concise, we write T (x̄) = ∂X
∂x

(x̄, t̄), T (ȳ) =
∂X
∂y

(ȳ, t̄), κ(x̄)N(x̄) = ∂2X
∂x2 (x̄, t̄) and κ(ȳ)N(ȳ) = ∂2X

∂y2 (ȳ, t̄), and also use

the abreviations d = d(x̄, ȳ, t̄), ` = `(x̄, ȳ, t̄), L = L(t̄), and

(5.10) ω =
X(ȳ, t̄)−X(x̄, t̄)

d
.

Using this notation, the identity (5.9) can be rewritten as

(5.11) 〈ω, T (x̄)〉 = 〈ω, T (ȳ)〉.

We next compute the second order partial x-derivatives of Z:

∂2Z

∂x2
(x̄, ȳ, t̄) =

r

d

(
1− 〈ω, T (x̄)〉2

)
− rκ(x̄)〈ω,N(x̄)〉+

π

L
sin

π`

L
.
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Similarly,

∂2Z

∂y2
(x̄, ȳ, t̄) =

r

d

(
1− 〈ω, T (ȳ)〉2

)
+ rκ(ȳ)〈ω,N(ȳ)〉+

π

L
sin

π`

L
,

and

∂2Z

∂x∂y
(x̄, ȳ, t̄) = −r

d
(〈T (x̄), T (ȳ)〉 − 〈T (x̄), ω〉〈ω, T (ȳ)〉)− π

L
sin

π`

L
.

Define α ∈ (0, π/2) by cosα = 〈ω, T (x̄)〉 = 〈ω, T (ȳ)〉. Then 〈T (x̄), T (ȳ)〉 =
cos(2α), and thus

(5.12)
∂2Z

∂x2
(x̄, ȳ, t̄) +

∂2Z

∂y2
(x̄, ȳ, t̄)− 2

∂2Z

∂x∂y
(x̄, ȳ, t̄) =

− rκ(x̄)〈ω,N(x̄)〉+ rκ(ȳ)〈ω,N(ȳ)〉+
4π

L
sin

π`

L
.

Finally, the time derivative of Z can be computed as

∂Z

∂t
(x̄, ȳ, t̄) = −r〈ω, κ(x̄)N(x̄)− κ(ȳ)N(ȳ)〉

+
( 1

π
sin

π`

L
− `

L
cos

π`

L

)∫
S1

κ2 + cos
π`

L

∫ ȳ

x̄

κ2.

Since r > 1 and Z(x̄, ȳ, t̄) = 0, the curve X(S1, t̄) cannot have constant
curvature, and thus

(5.13)

∫
S1

κ2 >
1

L

(∫
S1

κ

)2

=
4π2

L
.

Similarly,

(5.14)

∫ ȳ

x̄

κ2 ≥ 1

`

(∫ ȳ

x̄

κ

)2

=
4α2

`
.

Putting everything together, we conclude that

0 ≥ ∂Z

∂t
(x̄, ȳ, t̄)− ∂2Z

∂x2
(x̄, ȳ, t̄)− ∂2Z

∂y2
(x̄, ȳ, t̄) + 2

∂2Z

∂x ∂y
(x̄, ȳ, t̄)

>
4

`

(
α2 − π2`2

L2

)
cos

π`

L
.

On the other hand, the inequality r > 1 implies cosα ≤ cos π`
L

, hence

α ≥ π`
L

. This is a contradiction. �

Remark 5.15. By the monotonicity we have R(t) ≤ C, where C :=
R(0) <∞ measures the quantitative embeddedness of the initial curve.
Note also that R is scaling invariant. In particular, this implies that
the grim reaper and the paperclip cannot arise as a blowup limit of a
curve shortening flow of closed embedded curves.
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6. Grayson’s convergence theorem

In this final lecture we explain Huisken’s proof of Grayson’s theorem:

Theorem 6.1 (Grayson’s theorem [Gra87]). If Γ ⊂ R2 is a closed
embedded curve, then the curve shortening flow {Γt}t∈[0,T ) with Γ0 = Γ

exists until T = AΓ

2π
and converges for t → T to a round point, i.e.

there exists a unique point x0 ∈ R2 such that the rescaled flows

(6.2) Γλt := λ · (ΓT+λ−2t − x0)

converge for λ→∞ to the round shrinking circle {∂B√−2t}t∈(−∞,0).

Remark 6.3. There are by now several different proofs of Grayson’s the-
orem, in particular a nice geometric proof by Andrews-Bryan [AB11].

Lemma 6.4 (Grayson). Along the curve shortening flow we have

(6.5)
d

dt

∫
Γt

|κ| ds = −2
∑

x:κ(x,t)=0

|κs|(x, t)

Proof of Lemma 6.4. Since solutions of the curve shortening flow are
analytic, there are only finitely many inflection points. We compute

(6.6)
d

dt

(∫
{κ≥0}

κ ds−
∫
{κ≤0}

κ ds

)
=

∫
{κ≥0}

κss ds−
∫
{κ≤0}

κss ds.

Integrating by parts, the assertion follows. �

Proof of Theorem 6.1. Let T <∞ be the maximal existence time of the
curve shortening flow starting at Γ. Suppose towards a contradiction
that

(6.7) lim sup
t→T

(
(T − t) max

Γt
κ2

)
=∞.

We now perform a type II blowup as in [HS99], see also [Alt91]. For
any integer k ≥ 1/T let tk ∈ [0, T − 1/k], xk ∈ S1 be such that

(6.8) κ2(xk, tk)(T − 1/k − tk) = max
t≤T−1/k, x∈S1

κ2(x, t)(T − 1/k − t).

Furthermore we set

(6.9) λk = κ(xk, tk), t
(0)
k = −λ2

ktk, t
(1)
k = λ2

k(T − 1/k − tk).

By (6.7), given any M < ∞ there exist t̄ < T and x̄ ∈ S1 such that
κ2(x̄, t̄)(T − t̄) > 2M . For k large enough we have

(6.10) t̄ < T − 1/k, κ2(x̄, t̄)(T − t̄− 1/k) > M.
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It follows that

(6.11) t
(1)
k = κ2(xk, tk)(T − 1/k − tk) ≥ κ2(x̄, t̄)(T − 1/k − t̄) > M.

Since t
(1)
k is increasing and M is arbitrary, this implies t

(1)
k → ∞. It

follows that λk →∞, tk → T and t
(0)
k → −∞.

We now consider the sequence of rescaled flows

(6.12) Γkt = λk ·
(

Γtk+λ−2
k t − xk

)
, t ∈ [t

(0)
k , t

(1)
k ).

By construction, after choosing a suitable orientation, Γkt has κk = 1
at t = 0 at the origin. In addition, our choice of (xk, tk) implies

(6.13) κ2
k(x, t) ≤

T − 1/k − tk
T − 1/k − tk − λ2

kt
=

t
(1)
k

t
(1)
k − t

, t ∈ [t
(0)
k , t

(1)
k ).

After passing to a subsequence, we thus get a smooth limit {Γ∞t }t∈(−∞,∞).
The limit satisfies κ = 1 at time 0 at the origin, and κ2 ≤ 1 at every
point and every time. Moreover, by Lemma 6.4 the limit satisfies

(6.14)

∫ ∞
−∞

∑
x:κ(x,t)=0

|κs|(x, t) dt = 0,

i.e. if there was any point with κ = 0 then we would have κs = 0 at this
point also. Using the evolution equations and analyticity this would
imply that {Γ∞t }t∈(−∞,∞) is a straight line [Ang91]; a contradiction.
Thus κ > 0, and by the equality case of Hamilton’s Harnack inequality
from Lecture 4 and the classification of translating solitons from the
homework {Γ∞t }t∈(−∞,∞) must be a grim reaper; this contradicts the
bound for the ratio between the intrinsic and extrinsic distance from
Lecture 5. We thus have proved the type I blowup rate bound

(6.15) lim sup
t→T

(
(T − t) max

Γt
κ2

)
<∞.

and by the results from Lecture 3 we conclude that T = AΓ

2π
and that

for t→ T the flow converges to a round point. �
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