
CSC2429 / MAT1304: Circuit Complexity January 17, 2019

Lecture 2: Gate elimination and formula lower bounds

Instructor: Benjamin Rossman

Last time:

• Boolean functions, DeMorgan circuits and formulas, C(f), L(f)

• Discussion of uniform vs. concrete models of computation

• Turing machine time t(n) implies circuit size O(t(n)2)

• Formula balancing: Every formula of size s is equivalent to a formula of depth O(log s)

• Lupanov’s upper bound: Every n-ary boolean function has circuit size O(2n/n) (with more
careful analysis: 2n/n+ o(2n/n)).

• Shannon’s lower bound: Almost every n-ary boolean function has circuit size > 2n/n.

A corollary of the Lupanov and Shannon bounds is the following size hierarchy theorem (which
we didn’t have time for last week). For a function s : N → N, let SIZE[s] be the class of boolean
functions f : {0, 1}∗ → {0, 1} such that C(fn) ≤ s(n) for all n ∈ N.

Theorem 1 (Circuit Size Hierarchy Theorem). If n ≤ s(n) ≤ 2n−2/n, then SIZE[s] $ SIZE[4s].

Proof. Pick m ≤ n such that s(n) ≤ 2m/m ≤ 2s(n). By Shannon, there exists f : {0, 1}m → {0, 1}
such that C(fn) > 2m/m = s(n). By Lupanov, C(f) ≤ 2 · 2m/m ≤ 4s(n).

Remark: This result bears similarity to the Time Hierarchy Theorem (for Turing machines),
which states that DTIME(o(t(n)/ log t(n))) is a proper subclass of DTIME(t(n)) for every time-
constructible function t(n). The proof is a diagonalization argument (not counting).

Today:

• Khrapchenko’s lower bound (1971): L(XORn) ≥ n2

• 1-bit restrictions and gate elimination: C(XORn) ≥ 3(n− 1) (Schnorr 1974)

• The p-random restriction and shrinkage of formulas (Subbotovskaya 1961, H̊astad 1998, Tal
2014)

• Composition of boolean functions
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1 Khrapchenko / Koutsoupias lower bound

For brevity, I will write XORn for PARITYn and XORn for 1−PARITYn. Last week we observed
the following upper bounds on the DeMorgan circuit and formula size of XORn:

C(XORn) ≤ 3(n− 1) and L(XORn) ≤ O(n2).

Start with a balanced binary tree of n− 1 ⊕ gates computing XORn. Replace each x⊕ y with the
depth-2 DeMorgan circuit (x ∧ ¬y) ∨ (¬x ∧ y). Result is a DeMorgan circuit of size 3(n − 1) and
depth 2dlog ne. This is equivalent to a DeMorgan formula of size at most 22dlogne ≤ 4n2 (we get
≤ n2 when n is a power of 2). (In fact, Yablonskii (1954) showed that L(XORn) ≤ 9

8n
2.)

We will show a lower bound L(XORn) ≥ n2 using Krapchenko’s method (1971). We present a
slightly stronger version of the method due to Koutsoupias (1993).

Notation 2. Let λ(P ) denote the largest eigenvalue of a symmetric matrix P . We will use the
elementary fact from linear algebra: λ(P +Q) ≤ λ(P ) + λ(Q) for symmetric matrices P,Q of the
same dimension.

Notation 3. For nonempty sets A,B ⊆ {0, 1}n, let M ∈ {0, 1}A×B be the A×B matrix

Ma,b :=

{
1 if ai 6= bi for a unique i ∈ [n] (i.e. a, b are neighbors in the Hamming cube),

0 otherwise.

We have symmetric matrices MTM ∈ {0, 1}B×B and MMT ∈ {0, 1}A×A. Another elementary
fact from linear algebra: MTM and MMT have the same nonzero eigenvalues. In particular
λ(MTM) = λ(MMT ).

Theorem 4. For any f : {0, 1}n → {0, 1} and nonempty sets A ⊆ f−1(0) and B ⊆ f−1(1),

L(f) ≥ λ(MTM).

Proof. Induction on L(f). In the base case L(f) = 1, f(x) is xi or 1 − xi. We have MTM = 1B
(the B ×B identity matrix). Therefore, λ(MTM) = 1.

For the induction step, let F be a minimal formula for f with leafsize L(f) ≥ 2. Consider the
case that F = F1∧F2 where F1 and F2 compute functions f1 and f2. Note that L(f) = L(f1)+L(f2).

Let A1 := F−1
1 (0) and A2 := A \A2. Note that A2 ⊆ F−1

2 (0) and B ⊆ F−1
1 (1) ∩ F−1

2 (1).

Note that matrices M1 ∈ {0, 1}A1×B and M2 ∈ {0, 1}A2×B satisfy MTM = MT
1 M1 + MT

2 M2.
Therefore,

L(f) = L(f1) + L(f2)

≥ λ(MT
1 M1) + λ(MT

2 M2) (by induction hypothesis)

≥ λ(MT
1 M1 +MT

2 M2)

= λ(MTM).

The argument when F = F1 ∧ F2 is symmetric in A and B, using the fact that λ(MTM) =
λ(MMT ).
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Corollary 5 (Khrapchenko’s bound). L(f) ≥
(
∑

a∈A
∑

b∈BMa,b)
2

|A|·|B|

Obs:
∑

a∈A
∑

b∈BMa,b = |{(a, b) ∈ A×B : a, b are neighbors in the Hamming cube}|.

Proof. We have

λ(MTM) = max
z∈RB\{~0}

zTMTMz

zT z

≥
∑

b,b′∈B(MTM)b,b′

|B|
(letting z be the all-1 vector)

=

∑
b,b′∈B

∑
a∈AMa,bMa,b′

|B|

=

∑
a∈A(

∑
b∈BMa,b)

2

|B|

≥
(
∑

a∈A
∑

b∈BMa,b)
2

|A|·|B|
(Cauchy-Schwarz).

Remark: There is a direct proof of Khrapchenko’s bound by a similar argument to Koutsoupias,
but using Cauchy-Schwarz in a less elegant way. Koutsoupias’s bound is stronger by a constant
factor in some cases.

We can use Khrapchenko’s bound to prove a lower bound on L(XORn). Let A = {all even
weight strings} and B = {all odd weight strings}. Then

L(XORn) ≥
(
∑

a∈A
∑

b∈BMa,b)
2

|A|·|B|
=

(n2n−1)2

2n−1·2n−1
= n2.

EXERCISE: (1) Show L(MAJn) = Ω(n2) using Khrapchenko’s bound. (2) Can you devise
a polynomial upper bound on L(MAJn)? (Later on, we will see a polynomial upper bound on
Lmon(MAJn).)

2 Gate elimination and random restrictions

2.1 1-bit restrictions

For i ∈ [n] and b ∈ {0, 1}, we consider the 1-bit restriction “xi ← b” which sets the ith variable xi
to the constant b.

1-bit restrictions operate on boolean functions f (xi←b) as well as syntactically on DeMorgan
circuits C(xi←b). (Since we measure size by the number of ∧ and ∨ gates, we shall consider circuits
with ∧ and ∨ gates only, where negations appear on wires.)

• f (xi←b) is the (n− 1)-ary formula defined by

f (xi←b)(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xi−1, b, xi+1, . . . , xn).
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• C(xi←b) is the (n− 1)-ary circuit obtained from C as follows.

– First, substitute xi  b for all inputs labeled by xi.

– Next, perform the following constant simplifications on subcircuits of C whenever pos-
sible:

0 ∧ C ′  0, 0 ∨ C ′  C ′, ¬0  1,

1 ∧ C ′  C ′, 1 ∨ C ′  1, ¬1  0.

Note that the order of applying these simplifications doesn’t matter.

Obs 0: If C computes f , then C(xi←b) computes f (xi←b).

Obs 1: If xi appears below a gate in C, then for both settings of b ∈ {0, 1},

size(C(xi←b)) ≤ size(C)− 1.

Obs 2: If xi appears below two gates in C, then for at least one setting of b ∈ {0, 1},

size(C(xi←b)) ≤ size(C)− 2.

For example, if (xi ∧ C ′) ∨ C ′′ is a subcircuit of C, then setting xi ← 0 kills both gates in this
subcircuit (whereas setting xi ← 1 kills only the ∧ gate).

2.2 The lower bound C(XORn) ≥ 3(n− 1) (Schnorr 1974)

Lemma 6. In any circuit C computing XORn or XORn where n ≥ 2, some 1-bit restriction
eliminates 3 gates.

Proof. Let g be any bottom-level ∧ or ∨ gate in C (such that no ∧ or ∨ appears below g). Without
loss of generality, we may assume that the one of the wires feeding into g computes xi or xi and
the other wire computes xj or xj for distinct variables xi and xj .

Claim 1: xi appears direct below another gate h of C, which is distinct from g. (If not, then
some 1-bit restriction C(xj←b) kills g, making xi irrelevant to the computation; but this cannot
happen since C computes XORn or XORn.)

Claim 2: h is not the output of C. (If it were, then some 1-bit restriction C(xi←b) makes C
constant, which cannot happen since C computes XORn or XORn.)

Let h′ be any gate which receives h as input. Note that g, h, h′ are three distinct gates in C.
(Obs: g and h′ are distinct by minimality of g.) For both values of b ∈ {0, 1}, gates g and h are both
eliminated in the circuit C(xi←b). There exist b ∈ {0, 1}, such that h(xi←b) is fixed to a constant;
for this b, the gate h′ is also eliminated in C(xi←b).

Corollary 7. C(XORn) ≥ 3(n− 1)

Proof. By induction, using the fact that XOR
(xi←b)
n is equivalent to XORn−1 or XORn−1 for every

1-bit restriction (and we have C(XORn−1) = C(XORn−1) ≥ 3(n − 2) by the induction hypothesis
and invariance of C(·) under negations).
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More sophisticated versions of this gate elimination argument (with more general kinds of 1-
bit restrictions) are used in best lower bounds on the DeMorgan circuit size of explicit functions,
currently 5n − o(n). In the full binary basis, the best lower bound was recently improved from
3n− o(n) to (3 + 1

86)n− o(n).

3 Subbotovskaya’s Method (1961)

We say that a formula F is nice for every subformula xi ∧ F ′ or xi ∧ F ′ or xi ∨ F ′ or xi ∨ F ′, the
variable xi does not appear in F ′. Note that formula is equivalent to a nice formula of the same
(or lesser) leafsize: simply perform the following syntactic transformations:

xi ∧ F  xi ∧ F (xi←1),

xi ∧ F  xi ∧ F (xi←0),

xi ∨ F  xi ∧ F (xi←0),

xi ∧ F  xi ∧ F (xi←1).

Repeatedly applying these transformations to all subformulas of a given formula produces an equiv-
alent nice formula. (Note: This statement is not true of circuits. Make sure you understand why!)

As a consequence, any minimal formula F for a function f (such that F has leafsize L(f)) is
nice.

Lemma 8. For every n-ary Boolean function f ,

E
i∈[n], b∈{0,1}

[ L(f (xi←b)) ] ≤
(

1− 1

n

)1.5
L(f).

Proof. Let F be a minimum-size nice formula computing f . For i ∈ [n], let `i be the number of
leaves of F labeled with xi or xi. So, L(f) = leafsize(F ) =

∑n
i=1 `i.

We may assume that leafsize(F ) ≥ 2 (since the lemma is trivial if leafsize(F ) = 1). Therefore,
every leaf in F has a sibling-subformula. That is, each leaf λ belongs to a subformula gate(λ, F ′)
of F (where gate ∈ {∧,∨}); we call F ′ the sibling of λ. For random b ∈ {0, 1}, the 1-bit restriction
F (xi←b) kills the leaf λ with probability 1 and, in addition, kills all leaves of F ′ with probability
1
2 . For random b ∈ {0, 1}, at least 1.5 leaves of gate(λ, F ′) are killed in expected under the 1-bit

restriction F (xi←b).

For each i ∈ [n], we have

E
b∈{0,1}

[ leafsize(F )− leafsize(F (xi←b))︸ ︷︷ ︸
# of leaves killed by the 1-bit restriction

] ≥ 1.5`i.

(Here we rely on niceness of F to ensure that we are not overcounting.) By linearity of expectations,

E
i∈[n], b∈{0,1}

[ leafsize(F )− leafsize(F (xi←b)) ] ≥ 1

n

n∑
i=1

1.5`i =
1.5

n
leafsize(F ).
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Therefore,

E
i∈[n], b∈{0,1}

[ L(f (xi←b)) ] ≤ E
i∈[n], b∈{0,1}

[ leafsize(F (xi←b)) ]

≤
(

1− 1.5

n

)
leafsize(F )

≤
(

1− 1

n

)1.5
L(f).

Remark: This lemma implies L(XORn) ≥ n1.5 (easy exercise). This is weaker than the n2 lower
bound of Khrapchenko’s method.

Definition 9. A restriction ρ is a function [n] → {0, 1, ∗}. We think of ρ as a partial assignment
of variables to 0 or 1, where ρ(i) = ∗ means that the ith variable is unrestricted. We say that ρ is
a k-star restriction if |ρ−1(∗)| = k. (A 1-bit restriction is an (n− 1)-star restriction.)

For f : {0, 1}n → {0, 1} and a restriction ρ : [n] → {0, 1, ∗}, we denote by f�ρ : {0, 1}ρ−1(∗) →
{0, 1} the restricted boolean function (defined in the obvious way).

Theorem 10 (Subbotovskaya’s bound). Let f : {0, 1}n → {0, 1} be any boolean function and let ρρρ
is a uniform random k-star restriction. Then

E[ L(f�ρρρ) ] ≤
(k
n

)1.5
L(f).

Proof. Repeatedly applying Lemma 8, we have

E[ f�ρρρ ] ≤
(

1− 1

n

)1.5(
1− 1

n− 1

)1.5
· · ·
(

1− 1

k + 1

)1.5
L(f) =

(k
n

)1.5
L(f).

Definition 11. For p ∈ [0, 1], the p-random restriction is the random restriction Rp : [n] →
{0, 1, ∗} such that P[ Rp(i) = ∗ ] = p and P[ Rp(i) = 0 ] = P[ Rp(i) = 1 ] = 1−p

2 independently for
each i ∈ [n].

Subbotovskaya’s bound has the following corollary.

Corollary 12. E[ L(f�Rp) ] ≤ O(p1.5L(f) + 1)

A stronger version of this result is known:

Theorem 13 (H̊astad 1998, Tal 2014). For every Boolean function f and p ∈ [0, 1],

E[ L(f�Rp) ] ≤ O(p2L(f) + 1).

Tal proves a tight bound O(p2L(f) + p
√
L(f)) (more about his proof in a moment). Theorem

13 implies a lower bound L(XORn) = Ω(n2) (weaker than Khrapchenko’s bound by a constant
factor).

Remark 14. The maximum constant Γ such that L(f�Rp) ≤ O(pγL(f) + 1) for every γ < Γ is
called shrinkage exponent of DeMorgan formulas. Theorem 10 establishes that Γ ≥ 1.5. This was
improved to 1.55 by Impagliazzo and Nisan (1993) and 1.63 by Paterson and Zwick (1993). Finally,
H̊astad (1998) showed that Γ = 2.

For the class of read-once formulas (in which each variables occurs at most once), H̊astad,
Razborov, Yao (1985) showed that that Γread-once is exactly 1/ log(

√
5 − 1) ≈ 3.27 . It is an

open problem to determine Γmonotone, the shrinkage exponent of monotone formulas. Note that
Γ ≤ Γmonotone ≤ Γread-once. It is conjectured that Γmonotone = Γread-once.
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3.1 Outline of Tal’s proof of Theorem 13 [mostly skipped in lecture]

The approximate degree d̃eg(f) of a boolean function f : {0, 1}n → {0, 1} is the minimum degree
of a real polynomial p ∈ R[x1, . . . , xn] such that |f(x)− p(x)| ≤ 1/3 for every x ∈ {0, 1}n.

Approximate degree has an upper in terms of formula size:

Theorem 15. d̃eg(f) ≤ O(
√
L(f))

The proof of this theorem goes through quantum query complexity. For any boolean function f ,
it is known that d̃eg(f) ≤ O(Q2(f)) and Q2(f) ≤ O(

√
L(f)). (Open problem: Give a direct proof

of Theorem 15 that does not go through quantum query complexity.)

Using boolean analysis (which we’ll discuss later in the course), Tal showed:

Lemma 16. E[ L(f�R
1/d̃eg(f)

) ] = O(1)

An corollary of this lemma and Theorem 15 (exercise):

Corollary 17. If p ≤ 1/
√
L(f), then E[ L(f�Rp) ] = O(p·

√
L(f)).

For the remaining case where p > 1/
√
L(f), Tal uses the following decomposition:

Lemma 18. Let F be an formula of leafsize ` and let ` ∈ N. Then there exist m = O(s/`)
formulas G1, . . . , Gm, each of size ≤ `, and a read-once formula H with m inputs such that F =
H(G1, . . . , Gm).

(The proof of this lemma is a formula-balancing argument, somewhat along the lines of Spira’s
theorem, which we saw in the last lecture.)

Still assuming p > 1/
√
L(f), we take F to be a minimal formula for f (of leafsize L(f)).

Applying the above decomposition with ` = 1/p2 and m = p2L(f), we get

E[ L(f�Rp) ] ≤
m∑
i=1

E[ L(Gi�Rp) ] (linearity of expectations)

≤ m ·O(p
√
`) (since p ≤ 1/

√
L(Gi) ≤ 1/` for each i ∈ [m]

= O(p2L(f)).

Combining the two cases for p, we get E[ L(f�Rp) ] = O(p2L(f) + p
√
L(f)).

4 Composition of boolean functions

Andreev showed how to get a better lower bound Ω(nΓ+1−o(1)) on the leafsize on an explicit n-
variable function. We will see this in the next lecture. Andreev’s function is a based on a compo-
sition of boolean functions.

Definition 19. For f : {0, 1}k → {0, 1} and g : {0, 1}m → {0, 1}, the composition f ⊗ g :
({0, 1}m)k → {0, 1} is defined by

(f ⊗ g)(X1, . . . , Xk) := f(g(X1), . . . , g(Xk)).
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(Properly speaking, f⊗g is the composition of f with the k-output function gk : {0, 1}m → {0, 1}k.)
Viewing X ∈ {0, 1}k×m as a matrix with rows X1, . . . , Xk, we first apply g to each row and then f
to the resulting vector of g-values.

Note that L(f ⊗g) ≤ L(f) ·L(g). For example, L(f ⊗XORm) ≤ L(f) ·O(m2). The next lemma
gives the reverse inequality (with a polylog(k) loss).

Lemma 20. For all k,m ≥ 1 and f : {0, 1}k → {0, 1},

L(f ⊗XORm) ≥ L(f) · Ω
(

m

log k

)2

.

We will see the proof next time. We mention this lemma is a special case of a general conjecture
on the leafsize of composed functions. This is known as the KRW Conjecture (after Karchmer, Raz
and Wigderson), one version of which states that L(f ⊗ g) = Ω̃(L(f) · L(g)) for all functions f and
g (where Ω̃(t(n)) = Ω(t(n))/(log t(n))O(1) for any function t(n)).

8


