
CSC2429 / MAT1304: Circuit Complexity January 31, 2019

Lecture 4: Monotone Formulas for Majority; AC0 Circuits

Instructor: Benjamin Rossman Scribe: Dmitry Paramonov

Overview

Section 1 Valiant’s Monotone Formulas for Majority

Section 2 AC0 Circuits

1 Valiant’s Monotone Formulas for Majority

Suppose you want to find whether the majority of inputs to a given circuit are on. This is a simple
function, but with a surprisingly complex size.

Definition 1. The Hamming weight of some vector x ∈ {0, 1}n is given by |x| =
n∑
i=1

xi = |{xi ∈

[n] : xi = 1}|.

The majority function is given by the function MAJn(x1, . . . , xn) =

{
1, |x| > n

2

0, |x| ≤ n
2

.

For convenience, we will let n be odd. This means that the latter case reduces to |x| < n
2 .

Now, suppose that we choose some i ∈ [n] uniformly at random. What is the probability that xi is
1, conditioned on the value of MAJn(x)?

Claim 2. If MAJn(x) = 0, then Pri∈[n](xi = 1) ≤ 1
2 −

1
2n .

If MAJn(x) = 1, then Pri∈[n](xi = 1) ≥ 1
2 + 1

2n

Proof. Suppose that MAJn(x) = 0. Then, |x| < n
2 . Because n is odd, |x| ≤ n−1

2 .

Pr
i∈[n]

(xi = 1) =
|{i ∈ [n] : xi = 1}|

n

=
|x|
n

≤
n−1
2

n

=
1

2
− 1

2n

The proof for MAJn(x) = 1 follows analogously.

1

Definition 3. Consider any m > n. A random projection from y to x is a function π :
{y1, . . . , ym} → {x1, . . . , xn}, where each yi is mapped to an xj chosen uniformly at random, inde-
pendently of the other yi.

For a monotone formula F (y), let Fπ(x) be the monotone formula obtained from F by replacing
each variable yi with π(yi).

Note that for any fixed x, all the π(yi) are independent Bernoulli variables, each with probability
|x|
n . This is a value that is at least 1

2n away from 1
2 , subject to the above inequalities.

Definition 4. For any f : {0, 1}m → {0, 1} define the output probability µf : [0, 1]→ [0, 1] as the
probability of f(y1, . . . , ym) being 1 given that each yi is an independent Bernoulli random variable
with probability p.

µf (p) = Pr
y1,...,ym∈Bern(p)

(f(y1, . . . , yn) = 1)

For example, µMAJ3(p) = p3 + 3p2(1− p).

Note also that when f is monotone and non-constant, then µf is increasing, with µf (0) = 0 and
µf (1) = 1.

Claim 5.
µf⊗g(p) = µf (µg(p))

Proof. Suppose that f ⊗ g : {0, 1}m×k → {0, 1}, with g : {0, 1}k → {0, 1} and f : {0, 1}m → {0, 1}.

Note that if y1,1, . . . , ym,k are all chosen independently and uniformly at random with probability
p, then the output of each copy of g used by f ⊗g is independent of the outputs of the others. Note
that for any copy of g, the probability of its output being 1 is then µg(p).

Thus, the copy of f in f⊗g perceives the copies of g as being m independent random variables, each
chosen to be 1 with probability µg(p). Thus, the output of f is 1 with probability µf (µg(p)).

Corollary 6.
µf⊗k(p) = µ(k)(p)

Now, we wish to show some properties of composing MAJ3 with itself.

Lemma 7. There is a constant c such that µ
(c logn)
MAJ3

(x) < 1
2n for 0 ≤ x ≤ 1

2 −
1
2n . Likewise,

µ
(c logn)
MAJ3

(x) > 1− 1
2n for 0 ≤ x ≥ 1

2 −
1
2n .

Proof. Note that because MAJ3 is monotone and non-constant, so µMAJ3 is increasing. Likewise,

so is µ
(k)
MAJ3

for all k ≥ 1. Thus, it suffices to prove the desired relations for x = 1
2 −

1
2n and for

x = 1
2 + 1

2n .

Thus, suppose that p = 1
2 − δ, where δ ≤ 1

4 .

µMAJ3(p) = (
3

2
− 2δ2)δ

≤ 1

2
− 1.25δ

2

Thus, as long as p is of the form p = 1
2 − δ for δ ≤ 1

4 , each application of µMAJ3 to p multiplies the
δ value by 5

4 . Thus, within O(log n) applications of µMAJ3 , the probability falls to be below 1
4 .

Now, suppose that p ≤ 1
4 . Then p3 + 3p2(1 − p) ≤ 3p2 ≤ 3

4p. So after an additional O(log n)
applications of µMAJ3 , the value of p falls below 1

2n .

Thus, we see that µ
O(logn)
MAJ3

(12 −
1
2n) < 1

2n .

Furthermore, because µMAJ3 is rotationally symmetric about (12 ,
1
2), we see that µ

O(logn)
MAJ3

(12 + 1
2n) >

1− 1
2n .

This property can then be used to bound the size of the MAJn function.

Theorem 8 (Valiant 1984). MAJn has polynomial size monotone formulas.

Proof. Let t = c log n. We will construct a complete tree of MAJ3 functions, all composed with
each other, of depth t. In other words, we will construct a circuit for MAJ⊗t3 .

Note that because MAJ⊗t3 can be implemented by composing many instances of circuits solving
MAJ3, and because there is a monotone formula of size 5 for MAJ3, we see that Lmon(MAJ⊗t3) ≤
Lmon(MAJ3)

t ≤ 5t.

Fix a monotone formula F of this size for MAJ⊗t3 . Suppose that F is defined over variables
y1, . . . , y3t .

Let π : {y1, . . . , y3t} → {x1, . . . , xn} be a random projection. Then, consider Fπ.

Consider any fixed x ∈ {0, 1}n where MAJn(x) = 0. As we noted, π(y1), . . . , π(y3t) are independent

Bernoulli random variables with expectation |x|n ≤
1
2 −

1
2n .

Thus, consider the probability of getting 1 returned by Fπ, over all choices of π.

Pr
π

(Fπ(x) 6= MAJn(x)) = Pr
π

(Fπ(x) = 1)

= Pr
y1,...,y3t∈Bern(

|x|
n
)

(F (y1, . . . , y3t) = 1)

= µF (
|x|
n

)

≤ µF (
1

2
− 1

2n
)

<
1

2n

Similarly, if x is fixed such that MAJn(x) = 1, we still get that Prπ(Fπ(x) 6= MAJn(x)) < 1
2n .

3

Thus, let us take a union bound, to see the probability that Fπ differs from MAJn on some input.

Pr
π

(∃x ∈ {0, 1}n such that Fπ(x) 6= MAJn(x)) ≤
∑

x∈{0,1}n
Pr
π

(Fπ(x) 6= MAJn(x))

<
∑

x∈{0,1}n

1

2n

= 2n
1

2n

= 1

Thus, because the probability is less than 1, there must exist some π such that Fπ(x) = MAJn(x)
for all x ∈ {0, 1}n. Thus, for that π, Fπ is a monotone formula for MAJn.

Thus, we see that Lmon(MAJn) ≤ leafsize(Fπ) ≤ 5t. By our choice of t, 5t = 5c logn = nc log 5. For
c < 3 (which can be shown by a more thorough argument), this shows that Lmon(MAJn) ≤ n7.

Thus, MAJn has polynomial monotone formula size.

Curiously, Valiant’s original proof used a different function, V (a, b, c, d) = (a ∧ b) ∨ (c ∧ d). This
had µV (p) be different, and not passing through 1

2 , but it could be modified to work. He also
projected onto the set {x1, . . . , xn, 0}, in order for it to work. However, his approach proved that
Lmon(MAJn) = O(n5.27), the best known upper bound.

At the same time, it is known that L(MAJn) = Ω(n2).

However, the above upper bound is not explicit. You can’t construct formulas using that proof. In
1983, Ajtai, Komlos and Szemeredi provided a set of explicit nO(1) monotone formulas for MAJn.
However, their formulas were of size n10

73
, which is not very practical. The best-known explicit

formulas nowadays are n6000, which is still very large, which shows a difference between explicit
and non-explicit proofs.

1.1 Slice Functions

Definition 9. A boolean function f : {0, 1}n → {0, 1} is a slice function if there is some k ∈
{0, . . . , n} such that if |x| < k then f(x) = 0 and if |x| > k then f(x) = 1.

A treshold function is a function THRk,n : {0, 1}n → {0, 1} such that THRk,n(x) is 1 if and
only if |x| ≥ k. This is a generalization of MAJn.

Note that threshold functions are slice functions, and note that all slice functions are always mono-
tone.

Theorem 10 (Berkowitz 1982). If f is a slice function then Lmon(f) ≤ L(f) · poly(n), and
Cmon(f) ≤ C(f) + poly(n).

Proof. We know that MAJn has polynomial-size monotone formulas. Thus, we can also compute
any threshold function THRk,n using a polynomial-size monotone formula, by padding the input
of THRk,n with 0’s and 1’s, and then taking the majority of the result.

4

Note that you will never need more than n input bits of padding, so at worst, you need to have to
solve MAJ2n.

Let F be a De Morgan formula computing some k-slice function f . Express this in negation normal
form.

Now, consider a monotone formula THRk,n ∧ F ′, where F ′ is equivalent to F , but all instances
of xi are replaced by THRk,n(x1, . . . , xi−1, 0, xi+1, . . . , xn). If there are less than k inputs which
are 1, then THRk,n is 0, so this function evaluates to 0. If more than k inputs are 1, then
THRk,n(x1, . . . , xi−1, 0, xi+1, . . . , xn) will always be 1, so F ′ will be 1, as all its inputs are 1.

And if exactly k inputs are 1, then THRk,n is 1, while THRk,n(x1, . . . , xi−1, 0, xi+1, . . . , xn) = xi.
Thus, if k inputs are 1, then this formula evaluates f .

Thus, we have a monotone formula that computes f , with at most a polynomial size increase.

It’s true for all monotone functions f that C(f) ≤ Cmon(f) and that L(f) ≤ Lmon(f). But
these inequalities can be pretty strict. It is known due to Razborov (1986) that for the k-clique
function, Cmon(CLIQUEk) = Ω((n

logn)k) and that C(CLIQUEk) = O(n
ω
3
k), where ω is the matrix

multiplication exponent, bounded above by 2.37. This shows a difference between the monotone
and non-monotone circuit size.

Tardos also showed in 1988 that there is an exponential gap for some problems.

But for these slice functions, there is a very small separation, and definitely not an exponential
separation.

2 Bounded Depth Circuits

Definition 11. A circuit is said to be an AC0 circuit if it is made of AND and OR gates with
unbounded fan-in.

Note that by the same De Morgan Rules as before, we can move all NOT gates to just the inputs,
so we assume that the circuit has no negations within it.

Definition 12. An AC0 circuit has depth d if the longest path from the root to an input has length
d.

Claim 13. Every AC0 circuit is equivalent to an AC0 circuit made of alternating layers of AND
and OR gates.

Proof. Note that two consecutive AND gates are redundant if you are allowed to have arbitrary
fan-in. A ∧B ∧ (C ∧D ∧ E) = (A ∧B ∧ C ∧D ∧ E). The same applies to OR gates.

Because we are in negation normal form, we can thus compress any AC0 circuit such that no AND
gate has AND gates as children and no OR gate has OR gates as children. In that case, the circuit
has alternating layers of AND and OR gates.

Definition 14. AC0 is the complexity class of boolean functions f : {0, 1}∗ → {0, 1} which are
computable by polynomial size AC0 circuits of constant depth. So for each input size, the circuit is
different, but has the same depth.

5

These AC0 circuits also correspond to very efficient parallelizable algorithms. In particular, func-
tions in AC0 can be implemented as constant time parallel algorithms on polynomially many pro-
cessors.

As an example of an AC0 circuit, let us consider integer addition. This is a function of the form
+ : {0, 1}n × {0, 1}n → {0, 1}n+1, taking inputs x1, . . . , xn, y1, . . . , yn.

We also use x =
n−1∑
i=0

2ixi to find the values of the inputs x and y.

We then wish to calculate the binary form of x+ y. And we claim that this is in AC0. To see this,
note the following facts about the binary addition. We will use c to denote the carry bits.

(x+ y)k = xk ⊕ yk ⊕ ck
ck = (xk−1 ∧ yk−1) ∨ (xk−1 ∧ ck−1) ∨ (yk−1 ∧ ck−1)

=

k−1∨
i=0

(xi ∧ yi ∧
k∧

j=i+1

(xj ∨ yj))

Thus, we can compute ck using a depth 3 AC0 formula of size O(k2).

And because we have a depth 2 formula for XOR, we get a depth 5 AC0 circuit of size O(n3) for
computing integer addition. Despite appearing linear, you can actually do the addition in parallel.

Integer multiplication, on the other hand, is not in AC0. Neither is XORn. That is curious because
XORn is essentially just addition modulo 2 with n different summands.

Now, let Cd(f) be the minimum number of AND or OR gates in a depth d AC0 circuit for f .
Likewise, Ld(f) is the minimum leaf size for a depth d AC0 formula for f .

Another way of counting the size of these circuits is by counting the wires. You then get that
Cd(f) ≤ Cwiresd (f) ≤ (Cd(f) + n)2. You get this increase in count because the gates have unlimited
fan-in and fan-out, so you can have very densely connected graphs.

We also have that Ld(f) ≥ Lgatesd (f) ≤ Cd(f)d−1. This can be seen by taking a circuit, and then
splitting its overlapping inputs into disjoint copies, and then repeating this process recursively.
Each time you do this, you do this to the top d− 1 levels, which gives the formula above.

Note that AC0 circuits can have an AND gate or an OR gate at the top. We use
∏
d to refer to

circuits with an AND gate at the top, and
∑

d to refer to circuits wth an OR gate at the top. This
also leads to a notion of corresponding circuit size, denoted by C∏

d
(f) and C∑

d
(f), respectively.

Now, recall that in the De Morgan basis, C(f) ≤ O(2
n

n). In the AC0 setting, it is trivial to see
that for every f : {0, 1}n → {0, 1}, Cπ2(f) ≤ 2n and C∏

2
(f) ≤ 2n. This can be seen by taking an

incredibly wide OR over many AND’s, and by considering De Morgan’s laws.

As an exercise, you can also show that every f has a constant-depth circuit of size O(2
n

n). In fact,

you can get it as low as size 2
n
2 nO(1).

However, AC0 still has restrictions. AC0 circuits cannot compute MAJn. But they can compute
THRlogc(n) and APPROXMAJ , the approximate majority function. This is done by showing

6

that for all c > 0, there exists a polynomial size AC0 circuit C of depth O(c) such that if |x|n ≤
1
2 −

1
(logn)c

then C(x) = 0, and the corresponding bound also works for C(x) = 1. But between

these bounds, there are no guarantees.

We can also consider the parity function. Note that C∏
d
(XORn) = C∑

d
(XORn), since C∏

d
(f) =

C∑
d
(1−f) for all f , just by simple applications of De Morgan’s Laws. Furthermore, C∏

d
(XORn) =

C∏
d
(XORn), just by negating the first input.

The same relation holds for the leafsize of XORn in AC0.

Now, we claim that C∑
2
(XORn) ≤ 2n−1 + 1 ≤ 2n. To see this, you take an OR over the 2n−1

possible input configurations, each of which is defined by an AND. Likewise, L∑
2
(XORn) ≤ n2n−1.

Lemma 15. Let n1, . . . , nk be positive integers such that n1 + · · · + nk = n. Then for any d ≥ 2,

Ld+1(XORn) ≤ 2k−1
k∑
i=1
Ld(XORni) and Cd+1(XORn) ≤ 2k−1 + 2

k∑
i=1
Cd(XORni).

Proof. The intuitive idea is to split the XOR of n variables into the XOR of the first n1 variables,
then a XOR of the next n2 variables, and so on. Then, you take the XOR of all of those inputs.

Let us start with the formula size. You first begin by finding
∏
d and

∑
d formulas for XORni ,

each of which has formula size Ld(XORni). Then, you have a formula of size k2k−1 which finds
XORk, where each input appears 2k−1 times, whch has depth 2. Plugging in your formulas into
those inputs gets the desired results, after you collapse repeated AND’s or OR’s into one layer.

A similar approach holds for circuits.

Now, we can try to find the optimal bound.

Theorem 16. For all d ≥ 1, Ld+1(XORn) ≤ n2dn
1
d and Cd+1(XORn) ≤ O(n

d−1
d 2n

1
d).

Proof. Let us proceed recursively.

By applying the lemma with n1, . . . , nk ≤ n
d−1
d with k ≤ n

1
d + 1, we get that

L
d+1

(XORn) ≤ 2n
1
d

k∑
i=1

ni
2(d−1)n

1
d−1
i

2(d−1)n
1
d

= n2dn
1
d

By induction, the proof holds.

In fact, if n is a power of 2, then we can improve this. Then Ld+1(XORn) ≤ n2d(n
1
d−1).

Meanwhile, if d = dlog ne, then n2dn
1
d = n3, whereas n2d(n

1
d−1) = n2.

Meanwhile, it is known that Ldlogne(XORn) = O(n2). So this bound is actually a bit slack, and
can be improved a bit. You can actually show that power of 2 bound for all n, not just for n which
are powers of 2, as well as for all d ≤ log n.

7

Note also that as the limit of d goes to∞, this approaches n2lnn, which is less than n1.7. Meanwhile,
XORn has circuit bounds Ω(n2), so there is some weird behaviour near the d = log n boundary.

8

	Valiant's Monotone Formulas for Majority
	Slice Functions

	Bounded Depth Circuits

