
CSC2429 / MAT1304: Circuit Complexity February 14, 2019

Lectures 5-6: AC0 and AC0[p]

Instructor: Benjamin Rossman

1 The Switching Lemma

A k-DNF (= disjunctive-normal-form formula of width k) is a depth-2 formula of the form
OR(C1, . . . , Cm) where each clause Ci is an AND of ≤ k literals. A k-CNF (= conjunctive-
normal-form formula of width k) is a depth-2 formula of the form AND(C1, . . . , Cm) where each Ci
is an OR of ≤ k literals.

A decision tree of depth 0 is a constant (0 or 1). For d ≥ 1, a decision tree of depth
≤ d is a triple T = (xi, T0, T1) where xi is a variable and T0 and T1 are decision trees of depth
≤ d − 1. Decision trees compute boolean functions in the obvious way: if T = (xi, T0, T1), then
T (x) := Txi(x).

The decision-tree depth of a boolean function f , denoted D(f), is the minimum depth of a
decision tree that computes f . Note that D(f) = 0 iff f is a constant, and D(f) = 1 iff f is a
literal. The function f(a, b, c) = (a ∧ b) ∨ (¬a ∧ ¬c) has decision-tree depth 2. ANDn and XORn

are examples of functions with the maximum possible decision-tree depth n.

It’s easy to see that any function with decision-tree depth k is equivalent to both a k-DNF and
a k-CNF. (There is a weak converse to this fact: any function which can be expressed as both
a k-DNF and an `-CNF has decision-tree depth at most k`.) A corollary of this fact is that an
OR (resp. AND) of arbitrarily many functions with decision-tree depth k is equivalent to a k-DNF
(resp. k-CNF).

Previously we studied the effect of the p-random restriction Rp on DeMorgan formulas. Rp also
simplifies depth-k decision trees, as well as k-DNF and k-CNF.

Theorem 1 (Effect of Rp on decision-tree depth). If D(f) = k, then

P[ D(f�Rp) ≥ ` ] ≤ (2p)t
(
k

`

)
= O(pk/`)`

for all ` ≥ 1.

Proof. Induction on k. Base case k = 0 is trivial, so assume k ≥ 1 and ` ≥ 1. Let T = (xi, T0, T1)
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be a DT of depth k. Then

P[ D(T �Rp) ≥ ` ] = P[ Rp(xi) = ∗ and D(T �Rp) ≥ t ]

+ P[ Rp(xi) = 0 and D(T �Rp) ≥ ` ] + P[ Rp(xi) = 1 and D(T �Rp) ≥ ` ]

= pP[ D(T0�Rp) ≥ `− 1 or D(T1�Rp) ≥ `− 1 ]

+
1− p

2

(
P[ D(T0�Rp) ≥ ` ] + P[ D(T1�Rp) ≥ ` ]

)
≤ p
(
P[ D(T0�Rp) ≥ `− 1 ] + P[ D(T1�Rp) ≥ `− 1 ]

)
+

1− p
2

(
P[ D(T0�Rp) ≥ ` ] + P[ D(T1�Rp) ≥ ` ]

)
≤ 2p(2p)`−1

(
k − 1

`− 1

)
+ (2p)t

(
k − 1

`

)
= (2p)`

(
k

`

)
.

H̊astad’s Switching Lemma (1986) gives a similar bound for k-DNF and k-CNF formulas (i.e., OR’s
or AND’s of depth-k decision trees). Instead of O(pk/`)`, we get a bound O(pk)`.

Theorem 2 (Switching Lemma). If f is a k-DNF or k-CNF, then

P[ D(f�Rp) ≥ ` ] ≤ (5pk)`.

Proof. The proof we give uses Razborov’s labeling argument and differs slightly from H̊astad’s
original proof (based on conditional probabilities). See http://users.math.cas.cz/~thapen/

switching.pdf and https://homes.cs.washington.edu/~beame/papers/primer.ps for a nice
exposition.

Fix k, ` ≥ 1 and p ∈ [0, 1] and suppose f = OR(C1, . . . , Cm) where each clause Cj is an AND of
≤ k literals. (In particular, we fix an ordering of clauses C1, . . . , Cm.) Let Vars(Cj) ⊆ [n] denote
the set of variables occurring in Cj , that is, Vars(Cj) = {i : xi or xi occurs in Cj}.

For every restriction ρ : [n] → {0, 1, ∗}, we define a decision tree T (f, ρ) called the “canonical
decision tree of f�ρ”. This is defined as follows. If ρ fixes every clause to 0, then T (f, ρ) outputs
0. Otherwise, let Cj be the first clause not fixed to 0 by ρ and proceed as follows:

• If Cj is fixed to 1 by ρ (i.e. every literal is set to 1), then T (f, ρ) outputs 1.

• If Cj is not fixed to 1 by ρ (i.e. no literal is set to 0 and at least one literal has value ∗), then
T (f, ρ) queries all free variables in Cj and proceeds as the decision tree T (f, ρπ) where

◦ π ∈ {0, 1}Vars(Cj)∩Stars(ρ) is the assignment to the queried variables of Cj ,

◦ ρπ ∈ {0, 1, ∗}n is the combined restriction with (ρπ)i =

{
πi if i ∈ Vars(Cj) ∩ Stars(ρ),

ρi otherwise.
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Clearly the depth of T (f,Rp) is an upper bound on D(f�Rp). Therefore, it suffices to show

(1) P[ depth(T (f,Rp)) ≥ ` ] ≤ (16pk)`

Let’s name this bad event

BAD
def
= {ρ : depth(T (f, ρ)) ≥ `}.

To prove (1), we will associate each ρ ∈ BAD with a restriction ρ̂ (not necessarily in BAD) such
that

(i) |Stars(ρ̂)| = |Stars(ρ)| − `,

(ii) the function ρ 7→ ρ̂ is at most (4k)`-to-1,

that is, for every restriction σ, we have #{ρ ∈ BAD : ρ̂ = σ} ≤ (4k)`.

Note that property (i) implies P[ Rp = ρ ] =
( 2p

1−p
)`
P[ Rp = ρ̂ ]. (This follows from the observation

that P[ Rp = σ ] = p|Stars(σ)|(1−p
2

)|Nonstars(σ)| for all restrictions σ.) Without loss of generality, we
may assume that p ≤ 1/2 (since the Theorem is trivial if p ≤ 1/16). Therefore, we have

(2) P[ Rp = ρ ] ≤ (4p)`P[ Rp = ρ̂ ].

Assuming we have a function ρ 7→ ρ̂ satisfying (i) and (ii), we obtain inequality (1) as follows:

P[ Rp ∈ BAD ] =
∑

ρ∈BAD

P[ Rp = ρ ]

≤ (4p)`
∑

ρ∈BAD

P[ Rp = ρ̂ ] (by (2))

= (4p)`
∑

σ:[n]→{0,1,∗}

P[ Rp = σ ] ·#{ρ ∈ BAD : ρ̂ = σ}

≤ (16pk)`
∑

σ:[n]→{0,1,∗}

P[ Rp = σ ] (by (ii))

= (16pk)`.

Definition of ρ̂. It remains to define the function ρ 7→ ρ̂ and show that it satisfies (i) and (ii).
Consider any ρ ∈ BAD. By definition, the decision tree T (f, ρ) contains a path of length ≥ `. Fix
any such “long path” in T (f, ρ). Let Q ⊆ [n], |Q| = `, consist of the first ` variables queries on this
path, and let π : Q→ {0, 1} be the corresponding assignment of these variables.

By definition of T (f, ρ), there exists a partition Q = Q1 ] · · · ] Qt and clauses Cj1 , . . . , Cjt (1 ≤
j1 < · · · < jt ≤ m) where Cji is responsible for queries Qi in the process defining T (f, ρ). Let
πi : Qi → {0, 1} denote the corresponding sub-assignment of π. In addition:

• let ai ∈ {0, 1}k be the characteristic function of Qi among variables of Cji ,
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• let bi ∈ {0, 1}|Qi| encode πi (under the order in which variables occur in Cji),

• let π̂i : Qi → {0, 1} be the unique assignment to Qi such that Ci�ρπ1 · · ·πi−1π̂i 6≡ 0.

Finally, we define ρ̂ by

ρ̂
def
= ρπ̂1 · · · π̂t.

Property (i) clearly holds, since ρ̂ fills in exactly ` stars of ρ. As for property (ii), we establish that
ρ 7→ ρ̂ is at most (4k)`-to-1 over BAD by showing:

(ii-a) the function ρ 7→ (ρ̂, a, b) is 1-to-1 over BAD,

(ii-b) the pair (a, b) (i.e. the string (a1, . . . , at, b1, . . . , bt)) takes at most (4k)` possible values
over ρ ∈ BAD.

To see that (ii-a) holds, we describe a procedure for inverting ρ 7→ (ρ̂, a, b) over BAD. Given
(ρ̂, a, b):

• Note that Cj1 is the first clause of f with the property that Cj1�ρ̂ 6≡ 0. Therefore, ρ̂ gives
knowledge of Cj1 , and a1, b1 then give knowledge of Q1, π1. This allows us to determine
ρπ1π̂2 · · · π̂t.

• Next (if |Q1| < `), note that Cj2 the first clause of f with the property that Cj2�ρπ1π̂2 · · · π̂t 6≡
0. Via a2, b2, we now have knowledge of Q2, π2. This allows us to determine ρπ1π2π̂3 · · · π̂t.

• This process continues until we have learned Q1, . . . , Qt, π1, . . . , πt and ρπ1 · · ·πt, as which
point we know ρ.

Finally, to show (ii-b), we note that each (a1, . . . , at) is an element of ({0, 1}k)t where |a1|, . . . , |at| ≥
1 and |a1| + · · · + |at| = `. The number of such sequences is at most (2k)`. The possibilities for
(b1, . . . , bt), given each (a1, . . . , at), contribute another 2` factor.

2 Lower bounds for XORn

Using the Switching Lemma, we able to prove tight lower bounds for the depth d + 1 circuit size
(as well as the depth d+ 1 formulas size) of XORn.

Theorem 3. Let C be an AC0 circuit of depth d+ 1 and size S. Let p =
1

10(20 logS)d
. Then

P
[
D(C�Rp) ≥ `

]
≤ 1

2`
+

1

S
.
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Proof. Let p1 = 1/10 and let ρ1 be a p1-random restriction over the variables of C. Note that each
bottom-level gate g of C is an AND or OR of literals, hence a 1-CNF or 1-DNF. Therefore, by the
Switching Lemma, P[ D(g�ρ1) > 2 logS ] ≤ (5p1)2 logS ≤ 1/S2.

For i ∈ {2, . . . , d+ 1}, let pi = pi−1/20 logS and let ρi be a pi-random restriction over the stars of
ρi−1. For each gate g = AND/OR(g1, . . . , gm) of depth i ≤ d, if we condition on D(gj�ρ1 . . .ρi−1) ≤
2 logS for all j ∈ [m] (in which case g is a 2 logS-CNF/DNF), then by the Switching Lemma
D(g�ρ1 . . .ρi) ≤ 2 logS except with probability (5pi · 2 logS)2 logS = 2−2 logS = 1/S2.

It follows that, except with probability 1/S, we have D(g�ρ1 . . .ρd) ≤ 2 logS for all gates g below
the output gate of C. If we condition on this event, then by the Switching LemmaD(C�ρ1 . . .ρd+1) ≤
` except with probability (5pd+1 ·2 logS)` = 2−`. The proof is completed by noting that ρ1 . . .ρd+1

in aggregate is a p1 · · · pd+1-random restriction and that p1 · · · pd+1 = 1/10(20 logS)d.

Corollary 4. Cd+1(XORn) = 2Ω(n1/d)

Proof. Let S = Cd+1(XORn) and let p =
1

10d+1(2 logS)d
. We have

P[ D(XORn�Rp) ≥ 1 ] ≤ 1

2
+

1

S
.

Assuming S ≥ 4 (without loss of generality), it follows that

P[ D(XORn�Rp) = 0 ] ≥ 1

4
.

Since P[ D(XORn�Rp) = 0 ] = P[ Bin(n, p) = 0 ], it follows that p = O(1/n) and hence

1

10d+1(2 logS)d
= Ω(n).

We conclude that S = 2Ω(n1/d).

Exercise. Show Cd(MAJn) = 2Ω(n1/d) by reduction to XORn.

3 Lower Bounds for AC0[p] by the Polynomial Method (Razborov’87,
Smolensky’87)

We work over the field Fp for an arbitrary prime p.

Recall that AC0[p] circuits and formulas have inputs labeled by literals and unbounded fan-in

AND,OR,MODp gates where MODp(x1, . . . , xn) = 1
def⇐⇒ x1 + · · ·+ xn = 0 mod p.
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Definition 5. Let A ∈ Fp[x1, . . . , xn] be a random polynomial (i.e. a random variable over
Fp[x1, . . . , xn]).

The degree of a random polynomial A ∈ Fp[x1, . . . , xn] is the maximum degree of a polynomial in
the support of A.

The ε-approximate degree of f : {0, 1}n → {0, 1}, denoted degε(F ), is the minimum degree of a
random polynomial A ∈ Fp[x1, . . . , xn] such that PA[ f(x) 6= A(x) ] ≤ ε for every x ∈ {0, 1}n.

Lemma 6. There exists a non-random polynomial a ∈ Fp[x1, . . . , xn] of depth degε(f) such that
Px∈{0,1}n [ a(x) 6= f(x) ] ≤ ε.

Proof. Let A be an ε-approximating polynomial for f . By Markov’s inequality

P
A

[ P
x∈{0,1}n

[ A(x) 6= f(x) ] > ε ] <
EA[ Px∈{0,1}n [ A(x) 6= f(x) ] ]

ε
< 1.

Therefore, there exists a ∈ Supp(A) such that Px∈{0,1}n [ a(x) 6= f(x) ] ≤ ε.

Lemma 7. Suppose f(x) = g(h1(x), . . . , hm(x)). Then for all δ, ε1, . . . , εm,

degδ+ε1+···+εm(f) ≤ degδ(g) ·max
i

degεi(hi).

Proof. Let Ag ∈ Fp[y1, . . . , ym] be a δ-approx random poly for g and let Ahi ∈ Fp[x1, . . . , xn] be
εi-approx random polys for hi. Let Af (x) := Ag(Ah1(x), . . . , Ahm(x)). Then deg(Af ) = deg(Ag) +
maxi deg(Ahi). And

P
Af

[ Af (x) 6= f(x) ] ≤ P
Ag ,Ah1

,...,Ahm

[ ∨
i

(Ahi(x) 6= hi(x)) ∨Ag(x) 6= g(x)

]
≤ δ +

∑
i

εi.

We use this lemma together with bounds on MODp,n and ORn and ANDn to obtain bounds on
degε for AC0[p] circuits and formulas.

Lemma 8. For all ε and n, we have degε(MODp,n) ≤ p− 1.

Note: This bound does not depend on ε or n.

Proof. For all x ∈ {0, 1}n, we have MODp(x1, . . . , xn) = 1− (x1 + · · ·+ xn)p−1 by Fermat’s Little
Theorem. Therefore, degε(MODp,n) ≤ deg0(MODp,n) ≤ p− 1.

Lemma 9. degε(ORn) ≤ p(logp(1/ε) + 1)

Note: Again, bound does not depend on the fan-in n.
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Proof. Fix any x ∈ {0, 1}n. For random λ ∈ Fnp , we have

P
λ

[
OR(x) 6= (λ1x1 + · · ·+ λnxn)p−1

]
=

{
0 if x = (0, . . . , 0),

1/p if x 6= (0, . . . , 0).

Therefore, for independent random λ(1), . . . , λ(t) ∈ Fnp ,

P
λ(1),...,λ(t)

[
OR(x) 6= 1−

t∏
i=1

(
1− (λ

(i)
1 x1 + · · ·+ λ(i)

n xn)p−1
) ]
≤ 1/pt.

Thus, OR(x) is approximated with error 1/pt on every x ∈ {0, 1}n by a random polynomial of
degree t(p− 1).

For error ε, we take t = dlogp(1/ε)e and get degree t(p− 1) ≤ (p− 1)(logp(1/ε) + 1).

Corollary 10. degε(ANDn) ≤ p(logp(1/ε) + 1)

Theorem 11. If C is an AC0[p] circuit of depth d and size S, then deg1/4(C) ≤ O(p logp(S))d.

Proof. Replace each AND/OR/MODp gate g : {0, 1}m → {0, 1} with an 1/4S-approximating
polynomial Ag ∈ Fp[y1, . . . , ym] of degree O(p logp(S/4)) = O(p logp(S)). The resulting random

polynomial has degree O(p logp(S))d and approximates C with error at most S · (1/4S) = 1/4.

Next lecture we will use this theorem to show:

Theorem 12. Depth-d AC0[3] circuits for XORn require size 2Ω(n1/2d).
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