CSC2429 / MAT1304: Circuit Complexity January 17, 2019

Lecture 2: Gate elimination and formula lower bounds

Instructor: Benjamin Rossman

Last time:

e Boolean functions, DeMorgan circuits and formulas, C(f), L(f)

e Discussion of uniform vs. concrete models of computation

e Turing machine time ¢(n) implies circuit size O(t(n)?)

e Formula balancing: Every formula of size s is equivalent to a formula of depth O(log s)

e Lupanov’s upper bound: Every n-ary boolean function has circuit size O(2"/n) (with more
careful analysis: 2" /n + o(2"/n)).

e Shannon’s lower bound: Almost every n-ary boolean function has circuit size > 2" /n.

A corollary of the Lupanov and Shannon bounds is the following size hierarchy theorem (which
we didn’t have time for last week). For a function s : N — N, let SIZE[s] be the class of boolean
functions f : {0,1}* — {0,1} such that C(f,) < s(n) for all n € N.

Theorem 1 (Circuit Size Hierarchy Theorem). If n < s(n) < 2"~2/n, then SIZE[s] G SIZE[4s].

Proof. Pick m < n such that s(n) < 2™/m < 2s(n). By Shannon, there exists f : {0,1}™ — {0,1}
such that C(f,) > 2™/m = s(n). By Lupanov, C(f) < 2-2"/m < 4s(n). O

Remark: This result bears similarity to the Time Hierarchy Theorem (for Turing machines),

which states that DTIME(o(¢(n)/logt(n))) is a proper subclass of DTIME(t(n)) for every time-
constructible function ¢(n). The proof is a diagonalization argument (not counting).

Today:

Khrapchenko’s lower bound (1971): £(XOR,,) > n?

1-bit restrictions and gate elimination: C(XOR,,) > 3(n — 1) (Schnorr 1974)

The p-random restriction and shrinkage of formulas (Subbotovskaya 1961, Hastad 1998, Tal
2014)

Composition of boolean functions



1 Khrapchenko / Koutsoupias lower bound

For brevity, I will write XOR,, for PARITY,, and XOR,, for 1 — PARITY,,. Last week we observed
the following upper bounds on the DeMorgan circuit and formula size of XOR,,:

C(XOR,) <3(n—1) and L(XOR,) < O(n?).

Start with a balanced binary tree of n — 1 @ gates computing XOR,,. Replace each x @ y with the
depth-2 DeMorgan circuit (z A —y) V (-2 A y). Result is a DeMorgan circuit of size 3(n — 1) and
depth 2[logn]. This is equivalent to a DeMorgan formula of size at most 22[logn] < gp? (we get
< n? when n is a power of 2). (In fact, Yablonskii (1954) showed that £(XOR,,) < %nz.)

We will show a lower bound £(XOR,,) > n? using Krapchenko’s method (1971). We present a
slightly stronger version of the method due to Koutsoupias (1993).

Notation 2. Let A(P) denote the largest eigenvalue of a symmetric matrix P. We will use the
elementary fact from linear algebra: A(P + Q) < A(P) + A(Q) for symmetric matrices P, Q of the
same dimension.

Notation 3. For nonempty sets A, B C {0,1}", let M € {0,1}**5 be the A x B matrix

Mab =

)

{1 if a; # b; for a unique i € [n] (i.e. a,b are neighbors in the Hamming cube),

0 otherwise.

We have symmetric matrices MTM € {0,1}2*8 and MMT € {0,1}**4. Another elementary
fact from linear algebra: M7TM and MM7T have the same nonzero eigenvalues. In particular
AMTM) = XMMT).

Theorem 4. For any f :{0,1}" — {0,1} and nonempty sets A C f~1(0) and B C f~1(1),
L(f) = M(MTM).
Proof. Induction on £(f). In the base case L(f) = 1, f(z) is x; or 1 — z;. We have MTM = 1p

the B x B identity matrix). Therefore, A\(MT M) = 1.
( y ,

For the induction step, let F' be a minimal formula for f with leafsize £(f) > 2. Consider the
case that F' = Fi AF, where F} and F, compute functions f; and fo. Note that £L(f) = L(f1)+L(f2).

Let Ay := F;1(0) and A := A\ Ay. Note that Ay C F;, '(0) and B C F; (1) N Fy H(1).

Note that matrices M; € {0,1}41*B and My € {0,1}42*B satisty MTM = M{'M; + MT M.
Therefore,

L(f) = L(f1) + L(f2)
MEM;) + MN(MIMy)  (by induction hypothesis)

The argument when F' = Fy A Fy is symmetric in A and B, using the fact that A(MTM) =
A(MMT). O
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Corollary 5 (Khrapchenko’s bound). £(f) >

Obs: > ca > pep Map = [{(a,b) € A x B : a,b are neighbors in the Hamming cube}|.
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(letting z be the all-1 vector)

(Cauchy-Schwarz).
0

Remark: There is a direct proof of Khrapchenko’s bound by a similar argument to Koutsoupias,
but using Cauchy-Schwarz in a less elegant way. Koutsoupias’s bound is stronger by a constant
factor in some cases.

We can use Khrapchenko’s bound to prove a lower bound on £(XOR,). Let A = {all even
weight strings} and B = {all odd weight strings}. Then

(Daca X ben Ma,b)2 _ (n2"—1)2 _
A13] T g1

L(XOR,) >

EXERCISE: (1) Show £(MAJ,) = Q(n?) using Khrapchenko’s bound. (2) Can you devise
a polynomial upper bound on £(MAJ,)? (Later on, we will see a polynomial upper bound on
Lon(MAITL).)

2 Gate elimination and random restrictions

2.1 1-bit restrictions

For i € [n] and b € {0, 1}, we consider the 1-bit restriction “x; <— b” which sets the ith variable z;
to the constant b.

1-bit restrictions operate on boolean functions f(4?) as well as syntactically on DeMorgan

circuits C(®i40), (Since we measure size by the number of A and V gates, we shall consider circuits
with A and V gates only, where negations appear on wires.)

o f@ith) ig the (n — 1)-ary formula defined by

f(xikb)(xl, ey Li—1, Lj41y - - - ,.I'n) = f(:cl, e ,(L‘Z‘_l,b,wi+1, . ,a;n).



o O js the (n — 1)-ary circuit obtained from C' as follows.

— First, substitute x; ~ b for all inputs labeled by z;.

— Next, perform the following constant simplifications on subcircuits of C' whenever pos-
sible:

OANC" ~ 0, ove ~ (', =0~ 1,
IANC ~ 1vC ~ 1, -1 ~ 0.

Note that the order of applying these simplifications doesn’t matter.

Obs 0: If C' computes f, then C@i*?) computes f@i<0),
Obs 1: If x; appears below a gate in C, then for both settings of b € {0, 1},

size(C@ b)) < size(C) — 1.

Obs 2: If x; appears below two gates in C, then for at least one setting of b € {0, 1},
size(C@ b)) < size(C) — 2.

For example, if (x; A C") V C" is a subcircuit of C, then setting x; < 0 kills both gates in this
subcircuit (whereas setting z; <— 1 kills only the A gate).

2.2 The lower bound C(XOR,,) > 3(n — 1) (Schnorr 1974)

Lemma 6. In any circuit C computing XOR,, or XOR,, where n > 2, some 1-bit restriction
eliminates 3 gates.

Proof. Let g be any bottom-level A or V gate in C' (such that no A or V appears below g). Without
loss of generality, we may assume that the one of the wires feeding into g computes z; or T; and
the other wire computes x; or Z; for distinct variables z; and ;.

Claim 1: x; appears direct below another gate h of C, which is distinct from g. (If not, then
some 1-bit restriction C@i¢?) kills g, making z; irrelevant to the computation; but this cannot
happen since C' computes XOR,, or XOR,,.)

Claim 2: h is not the output of C. (If it were, then some 1-bit restriction C(*<®) makes C
constant, which cannot happen since C' computes XOR,, or XOR,,.)

Let 1/ be any gate which receives h as input. Note that g, h,h’ are three distinct gates in C.
(Obs: g and A’ are distinct by minimality of g.) For both values of b € {0, 1}, gates g and h are both
eliminated in the circuit C*:¢%. There exist b € {0,1}, such that h(**?) is fixed to a constant;
for this b, the gate k' is also eliminated in C(@i<?), 0

Corollary 7. C(XOR,,) > 3(n—1)

Proof. By induction, using the fact that XORSW_I’) is equivalent to XOR,,—1 or XOR,,_; for every
1-bit restriction (and we have C(XOR,,—1) = C(XOR,—1) > 3(n — 2) by the induction hypothesis

and invariance of C(-) under negations). O



More sophisticated versions of this gate elimination argument (with more general kinds of 1-
bit restrictions) are used in best lower bounds on the DeMorgan circuit size of explicit functions,
currently 5n — o(n). In the full binary basis, the best lower bound was recently improved from
3n —o(n) to (3 + g5)n — o(n).

3 Subbotovskaya’s Method (1961)

We say that a formula F is nice for every subformula x; A F or T; A F' or z; V F' or T; V F’, the
variable x; does not appear in F’. Note that formula is equivalent to a nice formula of the same
(or lesser) leafsize: simply perform the following syntactic transformations:

i ANF ~ zy AFEED
TANF ~ T AFEE0)
2 VF o~ x; A F@0)
TAF ~ 1 AF@EED,

Repeatedly applying these transformations to all subformulas of a given formula produces an equiv-
alent nice formula. (Note: This statement is not true of circuits. Make sure you understand why!)

As a consequence, any minimal formula F' for a function f (such that F has leafsize L£(f)) is
nice.

Lemma 8. For every n-ary Boolean function f,

Ly < (1= ) ).

E
i€[n], be{0,1} n
Proof. Let F' be a minimum-size nice formula computing f. For i € [n], let ¢; be the number of
leaves of F' labeled with z; or T;. So, L(f) = leafsize(F) = Y"1, {;.

We may assume that leafsize(F') > 2 (since the lemma is trivial if leafsize(F') = 1). Therefore,
every leaf in F has a sibling-subformula. That is, each leaf A belongs to a subformula gate(\, F”)
of F' (where gate € {A,V}); we call F’ the sibling of . For random b € {0, 1}, the 1-bit restriction
F@i<0) Kills the leaf A with probability 1 and, in addition, kills all leaves of F” with probability
3. For random b € {0,1}, at least 1.5 leaves of gate(\, F’) are killed in expected under the 1-bit

restriction F(i¢b)

For each i € [n], we have

E [ leafsize(F) — leafsize(F@<?)) | > 1.50;.
be{0,1}

# of leaves killed by the 1-bit restriction

(Here we rely on niceness of F' to ensure that we are not overcounting.) By linearity of expectations,

1.5
E  [leafsize(F) — leafsize(F"?)) ] > = " 1.5(; = —leafsize(F).
z’e[n},be{o,1}[ eafsize(F') — leafsize( )] > 0l —lea size(F)



Therefore,

E [ L(fEby ] < E [ leafsize( F(®i <) ]
i€[n],be{0,1} i€[n], be{0,1}
1.5
(1 - 7>leafsrze(F)
1\ 1.5
< (1 - ﬁ) L(f). O

Remark: This lemma implies £(XOR,,) > n!5 (easy exercise). This is weaker than the n? lower
bound of Khrapchenko’s method.

Definition 9. A restriction p is a function [n] — {0, 1,*}. We think of p as a partial assignment
of variables to 0 or 1, where p(i) = * means that the ith variable is unrestricted. We say that p is
a k-star restriction if [p~!(x)| = k. (A 1-bit restriction is an (n — 1)-star restriction.)

For f:{0,1}" — {0,1} and a restriction p : [n] — {0,1,*}, we denote by flp: {0,1}* ' *) —
{0,1} the restricted boolean function (defined in the obvious way).

Theorem 10 (Subbotovskaya’s bound). Let f:{0,1}" — {0,1} be any boolean function and let p
is a uniform random k-star restriction. Then

Bl (i) < (5) e,

n

Proof. Repeatedly applying Lemma 8, we have

1\15 1 \L5 1 \15 ky L5
e = 0= )70 ) (- ) e - (e
Definition 11. For p € [0,1], the p-random restriction is the random restriction R, : [n] —
{0,1, %} such that P[R,(i)) =« ] =pand P[R,(i) =0 | =P[R,(i) =1] = 1ndependently for
each i € [n].

Subbotovskaya’s bound has the following corollary.
Corollary 12. E[ L(fIR;) ] < O(p'°L(f) + 1)

A stronger version of this result is known:
Theorem 13 (Hastad 1998, Tal 2014). For every Boolean function f and p € [0,1],

E[ L(fIRy) ] < 0(p25(f) +1).

Tal proves a tight bound O(p2L(f) + p/L (more about his proof in a moment). Theorem
13 implies a lower bound E(XORn) = Q(n?) (Weaker than Khrapchenko’s bound by a constant
factor).

Remark 14. The maximum constant I' such that L(f[R,) < O(p"L(f) + 1) for every v < T is
called shrinkage exponent of DeMorgan formulas. Theorem 10 establishes that I' > 1.5. This was
improved to 1.55 by Impagliazzo and Nisan (1993) and 1.63 by Paterson and Zwick (1993). Finally,
Hastad (1998) showed that I' = 2.

For the class of read-once formulas (in which each variables occurs at most once), Hastad,
Razborov, Yao (1985) showed that that T'ead-once is exactly 1/log(v/5 — 1) ~ 3.27 . It is an
open problem to determine I'yonotone, the shrinkage exponent of monotone formulas. Note that
r < 1_‘monotorre < 1_‘read—once- It is conjectured that Fmonotone = I‘read-once



3.1 Outline of Tal’s proof of Theorem 13 [mostly skipped in lecture]

The approzimate degree a%(f) of a boolean function f : {0,1}" — {0,1} is the minimum degree
of a real polynomial p € R[zy,...,x,] such that |f(z) — p(z)| < 1/3 for every x € {0,1}".

Approximate degree has an upper in terms of formula size:

Theorem 15. a?eé(f) < O(L(f))

The proof of this theorem goes through quantum query complezity. For any boolean function f,
it is known that deg(f) < O(Q2(f)) and Q2(f) < O(\/L(f)). (Open problem: Give a direct proof
of Theorem 15 that does not go through quantum query complexity.)

Using boolean analysis (which we’ll discuss later in the course), Tal showed:

Lemma 16. E[ E(er1/8eTg(f)) ]=0(1)

An corollary of this lemma and Theorem 15 (exercise):
Corollary 17. If p < 1/\/L(f), then E[ L(fIR,) ] = O(p-\/L(f)).

For the remaining case where p > 1/1/L(f), Tal uses the following decomposition:

Lemma 18. Let F be an formula of leafsize ¢ and let ¢ € N. Then there exist m = O(s/{)
formulas G1,...,Gp,, each of size < £, and a read-once formula H with m inputs such that F' =

H(G1,...,Gm).

(The proof of this lemma is a formula-balancing argument, somewhat along the lines of Spira’s
theorem, which we saw in the last lecture.)

Still assuming p > 1/4/L(f), we take F' to be a minimal formula for f (of leafsize L(f)).
Applying the above decomposition with ¢ = 1/p? and m = p?L(f), we get

E[ L(fIRp) | < Z E[ L(GiIRp) ] (linearity of expectations)
i=1
<m-O(pVY) (since p < 1/4/L(G;) < 1/¢ for each i € [m)]
= O(P°L(f)).

Combining the two cases for p, we get E[ L(f[R,) | = O®*L(f) + p/L(f)).

4 Composition of boolean functions

Andreev showed how to get a better lower bound Q(n'+1=°(1) on the leafsize on an explicit n-
variable function. We will see this in the next lecture. Andreev’s function is a based on a compo-

sition of boolean functions.

Definition 19. For f : {0,1}* — {0,1} and g : {0,1}™ — {0,1}, the composition f ® g :
({0,1}™)* — {0,1} is defined by

(f®@g)(X1,..., Xg) == f(g(X1),...,9(Xk))-



(Properly speaking, f®g is the composition of f with the k-output function ¢* : {0,1}™ — {0,1}*.)
Viewing X € {0, 1}**™ as a matrix with rows X1, ..., X}, we first apply g to each row and then f
to the resulting vector of g-values.

Note that £(f ®g) < L(f)-L(g). For example, L(f ® XOR,,) < L(f)-O(m?). The next lemma
gives the reverse inequality (with a polylog(k) loss).

Lemma 20. For all k,m > 1 and f:{0,1}¥ — {0,1},

m 2
L(f ©XOR) > £(f) -0 (1og k) |

We will see the proof next time. We mention this lemma is a special case of a general conjecture
on the leafsize of composed functions. This is known as the KRW Conjecture (after Karchmer, Raz
and Wigderson), one version of which states that £(f ® g) = Q(L(f) - £(g)) for all functions f and
g (where Q(t(n)) = Q(t(n))/(logt(n))°® for any function t(n)).



