CSC2429 / MAT1304: Circuit Complexity January 24, 2019

Lecture 3: Andreev’s function, Nechiporuk’s method,
and BPP C P/poly (randomness < nonuniformity)

Instructor: Benjamin Rossman

Last week:
e p-random restriction R,
o E[ L(fIR,) ] = OWL(f) +1) (we saw proof with pl-®)

e Composition f ® g of boolean functions f and g

Today:
e Andreev’s function (1987): Q(n?/polylogn) lower bound for DeMorgan formulas
e Neciporuk’s method (1966): ©(n?/logn) lower bound for formulas in full binary basis

e BPP C P/poly (randomness < nonuniformity)

e Valiant (1984): polynomial-size monotone formulas for MAJORITY

1 Andreev’s Function (1987)

Definition 1. For f : {0,1}* — {0,1} and g : {0,1} — {0,1}, the composition f ® g :
{0,1}+*m — 10,1} is defined by

(f ® g)(X) = f(g(Xl,la - ,Xl,m)a - ,g(Xk,l, - 7Xk,m))-

Recall that £(f ® g) < L(f) - L(g). For example, L(f ® XOR,,) < L(f) - O(m?). The next
lemma gives the reverse inequality (with a polylog(k) loss).

Lemma 2. For every f: {0,1}¥ — {0,1},

m 2
L(f ® XORy) > L(f) - Q<logk> .

Remark: Tal (2014) gives an optimal lower bound £(f)-Q(m?). Lemma 2 is easier to prove and
will be good enough for our purposes. Recent work of Dinur and Meir (2016) prove a generalization
of Lemma 2 using communication complexity.



Proof. Let p := 2Ink/m, and let R, be the p-random restriction on the mk variables of f ®XOR,,.
Observe that if Rj, has > 1 star in every row, then £((f ® XOR;,)[R,) > £(f). By a union bound,

1
P[ R, has a row with no stars | < k(1 —p)™ < ke P < z
Therefore,
1
1-— o < P[ R, has > 1 star in every row | < P[ L((f ® XOR,)IR,p) > L(f) ].

On the other hand, by Markov’s inequality

[ £((f ® XORm)Ry) |
L(f)

P[ £((f © XOR,)[R,) = £(f) ] < =
By the shrinkage theorem:
E[ £((f ® XOR,,)IR,) | = O(p*L(f ® XOR,,) + 1).
(We can forget about this +1, since p > 1/1/L(f ® XOR,,) > 1/4/L(XOR,,) > 1/m.)

Therefore,

cenom 2o(40) - o) :

Definition 3. Andreev’s function with parameters k, m € N is the function

ANDREEVy,,, : {k-ary Boolean functions} x ({0,1}™)* — {0,1}

>~ {0, 1)2"+mk
defined by
ANDREEV m(f, X) := (f ® XORp)(X).

We view ANDREEVY, ;,, as an n-ary Boolean function where n = 2% - mk. (In the case m = 1, this
is the function (f,z) — f(z), also known as the multiplexor function.)

1.1 Lower bound

For every k-ary Boolean function f, there exists a restriction p that “hardwires” the truth table of
f in the first 2% variables (and leaves the remaining mk variables free). Note that ANDREEVy, . [p
is the precisely the function f ® XOR,,, hence

L(ANDREEV},,) > L(f ® XORp,) > L(f) - Q((m/ log k)?).

(Here we are using the obvious fact that £(f) > L(f]p) for any restriction p on the variables of f.)
By choosing f with £(f) > Q(2¥/logk) (the Riordan-Shannon counting argument for formulas)
and setting m = O(2%/k), we get n = ©(2%) and

7'L3
L(ANDREEV}, ) > Q(2"/log k) - Q((m/log k)?) = Q < (log n)2(log log n)3> '



Note: This lower bound is nearly tight: L(ANDREEVy, ,,,) = O(n3). Also note ANDREEVy, ,,,
has linear circuit size O(2% + km) (exercise to see why).

Remark: The best lower bound for Andreev’s function is Q(n3/(logn)?(loglogn)) (Tal 2014).
Tal also give an Q(n?/logn(loglogn)?)) lower bound for a variant of Andreev’s function.

2 Nechiporuk’s Method (1966)

So far, we have been considering lower bounds for DeMorgan formulas. We now consider formulas
in the full binary basis By = {all 2-ary gate types}. We write Lp,(-) for formula leafsize in this
basis.

Note that the p-random restriction R, is ineffective against Bo-formulas. We have E[ L, (fIRp) ]
< p-Lp,(f) (by linearity of expectation over the leaves of f). However, unlike DeMorgan formulas,
we do not have the inequality E[ Lp,(fIR,) ] < O(p*Lp,(f) + 1) for any € > 0. (To see why,
consider the case that f is a parity function.)

There is another technique due to Nechiporuk that gives nearly quadratic Q(n?/logn) lower
bounds (the best known for the Ba-formula size of explicit boolean functions). Nechiporuk’s tech-
nique is based on counting the number of subfunctions of a boolean function over different subsets
of input variables.

Definition 4. For any n-ary Boolean function f and V' C [n], let
suby (f) := {fIp : restrictions p : [n] — {0,1,*} with p~'(x) = V'}.
be the set of V-subfunctions of f.
For purposes of induction, it will be convenient to also define the set
subj,(f) == {0, 1, f',1 — f"+ f" € suby (f)}.

(Here 0 and 1 stand for the identically 0 and identically 1 functions on {0,1}".) That is, sub},(f)
consists of V-subfunctions of f, their negations, and constant functions 0 and 1. Note that
|suby, (F)| <4 - |suby (F)| (in fact, [subj (F)| < 2 - [suby (F)| + 2).

Definition 5. For an n-ary formula F' and V' C [n], let £/ (F) denote the number of leaves of F’
labeled by variables in the set V. Clearly leafsize(F) = £y (F) + £\ v (F).

Two useful observations the V-subfunctions of any formula F":
(1) If F = gate(G, H) (where gate is any 2-ary function {0,1}? — {0,1}), then clearly
suby (F') C {gate(g, h) : g € suby(G), h € suby (H)}.
Therefore, |suby (F)| < [suby (G)| - |suby (H)|.

(2) If F = gate(G, H) and moreover ¢y (H) = 0, then subj,(F') C subj (G).

This is because ¢y (H) = 0 implies that H[p € {0,1} for each restriction p : [n] — {0, 1, %}
with p~1(¥) = V. Therefore,

Flp = gate(G[p, Hlp) € {gate(G[p,0),gate(G[p,1)} C {GIp,1 - G[p,0,1}.
This shows that suby (F') C subj (G). It follows that subj (F') C subj (G).



Lemma 6. If F' is an n-ary formula and V' C [n| such that {y(F) > 1, then

subt, (F)| < 4-16%vUE)~1,

Proof. By induction on the leafsize of F'. In the base case where F' has leafsize 1, F' is must be a
variable x; where ¢ € V' (since fy (F') > 1). In this case, |[subj (F)| = 4.

For the induction step, assume F' = gate(G, H). Clearly ¢y (F) = ly(G) + ¢y (H). We consider
a few cases.

If ¢y (H) = 0, then subj, (F) C subj,(G) by Observation (2). Therefore, [subj,(F)| < |subj (G)| =
4.16v(G)-1 = 4. 16/v(F)=1 by the induction hypothesis applied to G. Similarly, the lemma holds
in the case ¢y (G) = 0.

We are left with the case that ¢y (G), ¢y (H) > 1. In this case,
|suby, (F)| <4 - [suby (F)| <4-|suby(G)| - |suby (H)|
<4 [suby (G)] - [suby (H)|
<4-(4- 165\/(0)—1) (4- 16€v(H)—1)
=416 @)1, O

Corollary 7. If F is an n-ary formula and V C [n], then |suby (F)| < 16/v(F),

Proof. The case £y (F) > 1 is handled by the lemma, as |[suby (F)| < |sub},(F)| < 4 - 16/v(F)~1 <
16/v(F) In the case £y (F) = 0, suby (F) is either {0} or {1}. In either case, |suby (F)| = 1 =
16", O

Theorem 8 (Nechiporuk’s bound). For any n-ary Boolean function f and partition V1 & --- WV,
of the set [n],

t
Lo(f) 2 > toglsuby (1)

Proof. Let F be an optimal Bs-formula for f. Then

t

t t
L, (f) = leafsize(F) = 3" t,(F) > 3 logy [suby; (F)]| = iz suby: (f). 0
=1

i=1 i=1
We obtain an £2(n?/log n) lower bound by applying Nechiporuk’s bound to the following boolean
function.
Definition 9. For k € N and n = 2¥ - 2k, the element distinctness function ED,, : {0, 1}2kX2k —
{0,1} is defined by

1 if Xy,..., Xy are distinct elements of {0, 1}%,

ED,(Xq,...,Xoc) =
n(Xa 2) {O otherwise.

Theorem 10. Lp,(ED,,) = Q(n?/logn).



Proof. Let Vi W --- W Vo, = [n] partition the variables into coordinates for Xy, ..., Xq.

For each function h : {0,1}?* — {0,1} with |h~1(0)| = 2¥ — 1, we have h € suby,(ED,,) by
considering any restriction p which fixes {0, 1}"7 to the distinct elements of h=1(0) for j € [2¥]\ {i}.
Therefore,

k
4 > > (4F — 2k 4 1)1,

By Nechiporuk’s theorem,

2k
1
L5,(EDy) > 5 Z; log |suby; (ED,,)|
1
= 12’“(2’“ —1)log(4* -2 +1) = Qk4*) = Q(n?/logn). O

Remark: This lower bound is tight (even for DeMorgan formulas), as we have L(ED,) =
O(n?/logn).

Remark: Nechiporuk’s method also gives an Q(n2) lower bound for £, (ANDREEVy, ,,,) (with
appropriate k and m).

Homework exercise: Show that €2(n?/logn) is the limit of the lower bounds using Nechiporuk’s
method.

3 Summary and next topics

3.1 Lower bounds we’ve seen so far

model method best 1b limit
DeMorgan circuits (random) counting 2" /n 2" /n + o(2"/n)
DeMorgan formulas (random) counting 2"/logn | 2"/logn+ o(2"/n)
DeMorgan circuits gate elim. 5n — o(n) O(n) [GHKK’18]
By-circuits gate elim. 3.0ln —o(n) | O(n) [GHKK’18]
DeMorgan formulas Khrapchenko /Koutsoupias n? n?
DeMorgan formulas shrinkage + clever function Q(n3) unclear
Bs-formulas Nechiporuk Q(n?/logn) O(n?/logn)

3.2 Restricted classes

We will focus on the both the power and limitations (upper and lower bounds) in restricted classes
of circuits and formulas. The main settings are:

e Monotone circuits and formulas (no negations).

We write Con (f) and Liyon (f) for the monotone circuit / formula size of a monotone function

f-



e Bounded-depth circuits with negations and unbounded fan-in gates AND, OR, MOD,,,, MAJ.

Some bounded-depth circuit classes:
o ACY: constant-depth, poly-size, {AND, OR, NOT }-circuits
e AC°[m]: constant-depth, poly-size {AND,OR, NOT, MOD,,}-circuits
e TCO (T is for Threshold): constant-depth, poly-size { AND,OR, NOT, M A.J}-circuits
Remark: we can compute arbitrary threshold function
e NC!: O(logn)-depth, poly-size circuits = poly-size formulas
e P/poly: poly-size circuits
o We will see

AC® € AC°[2] S AC°[6] € TC” C NC!

e We won’t focus on classes between NC! and P/poly, but there are several interesting ones:

NC! C L/poly C NL/poly € NC? C NC C P/poly.

4 BPP/poly C P/poly: Nonuniformity is more powerful than ran-
domness

Definition 11. A randomized circuit for a Boolean function f : {0,1}" — {0,1} is a circuit C(z, y)
of n + m variables (i.e. an input x € {0,1}" and a random seed y € {0,1}") such that

B <1/3 if f(z) =0,
ye{gl}m[c*(x,y)_ ]{z 2/3 if f(y) = 1.

BPP /poly is the class of boolean functions computable by polynomial-size randomized circuits. This
is the nonuniform version of the complexity class BPP (randomized polynomial time). This class
remains the same if 1/3 and 2/3 above are replaced by a and b for any constants 0 < a < b < 1.

Theorem 12 (Adelman 1978). If f : {0,1}" — {0,1} is computable by a polysize randomized
circuit, then it is computable by a polysize circuit (that is, BPP /poly C P/poly).

Proof. We will use the fact that MAJ,, has polynomial-size circuits (in fact, it has O(n) size circuits).
You will see one way of showing this in homework exercises; a different method will be presented
later (in fact, we will show that MAJ,, has polynomial-size monotone formulas).

Recall that Bin(n, p) is the binomial random variable with density function P[ Bin(n,p) =k | =
(1)p*(1 — p)"~*. We will use Chernoff bounds:

2
) e“pn
Pl B > (1 < —
[ Bin(n,p) > ( +5)pn]_exp< 5 5>’

£2pn

P[ Bin(n,p) < (1 —¢)pn | < exp (— > for 0 <e < 1.



Suppose f : {0,1}" — {0,1} is in BPP/poly and let C(z,y) be a polynomial-size randomized
circuit for f on n + m variables (where m = nPW) without loss of generality). For any ¢ € N, let
g+ {0,1}" x {0, 1}*™ — {0, 1} be the boolean function

gi(x,Y) := MAL(f(z,Y1),..., f(z,Y2))

where Y; = (Yi1,...,Yin) € {0,1}™. Note that g; is computable by a circuit of size t-size(C) +
C(MAJ;), namely, take an optimal circuit for MAJ; and replace the ith input with the circuit
C(x,Y;). So long as t = n°M) we have C(g;) = n®W).

For any fixed = € {0,1}", we claim that

e 98 Y) # () | < P Bin(t,1/2) 2 1/2 ]

Without loss of generality, assume that f(z) = 0. (The argument is analogous if f(z) = 1.) Let
pe = Pycionym| C(z,y) = 1 ]. We have p, < 1/3 by definition of C(x,y) being a randomized

circuit for f. Next, note that random variables C(z,Y7),...,C(z,Y};) are independent (for uniform
random Y € {0, 1}**™). Therefore,
P Y - P Y)=1
B la@ ) A f@ = B (el Y)=1]
— P [MALC(z,Y)),...,Clz,Y;) =1
o [MAT(C@ Vi), Ol Y) = 1]
= P [C@Yi) e O Vi) 2 12
Ye{0,1}kxm
— P [Bin(t,p,) > t/2
kB 2 12
< P Bin(t,1/3) > t/2 e < 1/3
<k B/ 2 2] (< 173)
2 2
< exp <—<?2)/+)(3(t/2§))> (Chernoff bound).

By choosing ¢t = 10n (say), we get

[glon(xvy) 7& f(x) ] < 2%

P
ye{0,1}kxm
If we now take a union bound over all inputs = € {0,1}", we have

\/ glOn(x7Y> 7é f(x) ] < Z P [ glOn(x7Y) 7é f(x> ]

Y 071 kExm
z€{0,1}n veforyn YELOL

1
<22—n:1.

ze{0,1}m

Yy e{0,1}kxm

By the magic of the probabilistic method, it follows that there exist some fixed setting of Y €
{0,1}**™ guch that gign(x,Y) = f(x) for all z € {0,1}". By hardwiring this setting of Y in the
circuit computing g, we get a deterministic (though nonexplicit) circuit computing f correctly on
all inputs. O

In homework exercise, you will be asked to show a similar result for AC? circuits.



