CSC2429 / MAT1304: Circuit Complexity February 14, 2019

Lectures 5-6: ACY and ACY[p]

Instructor: Benjamin Rossman

1 The Switching Lemma

A k-DNF (= disjunctive-normal-form formula of width k) is a depth-2 formula of the form
OR(CY,...,Cy) where each clause C; is an AND of < k literals. A k-CNF (= conjunctive-
normal-form formula of width k) is a depth-2 formula of the form AND(C4, ..., C),) where each C;
is an OR of < k literals.

A decision tree of depth 0 is a constant (0 or 1). For d > 1, a decision tree of depth
< d is a triple T' = (w;,Tp,T1) where z; is a variable and T and T} are decision trees of depth
< d — 1. Decision trees compute boolean functions in the obvious way: if T' = (z;,Tp,T1), then
T(x) =Ty, (x).

The decision-tree depth of a boolean function f, denoted D(f), is the minimum depth of a
decision tree that computes f. Note that D(f) = 0 iff f is a constant, and D(f) = 1 iff f is a
literal. The function f(a,b,c) = (a A b) V (-a A —¢) has decision-tree depth 2. AND,, and XOR,,
are examples of functions with the maximum possible decision-tree depth n.

It’s easy to see that any function with decision-tree depth k is equivalent to both a k-DNF and
a k-CNF. (There is a weak converse to this fact: any function which can be expressed as both
a k-DNF and an ¢-CNF has decision-tree depth at most kf.) A corollary of this fact is that an
OR (resp. AND) of arbitrarily many functions with decision-tree depth k is equivalent to a k-DNF
(resp. k-CNF).

Previously we studied the effect of the p-random restriction R, on DeMorgan formulas. R, also
simplifies depth-k decision trees, as well as k-DNF and k-CNF.

Theorem 1 (Effect of R, on decision-tree depth). If D(f) =k, then

PLDGIR) > 0] < o) () = Ook/

forall £ > 1.

Proof. Induction on k. Base case k = 0 is trivial, so assume k > 1 and ¢ > 1. Let T = (x;, Ty, T1)



be a DT of depth k. Then
P[ D(TIR,) > (] = P Ry(z;) = + and D(T|R,) >t |
+P[Ry)(z;) =0and D(T'IR,) > (¢ |+ P| Ry(z;) =1 and D(T[R,) > (]

=pP[ D(TH|R,) > —1or D(T1[Rp) > ¢ —1]

252 (PLD@IRY) = 14 P DT Ry) > 0])

§p<IP[D(T0[Rp) >(—1]+P[D(T1|Ry) > (1 ]>

+ 152 (Bl DR > 0]+ P DT Ry > )

. ¢
< 2p(2p)"" <lz B i) + (2p)' <k B 1>

= (2p)* (E) : O

Hastad’s Switching Lemma (1986) gives a similar bound for k-DNF and k-CNF formulas (i.e., OR’s
or AND’s of depth-k decision trees). Instead of O(pk/¢)*, we get a bound O(pk)*.

Theorem 2 (Switching Lemma). If f is a k-DNF or k-CNF, then
P[ D(fIR,) > (] < (5pk)".

Proof. The proof we give uses Razborov’s labeling argument and differs slightly from Hastad’s
original proof (based on conditional probabilities). See http://users.math.cas.cz/~thapen/
switching.pdf and https://homes.cs.washington.edu/~beame/papers/primer.ps for a nice
exposition.

Fix k,¢ > 1 and p € [0,1] and suppose f = OR(C1,...,Cy,) where each clause C; is an AND of
< k literals. (In particular, we fix an ordering of clauses Ci,...,Cy,.) Let Vars(C;) C [n] denote
the set of variables occurring in Cj, that is, Vars(C;) = {i : ; or T; occurs in C;}.

For every restriction p : [n] — {0,1,%}, we define a decision tree T'(f,p) called the “canonical
decision tree of f[p”. This is defined as follows. If p fixes every clause to 0, then T'(f, p) outputs
0. Otherwise, let C; be the first clause not fixed to 0 by p and proceed as follows:

o If C; is fixed to 1 by p (i.e. every literal is set to 1), then T'(f, p) outputs 1.

e If C; is not fixed to 1 by p (i.e. no literal is set to 0 and at least one literal has value ), then
T(f,p) queries all free variables in C;j and proceeds as the decision tree T'(f, pm) where

o m € {0, 1}Vars(C)NStars(p) ig the assignment to the queried variables of Cj,
{m if ¢ € Vars(Cj) N Stars(p),

o pm € {0,1,%}" is the combined restriction with (pm); = .
p; otherwise.



Clearly the depth of T'(f, R,) is an upper bound on D(f[R,). Therefore, it suffices to show
(1) P depth(T(f, R,)) > ¢ ] < (16pk)*
Let’s name this bad event
BAD ' {5 : depth(T'(f, p)) > £}.
To prove (1), we will associate each p € BAD with a restriction p (not necessarily in BAD) such
that
(i) [Stars(3)| = [Stars(p)] — £,

(i) the function p — p is at most (4k)*~to-1,
that is, for every restriction o, we have #{p € BAD : p = o} < (4k)".

Note that property (i) implies P[ R, = p ] = (%)Z P[ R, = p]. (This follows from the observation

that P{ R, =0 | = plStars(a)] (1%7’)‘I\IOHS“’““S(U)| for all restrictions o.) Without loss of generality, we
may assume that p < 1/2 (since the Theorem is trivial if p < 1/16). Therefore, we have

(2) P[R,=p] < (4p)P[ Ry =5 ).

Assuming we have a function p — p satisfying (i) and (ii), we obtain inequality (1) as follows:

P[R,cBAD|= Y P[R,=p]

pEBAD

<@p)" Y P[R,=p] (by(2)
pEBAD

=@p)" Y. P[R,=0] #{pcBAD:p=0}
o:[n]—{0,1,%}

< (16pk)" > P[R,=0] (by (ii))

o:[n]—{0,1,}
= (16pk)*.

Definition of p. It remains to define the function p — p and show that it satisfies (i) and (ii).
Consider any p € BAD. By definition, the decision tree T'(f, p) contains a path of length > ¢. Fix
any such “long path” in T'(f, p). Let @ C [n], |Q| = ¢, consist of the first ¢ variables queries on this
path, and let 7 : Q@ — {0, 1} be the corresponding assignment of these variables.

By definition of T'(f, p), there exists a partition Q@ = Q1 W --- & Q; and clauses Cj,...,Cj, (1 <
J1 < -+ < ji < m) where O}, is responsible for queries Q; in the process defining T'(f,p). Let
m; : Qi — {0,1} denote the corresponding sub-assignment of 7. In addition:

e let a; € {0,1}* be the characteristic function of @; among variables of Cj,



e let b; € {0,1}9 encode m; (under the order in which variables occur in C},),

e let m; : Q; — {0,1} be the unique assignment to Q); such that C;lpmy - mi_17; Z 0.

Finally, we define p by

Property (i) clearly holds, since p fills in exactly ¢ stars of p. As for property (ii), we establish that
p — pis at most (4k)%to-1 over BAD by showing:

(ii-a) the function p — (p, a,b) is 1-to-1 over BAD,

(ii-b) the pair (a,b) (i.e. the string (aq,...,as b1, ..., b)) takes at most (4k)* possible values
over p € BAD.

To see that (ii-a) holds, we describe a procedure for inverting p — (p,a,b) over BAD. Given
(p,a,b):

e Note that C}, is the first clause of f with the property that Cj [p # 0. Therefore, p gives
knowledge of Cj,, and a1,b; then give knowledge of )1,71. This allows us to determine
P 1%2 cee 7?t‘

e Next (if |Q1| < ¢), note that C}, the first clause of f with the property that Cj, [pmi 72 -+ - T #
0. Via as, be, we now have knowledge of QQ2, mo. This allows us to determine pmmoms - - - .

e This process continues until we have learned Q1,...,Q¢, 71,...,m and pmy -- -1, as which
point we know p.

Finally, to show (ii-b), we note that each (ay, ..., as) is an element of ({0, 1}*)* where |a1], ..., |a:| >
1 and |ay| + --- + |a¢] = £. The number of such sequences is at most (2k)‘. The possibilities for
(b1,...,bs), given each (ai,...,as), contribute another 2¢ factor. O

2 Lower bounds for XOR,,

Using the Switching Lemma, we able to prove tight lower bounds for the depth d + 1 circuit size
(as well as the depth d + 1 formulas size) of XOR,,.

1
Theorem 3. Let C be an ACC circuit of depth d + 1 and size S. Let p = W. Then
P [ D(CIR,) > { | <1yl
- -2t g



Proof. Let py = 1/10 and let p; be a p;-random restriction over the variables of C. Note that each
bottom-level gate g of C' is an AND or OR of literals, hence a 1-CNF or 1-DNF. Therefore, by the
Switching Lemma, P[ D(g[p1) > 2log S ] < (5p1)?1°8% < 1/82.

For i € {2,...,d+ 1}, let p; = pi—1/201log S and let p; be a p;-random restriction over the stars of
pi—1. For each gate g = AND/OR(g1, ..., gm) of depth i < d, if we condition on D(g;[p1...pi—1) <
2log S for all j € [m] (in which case g is a 2log S-CNF/DNF), then by the Switching Lemma
D(glp1...p;) < 2log S except with probability (5p; - 21log §)?1085 = 27215 — 1/62,

It follows that, except with probability 1/S, we have D(g[p;...pq) < 2log S for all gates g below
the output gate of C. If we condition on this event, then by the Switching Lemma D(C'[p1 ... pg+1) <
¢ except with probability (5p4.1-2logS)¢ = 27¢. The proof is completed by noting that p; ... pg41
in aggregate is a pi - - - pg4 1-random restriction and that p; ---pgr1 = 1/10(201og S)%. O

Corollary 4. Cgy1(XOR,,) = 22"

1

Proof. Let S = Cyq11(XOR,,) and let p = W. We have
1 1
P[ D(XOR, [R,) > 1] < 5 + <.
Assuming S > 4 (without loss of generality), it follows that
1
P[ D(XOR,[Ry) = 0] = .

Since P[ D(XOR,[Ry,) = 0] = P[ Bin(n,p) = 0 |, it follows that p = O(1/n) and hence

1
1077 (2log 51— M-

We conclude that S = 29(”1/d). O

Exercise. Show C43(MAJ,) = 22" 1y reduction to XOR,,.

3 Lower Bounds for AC[p] by the Polynomial Method (Razborov’87,
Smolensky’87)

We work over the field ), for an arbitrary prime p.

Recall that AC°[p] circuits and formulas have inputs labeled by literals and unbounded fan-in
def

AND,OR,MOD,, gates where MOD,(z1,...,2,) =1 <= 21+ -+ 2, = 0 mod p.



Definition 5. Let A € F,[z1,...,2,] be a random polynomial (i.e. a random variable over
Fplxi,...,xn)).

The degree of a random polynomial A € Fp[z1, ..., x| is the maximum degree of a polynomial in
the support of A.

The e-approzimate degree of f : {0,1}" — {0,1}, denoted deg.(F), is the minimum degree of a
random polynomial A € Fplz1,...,x,] such that P[ f(z) # A(z) | < e for every z € {0,1}".

Lemma 6. There exists a non-random polynomial a € Fplx1,...,xy,] of depth deg.(f) such that
Pocroyn| a(x) # f(z) | <e.
Proof. Let A be an e-approximating polynomial for f. By Markov’s inequality

Eal Preqoyn[ Alz) # f(2) ] ]
P IE{O’I}W[A(HE)#JC(%)]>€] < 6

<1.

Therefore, there exists a € Supp(4) such that Pyecs 132 a(x) # f(z) | <e. O

Lemma 7. Suppose f(x) = g(h1(z),...,hm(z)). Then for all d,e1,...,em,
deg5+51+--~+sm (f) < deg&(g) . mzax degsi (hz)
Proof. Let Ay € Fp[y1,...,ym]| be a é-approx random poly for g and let Ay, € Fp[z1,...,x,] be

gi-approx random polys for h;. Let Af(x) := Ag(Ap, (x),..., Ap,,(x)). Then deg(As) = deg(Ay) +
max; deg(Ap,). And

P As(r) £ f(2) ] <
f

T AGAny e Angy,

V@) £ 1)V Ayfo) £ 9(0) | <04 Fe

We use this lemma together with bounds on MOD,, , and OR,, and AND,, to obtain bounds on
deg, for AC°[p] circuits and formulas.

Lemma 8. For all € and n, we have deg,(MOD,,,) <p—1.
Note: This bound does not depend on € or n.

Proof. For all x € {0,1}", we have MOD,(z1,...,2,) =1 — (21 + -+ + 2,)P~! by Fermat’s Little
Theorem. Therefore, deg,(MOD,,,,) < degy(MOD, ) <p—1. O

Lemma 9. deg.(OR;,) < p(log,(1/¢) +1)

Note: Again, bound does not depend on the fan-in n.



Proof. Fix any z € {0,1}". For random A € F};, we have

P [ ORE) # ura -+ A = {

Therefore, for independent random A(Y), ... A(®) ¢ Fy,

t
_ —_ (W oo 2@ yp-1
)\(I)F,)\(t) [ OR(z) # 1 g (1 (W14 Aan) )

0 if x = (0,...
1/p ifx#(0,...

70)’
,0).

] <1/p"

Thus, OR(z) is approximated with error 1/p’ on every = € {0,1}" by a random polynomial of

degree t(p — 1).

For error €, we take t = [log,(1/¢)] and get degree t(p — 1) < (p — 1)(log,(1/¢) + 1). O

Corollary 10. deg.(AND,) < p(log,(1/¢) + 1)

Theorem 11. If C is an ACO[p] circuit of depth d and size S, then deg /4(C) < O(plogp(S))d.

Proof. Replace each AND/OR/MOD,, gate g : {0,1} — {0,1} with an 1/4S-approximating

polynomial Ay € Fplyi,...,ym] of degree O(plog,(S/4)) = O(plog,(S)).

The resulting random

polynomial has degree O(plog,(S))? and approximates C' with error at most S - (1/45) = 1/4. O

Next lecture we will use this theorem to show:

1/2d)

Theorem 12. Depth-d AC°[3] circuits for XOR,, require size 24",



