
CSC2429 / MAT1304: Circuit Complexity January 24, 2019

Lecture 3: Andreev’s function, Nechiporuk’s method,

and BPP ⊆ P/poly (randomness < nonuniformity)

Instructor: Benjamin Rossman

Last week:

• p-random restriction Rp

• E[ L(f�Rp) ] = O(p2L(f) + 1) (we saw proof with p1.5)

• Composition f ⊗ g of boolean functions f and g

Today:

• Andreev’s function (1987): Ω(n3/polylogn) lower bound for DeMorgan formulas

• Neciporuk’s method (1966): Ω(n2/ log n) lower bound for formulas in full binary basis

• BPP ⊆ P/poly (randomness < nonuniformity)

• Valiant (1984): polynomial-size monotone formulas for MAJORITY

1 Andreev’s Function (1987)

Definition 1. For f : {0, 1}k → {0, 1} and g : {0, 1}m → {0, 1}, the composition f ⊗ g :
{0, 1}k×m → {0, 1} is defined by

(f ⊗ g)(X) := f(g(X1,1, . . . , X1,m), . . . , g(Xk,1, . . . , Xk,m)).

Recall that L(f ⊗ g) ≤ L(f) · L(g). For example, L(f ⊗ XORm) ≤ L(f) · O(m2). The next
lemma gives the reverse inequality (with a polylog(k) loss).

Lemma 2. For every f : {0, 1}k → {0, 1},

L(f ⊗XORm) ≥ L(f) · Ω
(

m

log k

)2

.

Remark: Tal (2014) gives an optimal lower bound L(f) ·Ω(m2). Lemma 2 is easier to prove and
will be good enough for our purposes. Recent work of Dinur and Meir (2016) prove a generalization
of Lemma 2 using communication complexity.
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Proof. Let p := 2 ln k/m, and let Rp be the p-random restriction on the mk variables of f⊗XORm.
Observe that if Rp has ≥ 1 star in every row, then L((f ⊗XORm)�Rp) ≥ L(f). By a union bound,

P[ Rp has a row with no stars ] ≤ k(1− p)m ≤ ke−pm ≤ 1

k
.

Therefore,

1− 1

k
≤ P[ Rp has ≥ 1 star in every row ] ≤ P[ L((f ⊗XORm)�Rp) ≥ L(f) ].

On the other hand, by Markov’s inequality

P[ L((f ⊗XORm)�Rp) ≥ L(f) ] ≤ E[ L((f ⊗XORm)�Rp) ]

L(f)

By the shrinkage theorem:

E[ L((f ⊗XORm)�Rp) ] = O(p2L(f ⊗XORm) + 1).

(We can forget about this +1, since p > 1/
√
L(f ⊗XORm) ≥ 1/

√
L(XORm) ≥ 1/m.)

Therefore,

L(f ⊗XORm) ≥ Ω

(
L(f)

p2

)
= L(f) · Ω

(
m

log k

)2

.

Definition 3. Andreev’s function with parameters k,m ∈ N is the function

ANDREEVk,m : {k-ary Boolean functions} × ({0, 1}m)k︸ ︷︷ ︸
∼= {0, 1}2k+mk

→ {0, 1}

defined by

ANDREEVk,m(f,X) := (f ⊗XORm)(X).

We view ANDREEVk,m as an n-ary Boolean function where n = 2k +mk. (In the case m = 1, this
is the function (f, x) 7→ f(x), also known as the multiplexor function.)

1.1 Lower bound

For every k-ary Boolean function f , there exists a restriction ρ that “hardwires” the truth table of
f in the first 2k variables (and leaves the remaining mk variables free). Note that ANDREEVk,m�ρ
is the precisely the function f ⊗XORm, hence

L(ANDREEVk,m) ≥ L(f ⊗XORm) ≥ L(f) · Ω((m/ log k)2).

(Here we are using the obvious fact that L(f) ≥ L(f�ρ) for any restriction ρ on the variables of f .)
By choosing f with L(f) ≥ Ω(2k/ log k) (the Riordan-Shannon counting argument for formulas)
and setting m = Θ(2k/k), we get n = Θ(2k) and

L(ANDREEVk,m) ≥ Ω(2k/ log k) · Ω((m/ log k)2) = Ω

(
n3

(log n)2(log log n)3

)
.
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Note: This lower bound is nearly tight: L(ANDREEVk,m) = Õ(n3). Also note ANDREEVk,m

has linear circuit size O(2k + km) (exercise to see why).

Remark: The best lower bound for Andreev’s function is Ω(n3/(log n)2(log log n)) (Tal 2014).
Tal also give an Ω(n3/ log n(log log n)2)) lower bound for a variant of Andreev’s function.

2 Nechiporuk’s Method (1966)

So far, we have been considering lower bounds for DeMorgan formulas. We now consider formulas
in the full binary basis B2 = {all 2-ary gate types}. We write LB2(·) for formula leafsize in this
basis.

Note that the p-random restriction Rp is ineffective againstB2-formulas. We have E[ LB2(f�Rp) ]
≤ p·LB2(f) (by linearity of expectation over the leaves of f). However, unlike DeMorgan formulas,
we do not have the inequality E[ LB2(f�Rp) ] ≤ O(p1+εLB2(f) + 1) for any ε > 0. (To see why,
consider the case that f is a parity function.)

There is another technique due to Nechiporuk that gives nearly quadratic Ω(n2/ log n) lower
bounds (the best known for the B2-formula size of explicit boolean functions). Nechiporuk’s tech-
nique is based on counting the number of subfunctions of a boolean function over different subsets
of input variables.

Definition 4. For any n-ary Boolean function f and V ⊆ [n], let

subV (f) := {f�ρ : restrictions ρ : [n]→ {0, 1, ∗} with ρ−1(∗) = V }.

be the set of V -subfunctions of f .

For purposes of induction, it will be convenient to also define the set

sub∗V (f) := {0, 1, f ′, 1− f ′ : f ′ ∈ subV (f)}.

(Here 0 and 1 stand for the identically 0 and identically 1 functions on {0, 1}V .) That is, sub∗V (f)
consists of V -subfunctions of f , their negations, and constant functions 0 and 1. Note that
|sub∗V (F )| ≤ 4 · |subV (F )| (in fact, |sub∗V (F )| ≤ 2 · |subV (F )|+ 2).

Definition 5. For an n-ary formula F and V ⊆ [n], let `V (F ) denote the number of leaves of F
labeled by variables in the set V . Clearly leafsize(F ) = `V (F ) + `[n]\V (F ).

Two useful observations the V -subfunctions of any formula F :

(1) If F = gate(G,H) (where gate is any 2-ary function {0, 1}2 → {0, 1}), then clearly

subV (F ) ⊆ {gate(g, h) : g ∈ subV (G), h ∈ subV (H)}.

Therefore, |subV (F )| ≤ |subV (G)| · |subV (H)|.

(2) If F = gate(G,H) and moreover `V (H) = 0, then sub∗V (F ) ⊆ sub∗V (G).

This is because `V (H) = 0 implies that H�ρ ∈ {0, 1} for each restriction ρ : [n] → {0, 1, ∗}
with ρ−1(∗) = V . Therefore,

F �ρ = gate(G�ρ,H�ρ) ∈ {gate(G�ρ, 0), gate(G�ρ, 1)} ⊆ {G�ρ, 1−G�ρ, 0, 1}.

This shows that subV (F ) ⊆ sub∗V (G). It follows that sub∗V (F ) ⊆ sub∗V (G).
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Lemma 6. If F is an n-ary formula and V ⊆ [n] such that `V (F ) ≥ 1, then

|sub∗V (F )| ≤ 4 · 16`V (F )−1.

Proof. By induction on the leafsize of F . In the base case where F has leafsize 1, F is must be a
variable xi where i ∈ V (since `V (F ) ≥ 1). In this case, |sub∗V (F )| = 4.

For the induction step, assume F = gate(G,H). Clearly `V (F ) = `V (G) + `V (H). We consider
a few cases.

If `V (H) = 0, then sub∗V (F ) ⊆ sub∗V (G) by Observation (2). Therefore, |sub∗V (F )| ≤ |sub∗V (G)| =
4 · 16`V (G)−1 = 4 · 16`V (F )−1 by the induction hypothesis applied to G. Similarly, the lemma holds
in the case `V (G) = 0.

We are left with the case that `V (G), `V (H) ≥ 1. In this case,

|sub∗V (F )| ≤ 4 · |subV (F )| ≤ 4 · |subV (G)| · |subV (H)|
≤ 4 · |sub∗V (G)| · |sub∗V (H)|
≤ 4 · (4 · 16`V (G)−1) · (4 · 16`V (H)−1)

= 4 · 16`V (F )−1.

Corollary 7. If F is an n-ary formula and V ⊆ [n], then |subV (F )| ≤ 16`V (F ).

Proof. The case `V (F ) ≥ 1 is handled by the lemma, as |subV (F )| ≤ |sub∗V (F )| ≤ 4 · 16`V (F )−1 <
16`V (F ). In the case `V (F ) = 0, subV (F ) is either {0} or {1}. In either case, |subV (F )| = 1 =
160.

Theorem 8 (Nechiporuk’s bound). For any n-ary Boolean function f and partition V1 ] · · · ] Vt
of the set [n],

LB2(f) ≥ 1

4

t∑
i=1

log |subVi(f)|.

Proof. Let F be an optimal B2-formula for f . Then

LB2(f) = leafsize(F ) =
t∑

i=1

`Vi(F ) ≥
t∑

i=1

log16 |subVi(F )| = 1

4

t∑
i=1

|subVi(f)|.

We obtain an Ω(n2/ log n) lower bound by applying Nechiporuk’s bound to the following boolean
function.

Definition 9. For k ∈ N and n = 2k · 2k, the element distinctness function EDn : {0, 1}2k×2k →
{0, 1} is defined by

EDn(X1, . . . , X2k) =

{
1 if X1, . . . , X2k are distinct elements of {0, 1}2k,

0 otherwise.

Theorem 10. LB2(EDn) = Ω(n2/ log n).
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Proof. Let V1 ] · · · ] V2k = [n] partition the variables into coordinates for X1, . . . , X2k .

For each function h : {0, 1}2k → {0, 1} with |h−1(0)| = 2k − 1, we have h ∈ subVi(EDn) by
considering any restriction ρ which fixes {0, 1}Vj to the distinct elements of h−1(0) for j ∈ [2k]\{i}.
Therefore,

|subVi(EDn)| ≥
(

4k

2k − 1

)
≥ (4k − 2k + 1)2

k−1.

By Nechiporuk’s theorem,

LB2(EDn) ≥ 1

4

2k∑
i=1

log |subVi(EDn)|

=
1

4
2k(2k − 1) log(4k − 2k + 1) = Ω(k4k) = Ω(n2/ log n).

Remark: This lower bound is tight (even for DeMorgan formulas), as we have L(EDn) =
O(n2/ log n).

Remark: Nechiporuk’s method also gives an Ω̃(n2) lower bound for LB2(ANDREEVk,m) (with
appropriate k and m).

Homework exercise: Show that Ω(n2/ log n) is the limit of the lower bounds using Nechiporuk’s
method.

3 Summary and next topics

3.1 Lower bounds we’ve seen so far

model method best lb limit

DeMorgan circuits (random) counting 2n/n 2n/n+ o(2n/n)
DeMorgan formulas (random) counting 2n/ log n 2n/ log n+ o(2n/n)

DeMorgan circuits gate elim. 5n− o(n) O(n) [GHKK’18]
B2-circuits gate elim. 3.01n− o(n) O(n) [GHKK’18]

DeMorgan formulas Khrapchenko/Koutsoupias n2 n2

DeMorgan formulas shrinkage + clever function Ω̃(n3) unclear
B2-formulas Nechiporuk Ω(n2/ log n) O(n2/ log n)

3.2 Restricted classes

We will focus on the both the power and limitations (upper and lower bounds) in restricted classes
of circuits and formulas. The main settings are:

• Monotone circuits and formulas (no negations).

We write Cmon(f) and Lmon(f) for the monotone circuit / formula size of a monotone function
f .
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• Bounded-depth circuits with negations and unbounded fan-in gates AND, OR, MODm, MAJ.

Some bounded-depth circuit classes:

• AC0: constant-depth, poly-size, {AND,OR,NOT}-circuits

• AC0[m]: constant-depth, poly-size {AND,OR,NOT,MODm}-circuits

• TC0 (T is for Threshold): constant-depth, poly-size {AND,OR,NOT,MAJ}-circuits

Remark: we can compute arbitrary threshold function

• NC1: O(log n)-depth, poly-size circuits = poly-size formulas

• P/poly: poly-size circuits

• We will see

AC0 $ AC0[2] $ AC0[6] ⊆ TC0 ⊆ NC1

• We won’t focus on classes between NC1 and P/poly, but there are several interesting ones:

NC1 ⊆ L/poly ⊆ NL/poly ⊆ NC2 ⊆ NC ⊆ P/poly.

4 BPP/poly ⊆ P/poly: Nonuniformity is more powerful than ran-
domness

Definition 11. A randomized circuit for a Boolean function f : {0, 1}n → {0, 1} is a circuit C(x, y)
of n+m variables (i.e. an input x ∈ {0, 1}n and a random seed y ∈ {0, 1}m) such that

P
y∈{0,1}m

[ C(x, y) = 1 ]

{
≤ 1/3 if f(x) = 0,

≥ 2/3 if f(y) = 1.

BPP/poly is the class of boolean functions computable by polynomial-size randomized circuits. This
is the nonuniform version of the complexity class BPP (randomized polynomial time). This class
remains the same if 1/3 and 2/3 above are replaced by a and b for any constants 0 < a < b < 1.

Theorem 12 (Adelman 1978). If f : {0, 1}n → {0, 1} is computable by a polysize randomized
circuit, then it is computable by a polysize circuit (that is, BPP/poly ⊆ P/poly).

Proof. We will use the fact that MAJn has polynomial-size circuits (in fact, it has O(n) size circuits).
You will see one way of showing this in homework exercises; a different method will be presented
later (in fact, we will show that MAJn has polynomial-size monotone formulas).

Recall that Bin(n, p) is the binomial random variable with density function P[ Bin(n, p) = k ] =(
n
k

)
pk(1− p)n−k. We will use Chernoff bounds:

P[ Bin(n, p) ≥ (1 + ε)pn ] ≤ exp

(
− ε

2pn

2 + ε

)
,

P[ Bin(n, p) ≤ (1− ε)pn ] ≤ exp

(
−ε

2pn

2

)
for 0 < ε < 1.
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Suppose f : {0, 1}n → {0, 1} is in BPP/poly and let C(x, y) be a polynomial-size randomized
circuit for f on n + m variables (where m = nO(1) without loss of generality). For any t ∈ N, let
gt : {0, 1}n × {0, 1}t×m → {0, 1} be the boolean function

gt(x, Y ) := MAJt(f(x, Y1), . . . , f(x, Yt))

where Yi = (Yi,1, . . . , Yi,m) ∈ {0, 1}m. Note that gt is computable by a circuit of size t·size(C) +
C(MAJt), namely, take an optimal circuit for MAJt and replace the ith input with the circuit
C(x, Yi). So long as t = nO(1), we have C(gt) = nO(1).

For any fixed x ∈ {0, 1}n, we claim that

P
Y ∈{0,1}k×m

[ gt(x, Y ) 6= f(x) ] ≤ P[ Bin(t, 1/2) ≥ t/2 ].

Without loss of generality, assume that f(x) = 0. (The argument is analogous if f(x) = 1.) Let
px := Py∈{0,1}m [ C(x, y) = 1 ]. We have px ≤ 1/3 by definition of C(x, y) being a randomized
circuit for f . Next, note that random variables C(x, Y1), . . . , C(x, Yt) are independent (for uniform
random Y ∈ {0, 1}t×m). Therefore,

P
Y ∈{0,1}k×m

[ gt(x, Y ) 6= f(x) ] = P
Y ∈{0,1}k×m

[ gt(x, Y ) = 1 ]

= P
Y ∈{0,1}k×m

[ MAJt(C(x, Y1), . . . , C(x, Yt)) = 1 ]

= P
Y ∈{0,1}k×m

[ C(x, Y1) + · · ·+ C(x, Yt) ≥ t/2 ]

= P
Y ∈{0,1}k×m

[ Bin(t, px) ≥ t/2 ]

≤ P
Y ∈{0,1}k×m

[ Bin(t, 1/3) ≥ t/2 ] (px ≤ 1/3)

≤ exp

(
−(3/2)2(t/3)

2 + (3/2)

)
(Chernoff bound).

By choosing t = 10n (say), we get

P
Y ∈{0,1}k×m

[ g10n(x, Y ) 6= f(x) ] <
1

2n
.

If we now take a union bound over all inputs x ∈ {0, 1}n, we have

P
Y ∈{0,1}k×m

[
∨

x∈{0,1}n
g10n(x, Y ) 6= f(x) ] ≤

∑
x∈{0,1}n

P
Y ∈{0,1}k×m

[ g10n(x, Y ) 6= f(x) ]

<
∑

x∈{0,1}n

1

2n
= 1.

By the magic of the probabilistic method, it follows that there exist some fixed setting of Y ∈
{0, 1}k×m such that g10n(x, Y ) = f(x) for all x ∈ {0, 1}n. By hardwiring this setting of Y in the
circuit computing g, we get a deterministic (though nonexplicit) circuit computing f correctly on
all inputs.

In homework exercise, you will be asked to show a similar result for AC0 circuits.
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