CSC2429 / MAT1304: Circuit Complexity

Lecture 3: Andreev's function, Nechiporuk's method, and $BPP \subseteq P/poly$ (randomness < nonuniformity)

Instructor: Benjamin Rossman

Last week:

- *p*-random restriction \mathbf{R}_p
- $\mathbb{E}[\mathcal{L}(f \upharpoonright \mathbf{R}_p)] = O(p^2 \mathcal{L}(f) + 1)$ (we saw proof with $p^{1.5}$)
- Composition $f \otimes g$ of boolean functions f and g

Today:

- Andreev's function (1987): $\Omega(n^3/\text{polylog}n)$ lower bound for DeMorgan formulas
- Neciporuk's method (1966): $\Omega(n^2/\log n)$ lower bound for formulas in full binary basis
- BPP \subseteq P/poly (randomness < nonuniformity)
- Valiant (1984): polynomial-size monotone formulas for MAJORITY

1 Andreev's Function (1987)

Definition 1. For $f : \{0,1\}^k \to \{0,1\}$ and $g : \{0,1\}^m \to \{0,1\}$, the composition $f \otimes g : \{0,1\}^{k \times m} \to \{0,1\}$ is defined by

$$(f \otimes g)(X) := f(g(X_{1,1}, \dots, X_{1,m}), \dots, g(X_{k,1}, \dots, X_{k,m})).$$

Recall that $\mathcal{L}(f \otimes g) \leq \mathcal{L}(f) \cdot \mathcal{L}(g)$. For example, $\mathcal{L}(f \otimes \text{XOR}_m) \leq \mathcal{L}(f) \cdot O(m^2)$. The next lemma gives the reverse inequality (with a polylog(k) loss).

Lemma 2. For every $f : \{0, 1\}^k \to \{0, 1\}$,

$$\mathcal{L}(f \otimes \mathrm{XOR}_m) \ge \mathcal{L}(f) \cdot \Omega\left(\frac{m}{\log k}\right)^2.$$

Remark: Tal (2014) gives an optimal lower bound $\mathcal{L}(f) \cdot \Omega(m^2)$. Lemma 2 is easier to prove and will be good enough for our purposes. Recent work of Dinur and Meir (2016) prove a generalization of Lemma 2 using communication complexity.

Proof. Let $p := 2 \ln k/m$, and let \mathbf{R}_p be the *p*-random restriction on the mk variables of $f \otimes \text{XOR}_m$. Observe that if \mathbf{R}_p has ≥ 1 star in every row, then $\mathcal{L}((f \otimes \text{XOR}_m) \upharpoonright \mathbf{R}_p) \geq \mathcal{L}(f)$. By a union bound,

$$\mathbb{P}[\mathbf{R}_p \text{ has a row with no stars }] \le k(1-p)^m \le ke^{-pm} \le \frac{1}{k}.$$

Therefore,

$$1 - \frac{1}{k} \leq \mathbb{P}[\mathbf{R}_p \text{ has } \geq 1 \text{ star in every row }] \leq \mathbb{P}[\mathcal{L}((f \otimes \text{XOR}_m) | \mathbf{R}_p) \geq \mathcal{L}(f)].$$

On the other hand, by Markov's inequality

$$\mathbb{P}[\mathcal{L}((f \otimes \mathrm{XOR}_m) | \mathbf{R}_p) \ge \mathcal{L}(f)] \le \frac{\mathbb{E}[\mathcal{L}((f \otimes \mathrm{XOR}_m) | \mathbf{R}_p)]}{\mathcal{L}(f)}$$

By the shrinkage theorem:

$$\mathbb{E}[\mathcal{L}((f \otimes \mathrm{XOR}_m) | \mathbf{R}_p)] = O(p^2 \mathcal{L}(f \otimes \mathrm{XOR}_m) + 1).$$

(We can forget about this +1, since $p > 1/\sqrt{\mathcal{L}(f \otimes \text{XOR}_m)} \ge 1/\sqrt{\mathcal{L}(\text{XOR}_m)} \ge 1/m$.)

Therefore,

$$\mathcal{L}(f \otimes \text{XOR}_m) \ge \Omega\left(\frac{\mathcal{L}(f)}{p^2}\right) = \mathcal{L}(f) \cdot \Omega\left(\frac{m}{\log k}\right)^2.$$

Definition 3. And reev's function with parameters $k, m \in \mathbb{N}$ is the function

$$\begin{split} \text{ANDREEV}_{k,m} : \underbrace{\{k\text{-ary Boolean functions}\} \times (\{0,1\}^m)^k}_{\cong \{0,1\}^{2^k + mk}} \to \{0,1\} \end{split}$$

defined by

$$ANDREEV_{k,m}(f,X) := (f \otimes XOR_m)(X).$$

We view ANDREEV_{k,m} as an n-ary Boolean function where $n = 2^k + mk$. (In the case m = 1, this is the function $(f, x) \mapsto f(x)$, also known as the *multiplexor function*.)

1.1 Lower bound

For every k-ary Boolean function f, there exists a restriction ρ that "hardwires" the truth table of f in the first 2^k variables (and leaves the remaining mk variables free). Note that ANDREEV_{k,m} $\upharpoonright \rho$ is the precisely the function $f \otimes XOR_m$, hence

$$\mathcal{L}(\text{ANDREEV}_{k,m}) \ge \mathcal{L}(f \otimes \text{XOR}_m) \ge \mathcal{L}(f) \cdot \Omega((m/\log k)^2).$$

(Here we are using the obvious fact that $\mathcal{L}(f) \geq \mathcal{L}(f \upharpoonright \rho)$ for any restriction ρ on the variables of f.) By choosing f with $\mathcal{L}(f) \geq \Omega(2^k/\log k)$ (the Riordan-Shannon counting argument for formulas) and setting $m = \Theta(2^k/k)$, we get $n = \Theta(2^k)$ and

$$\mathcal{L}(\text{ANDREEV}_{k,m}) \ge \Omega(2^k/\log k) \cdot \Omega((m/\log k)^2) = \Omega\left(\frac{n^3}{(\log n)^2(\log\log n)^3}\right).$$

Note: This lower bound is nearly tight: $\mathcal{L}(\text{ANDREEV}_{k,m}) = \widetilde{O}(n^3)$. Also note $\text{ANDREEV}_{k,m}$ has linear circuit size $O(2^k + km)$ (exercise to see why).

Remark: The best lower bound for Andreev's function is $\Omega(n^3/(\log n)^2(\log \log n))$ (Tal 2014). Tal also give an $\Omega(n^3/\log n(\log \log n)^2)$) lower bound for a variant of Andreev's function.

2 Nechiporuk's Method (1966)

So far, we have been considering lower bounds for DeMorgan formulas. We now consider formulas in the full binary basis $B_2 = \{ \text{all 2-ary gate types} \}$. We write $\mathcal{L}_{B_2}(\cdot)$ for formula leafsize in this basis.

Note that the *p*-random restriction \mathbf{R}_p is ineffective against B_2 -formulas. We have $\mathbb{E}[\mathcal{L}_{B_2}(f | \mathbf{R}_p)] \leq p \cdot \mathcal{L}_{B_2}(f)$ (by linearity of expectation over the leaves of f). However, unlike DeMorgan formulas, we do not have the inequality $\mathbb{E}[\mathcal{L}_{B_2}(f | \mathbf{R}_p)] \leq O(p^{1+\varepsilon} \mathcal{L}_{B_2}(f) + 1)$ for any $\varepsilon > 0$. (To see why, consider the case that f is a parity function.)

There is another technique due to Nechiporuk that gives nearly quadratic $\Omega(n^2/\log n)$ lower bounds (the best known for the B_2 -formula size of explicit boolean functions). Nechiporuk's technique is based on counting the number of subfunctions of a boolean function over different subsets of input variables.

Definition 4. For any *n*-ary Boolean function f and $V \subseteq [n]$, let

 $\operatorname{sub}_V(f) := \{f \mid \rho : \operatorname{restrictions} \rho : [n] \to \{0, 1, *\} \text{ with } \rho^{-1}(*) = V\}.$

be the set of V-subfunctions of f.

For purposes of induction, it will be convenient to also define the set

$$\operatorname{sub}_{V}^{*}(f) := \{\underline{0}, \underline{1}, f', 1 - f' : f' \in \operatorname{sub}_{V}(f)\}.$$

(Here $\underline{0}$ and $\underline{1}$ stand for the identically 0 and identically 1 functions on $\{0,1\}^V$.) That is, $\operatorname{sub}_V^*(f)$ consists of V-subfunctions of f, their negations, and constant functions $\underline{0}$ and $\underline{1}$. Note that $|\operatorname{sub}_V^*(F)| \leq 4 \cdot |\operatorname{sub}_V(F)|$ (in fact, $|\operatorname{sub}_V^*(F)| \leq 2 \cdot |\operatorname{sub}_V(F)| + 2$).

Definition 5. For an *n*-ary formula F and $V \subseteq [n]$, let $\ell_V(F)$ denote the number of leaves of F labeled by variables in the set V. Clearly leafsize $(F) = \ell_V(F) + \ell_{[n] \setminus V}(F)$.

Two useful observations the V-subfunctions of any formula F:

(1) If $F = \mathsf{gate}(G, H)$ (where gate is any 2-ary function $\{0, 1\}^2 \to \{0, 1\}$), then clearly

$$\operatorname{sub}_V(F) \subseteq \{\operatorname{gate}(g,h) : g \in \operatorname{sub}_V(G), h \in \operatorname{sub}_V(H)\}.$$

Therefore, $|\operatorname{sub}_V(F)| \leq |\operatorname{sub}_V(G)| \cdot |\operatorname{sub}_V(H)|$.

(2) If $F = \mathsf{gate}(G, H)$ and moreover $\ell_V(H) = 0$, then $\mathrm{sub}_V^*(F) \subseteq \mathrm{sub}_V^*(G)$.

This is because $\ell_V(H) = 0$ implies that $H \upharpoonright \rho \in \{\underline{0}, \underline{1}\}$ for each restriction $\rho : [n] \to \{0, 1, *\}$ with $\rho^{-1}(*) = V$. Therefore,

 $F \restriction \rho = \mathsf{gate}(G \restriction \rho, H \restriction \rho) \in \{\mathsf{gate}(G \restriction \rho, \underline{0}), \mathsf{gate}(G \restriction \rho, \underline{1})\} \subseteq \{G \restriction \rho, 1 - G \restriction \rho, \underline{0}, \underline{1}\}.$

This shows that $\operatorname{sub}_V(F) \subseteq \operatorname{sub}_V^*(G)$. It follows that $\operatorname{sub}_V^*(F) \subseteq \operatorname{sub}_V^*(G)$.

Lemma 6. If F is an n-ary formula and $V \subseteq [n]$ such that $\ell_V(F) \ge 1$, then

$$|\operatorname{sub}_{V}^{*}(F)| \le 4 \cdot 16^{\ell_{V}(F)-1}.$$

Proof. By induction on the leafsize of F. In the base case where F has leafsize 1, F is must be a variable x_i where $i \in V$ (since $\ell_V(F) \ge 1$). In this case, $|\operatorname{sub}_V^*(F)| = 4$.

For the induction step, assume F = gate(G, H). Clearly $\ell_V(F) = \ell_V(G) + \ell_V(H)$. We consider a few cases.

If $\ell_V(H) = 0$, then $\operatorname{sub}_V^*(F) \subseteq \operatorname{sub}_V^*(G)$ by Observation (2). Therefore, $|\operatorname{sub}_V^*(F)| \leq |\operatorname{sub}_V^*(G)| = 4 \cdot 16^{\ell_V(G)-1} = 4 \cdot 16^{\ell_V(F)-1}$ by the induction hypothesis applied to G. Similarly, the lemma holds in the case $\ell_V(G) = 0$.

We are left with the case that $\ell_V(G), \ell_V(H) \ge 1$. In this case,

$$\begin{aligned} |\mathrm{sub}_{V}^{*}(F)| &\leq 4 \cdot |\mathrm{sub}_{V}(F)| \leq 4 \cdot |\mathrm{sub}_{V}(G)| \cdot |\mathrm{sub}_{V}(H)| \\ &\leq 4 \cdot |\mathrm{sub}_{V}^{*}(G)| \cdot |\mathrm{sub}_{V}^{*}(H)| \\ &\leq 4 \cdot (4 \cdot 16^{\ell_{V}(G)-1}) \cdot (4 \cdot 16^{\ell_{V}(H)-1}) \\ &= 4 \cdot 16^{\ell_{V}(F)-1}. \end{aligned}$$

Corollary 7. If F is an n-ary formula and $V \subseteq [n]$, then $|\operatorname{sub}_V(F)| \leq 16^{\ell_V(F)}$.

Proof. The case $\ell_V(F) \ge 1$ is handled by the lemma, as $|\operatorname{sub}_V(F)| \le |\operatorname{sub}_V^*(F)| \le 4 \cdot 16^{\ell_V(F)-1} < 16^{\ell_V(F)}$. In the case $\ell_V(F) = 0$, $\operatorname{sub}_V(F)$ is either $\{\underline{0}\}$ or $\{\underline{1}\}$. In either case, $|\operatorname{sub}_V(F)| = 1 = 16^0$.

Theorem 8 (Nechiporuk's bound). For any n-ary Boolean function f and partition $V_1 \oplus \cdots \oplus V_t$ of the set [n],

$$\mathcal{L}_{B_2}(f) \ge \frac{1}{4} \sum_{i=1}^t \log |\mathrm{sub}_{V_i}(f)|.$$

Proof. Let F be an optimal B_2 -formula for f. Then

$$\mathcal{L}_{B_2}(f) = \text{leafsize}(F) = \sum_{i=1}^t \ell_{V_i}(F) \ge \sum_{i=1}^t \log_{16} |\text{sub}_{V_i}(F)| = \frac{1}{4} \sum_{i=1}^t |\text{sub}_{V_i}(f)|.$$

We obtain an $\Omega(n^2/\log n)$ lower bound by applying Nechiporuk's bound to the following boolean function.

Definition 9. For $k \in \mathbb{N}$ and $n = 2^k \cdot 2k$, the *element distinctness* function $\text{ED}_n : \{0, 1\}^{2^k \times 2k} \to \{0, 1\}$ is defined by

$$ED_n(X_1, \dots, X_{2^k}) = \begin{cases} 1 & \text{if } X_1, \dots, X_{2^k} \text{ are distinct elements of } \{0, 1\}^{2k}, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 10. $\mathcal{L}_{B_2}(\text{ED}_n) = \Omega(n^2/\log n).$

Proof. Let $V_1 \uplus \cdots \uplus V_{2^k} = [n]$ partition the variables into coordinates for X_1, \ldots, X_{2^k} .

For each function $h : \{0,1\}^{2k} \to \{0,1\}$ with $|h^{-1}(0)| = 2^k - 1$, we have $h \in \operatorname{sub}_{V_i}(\operatorname{ED}_n)$ by considering any restriction ρ which fixes $\{0,1\}^{V_j}$ to the distinct elements of $h^{-1}(0)$ for $j \in [2^k] \setminus \{i\}$. Therefore,

$$|\operatorname{sub}_{V_i}(\operatorname{ED}_n)| \ge \binom{4^k}{2^k - 1} \ge (4^k - 2^k + 1)^{2^k - 1}.$$

By Nechiporuk's theorem,

$$\begin{aligned} \mathcal{L}_{B_2}(\mathrm{ED}_n) &\geq \frac{1}{4} \sum_{i=1}^{2^k} \log|\mathrm{sub}_{V_i}(\mathrm{ED}_n)| \\ &= \frac{1}{4} 2^k (2^k - 1) \log(4^k - 2^k + 1) = \Omega(k4^k) = \Omega(n^2/\log n). \end{aligned}$$

Remark: This lower bound is tight (even for DeMorgan formulas), as we have $\mathcal{L}(ED_n) = O(n^2/\log n)$.

Remark: Nechiporuk's method also gives an $\widetilde{\Omega}(n^2)$ lower bound for $\mathcal{L}_{B_2}(\text{ANDREEV}_{k,m})$ (with appropriate k and m).

Homework exercise: Show that $\Omega(n^2/\log n)$ is the limit of the lower bounds using Nechiporuk's method.

3 Summary and next topics

3.1 Lower bounds we've seen so far

model	method	best lb	limit
DeMorgan circuits (random)	counting	$2^n/n$	$2^n/n + o(2^n/n)$
DeMorgan formulas (random)	counting	$2^n/\log n$	$2^n/\log n + o(2^n/n)$
DeMorgan circuits	gate elim.	5n - o(n)	O(n) [GHKK'18]
B_2 -circuits	gate elim.	3.01n - o(n)	O(n) [GHKK'18]
DeMorgan formulas	Khrapchenko/Koutsoupias	n^2	n^2
DeMorgan formulas	shrinkage + clever function	$\widetilde{\Omega}(n^3)$	unclear
B_2 -formulas	Nechiporuk	$\Omega(n^2/\log n)$	$O(n^2/\log n)$

3.2 Restricted classes

We will focus on the both the power and limitations (upper and lower bounds) in *restricted classes* of circuits and formulas. The main settings are:

• Monotone circuits and formulas (no negations).

We write $C_{\text{mon}}(f)$ and $\mathcal{L}_{\text{mon}}(f)$ for the monotone circuit / formula size of a monotone function f.

• Bounded-depth circuits with negations and unbounded fan-in gates AND, OR, MOD_m , MAJ.

Some bounded-depth circuit classes:

- AC⁰: constant-depth, poly-size, {*AND*, *OR*, *NOT*}-circuits
- $AC^{0}[m]$: constant-depth, poly-size { AND, OR, NOT, MOD_{m} }-circuits
- TC^0 (T is for Threshold): constant-depth, poly-size $\{AND, OR, NOT, MAJ\}$ -circuits Remark: we can compute arbitrary threshold function
- NC¹: $O(\log n)$ -depth, poly-size circuits = poly-size formulas
- P/poly: poly-size circuits
- We will see

$$AC^0 \subsetneqq AC^0[2] \subsetneqq AC^0[6] \subseteq TC^0 \subseteq NC^1$$

• We won't focus on classes between NC^1 and P/poly, but there are several interesting ones:

$$NC^1 \subseteq L/poly \subseteq NL/poly \subseteq NC^2 \subseteq NC \subseteq P/poly.$$

4 BPP/poly \subseteq P/poly: Nonuniformity is more powerful than randomness

Definition 11. A randomized circuit for a Boolean function $f : \{0, 1\}^n \to \{0, 1\}$ is a circuit C(x, y) of n + m variables (i.e. an input $x \in \{0, 1\}^n$ and a random seed $y \in \{0, 1\}^m$) such that

$$\mathbb{P}_{y \in \{0,1\}^m} [C(x,y) = 1] \begin{cases} \leq 1/3 & \text{if } f(x) = 0, \\ \geq 2/3 & \text{if } f(y) = 1. \end{cases}$$

BPP/poly is the class of boolean functions computable by polynomial-size randomized circuits. This is the nonuniform version of the complexity class BPP (randomized polynomial time). This class remains the same if 1/3 and 2/3 above are replaced by a and b for any constants 0 < a < b < 1.

Theorem 12 (Adelman 1978). If $f : \{0,1\}^n \to \{0,1\}$ is computable by a polysize randomized circuit, then it is computable by a polysize circuit (that is, BPP/poly \subseteq P/poly).

Proof. We will use the fact that MAJ_n has polynomial-size circuits (in fact, it has O(n) size circuits). You will see one way of showing this in homework exercises; a different method will be presented later (in fact, we will show that MAJ_n has polynomial-size monotone formulas).

Recall that Bin(n, p) is the binomial random variable with density function $\mathbb{P}[Bin(n, p) = k] = \binom{n}{k}p^k(1-p)^{n-k}$. We will use Chernoff bounds:

$$\mathbb{P}[\operatorname{Bin}(n,p) \ge (1+\varepsilon)pn] \le \exp\left(-\frac{\varepsilon^2 pn}{2+\varepsilon}\right),$$
$$\mathbb{P}[\operatorname{Bin}(n,p) \le (1-\varepsilon)pn] \le \exp\left(-\frac{\varepsilon^2 pn}{2}\right) \text{ for } 0 < \varepsilon < 1$$

Suppose $f : \{0,1\}^n \to \{0,1\}$ is in BPP/poly and let C(x,y) be a polynomial-size randomized circuit for f on n + m variables (where $m = n^{O(1)}$ without loss of generality). For any $t \in \mathbb{N}$, let $g_t : \{0,1\}^n \times \{0,1\}^{t \times m} \to \{0,1\}$ be the boolean function

$$g_t(x, Y) := \mathrm{MAJ}_t(f(x, Y_1), \dots, f(x, Y_t))$$

where $Y_i = (Y_{i,1}, \ldots, Y_{i,m}) \in \{0, 1\}^m$. Note that g_t is computable by a circuit of size t-size $(C) + C(\text{MAJ}_t)$, namely, take an optimal circuit for MAJ_t and replace the *i*th input with the circuit $C(x, Y_i)$. So long as $t = n^{O(1)}$, we have $C(g_t) = n^{O(1)}$.

For any fixed $x \in \{0,1\}^n$, we claim that

$$\mathbb{P}_{Y \in \{0,1\}^{k \times m}} \left[g_t(x,Y) \neq f(x) \right] \le \mathbb{P} \left[\operatorname{Bin}(t,1/2) \ge t/2 \right]$$

Without loss of generality, assume that f(x) = 0. (The argument is analogous if f(x) = 1.) Let $p_x := \mathbb{P}_{y \in \{0,1\}^m} [C(x,y) = 1]$. We have $p_x \leq 1/3$ by definition of C(x,y) being a randomized circuit for f. Next, note that random variables $C(x, Y_1), \ldots, C(x, Y_t)$ are independent (for uniform random $Y \in \{0,1\}^{t \times m}$). Therefore,

$$\begin{split} \mathbb{P}_{Y \in \{0,1\}^{k \times m}} [\ g_t(x, Y) \neq f(x) \] &= \mathbb{P}_{Y \in \{0,1\}^{k \times m}} [\ g_t(x, Y) = 1 \] \\ &= \mathbb{P}_{Y \in \{0,1\}^{k \times m}} [\ \mathrm{MAJ}_t(C(x, Y_1), \dots, C(x, Y_t)) = 1 \] \\ &= \mathbb{P}_{Y \in \{0,1\}^{k \times m}} [\ C(x, Y_1) + \dots + C(x, Y_t) \geq t/2 \] \\ &= \mathbb{P}_{Y \in \{0,1\}^{k \times m}} [\ \mathrm{Bin}(t, p_x) \geq t/2 \] \\ &\leq \mathbb{P}_{Y \in \{0,1\}^{k \times m}} [\ \mathrm{Bin}(t, 1/3) \geq t/2 \] \quad (p_x \leq 1/3) \\ &\leq \exp\left(-\frac{(3/2)^2(t/3)}{2 + (3/2)}\right) \quad (\text{Chernoff bound}). \end{split}$$

By choosing t = 10n (say), we get

$$\mathbb{P}_{Y \in \{0,1\}^{k \times m}} [g_{10n}(x,Y) \neq f(x)] < \frac{1}{2^n}$$

If we now take a union bound over all inputs $x \in \{0, 1\}^n$, we have

$$\mathbb{P}_{Y \in \{0,1\}^{k \times m}} \left[\bigvee_{x \in \{0,1\}^n} g_{10n}(x,Y) \neq f(x) \right] \leq \sum_{x \in \{0,1\}^n} \mathbb{P}_{Y \in \{0,1\}^{k \times m}} \left[g_{10n}(x,Y) \neq f(x) \right] \\
< \sum_{x \in \{0,1\}^n} \frac{1}{2^n} = 1.$$

By the magic of the probabilistic method, it follows that there exist some fixed setting of $Y \in \{0,1\}^{k \times m}$ such that $g_{10n}(x,Y) = f(x)$ for all $x \in \{0,1\}^n$. By hardwiring this setting of Y in the circuit computing g, we get a deterministic (though nonexplicit) circuit computing f correctly on all inputs.

In homework exercise, you will be asked to show a similar result for AC^0 circuits.