CSC2429 / MAT1304: Circuit Complexity

Lectures 5-6: AC^0 and $AC^0[p]$

Instructor: Benjamin Rossman

1 The Switching Lemma

A **k-DNF** (= disjunctive-normal-form formula of width k) is a depth-2 formula of the form $OR(C_1, \ldots, C_m)$ where each clause C_i is an AND of $\leq k$ literals. A **k-CNF** (= conjunctive-normal-form formula of width k) is a depth-2 formula of the form $AND(C_1, \ldots, C_m)$ where each C_i is an OR of $\leq k$ literals.

A decision tree of depth 0 is a constant (0 or 1). For $d \ge 1$, a decision tree of depth $\le d$ is a triple $T = (x_i, T_0, T_1)$ where x_i is a variable and T_0 and T_1 are decision trees of depth $\le d - 1$. Decision trees compute boolean functions in the obvious way: if $T = (x_i, T_0, T_1)$, then $T(x) := T_{x_i}(x)$.

The **decision-tree depth** of a boolean function f, denoted D(f), is the minimum depth of a decision tree that computes f. Note that D(f) = 0 iff f is a constant, and D(f) = 1 iff f is a literal. The function $f(a, b, c) = (a \land b) \lor (\neg a \land \neg c)$ has decision-tree depth 2. AND_n and XOR_n are examples of functions with the maximum possible decision-tree depth n.

It's easy to see that any function with decision-tree depth k is equivalent to both a k-DNF and a k-CNF. (There is a weak converse to this fact: any function which can be expressed as both a k-DNF and an ℓ -CNF has decision-tree depth at most $k\ell$.) A corollary of this fact is that an OR (resp. AND) of arbitrarily many functions with decision-tree depth k is equivalent to a k-DNF (resp. k-CNF).

Previously we studied the effect of the *p*-random restriction \mathbf{R}_p on DeMorgan formulas. \mathbf{R}_p also simplifies depth-*k* decision trees, as well as *k*-DNF and *k*-CNF.

Theorem 1 (Effect of \mathbf{R}_p on decision-tree depth). If D(f) = k, then

$$\mathbb{P}[D(f \upharpoonright \mathbf{R}_p) \ge \ell] \le (2p)^t \binom{k}{\ell} = O(pk/\ell)^\ell$$

for all $\ell \geq 1$.

Proof. Induction on k. Base case k = 0 is trivial, so assume $k \ge 1$ and $\ell \ge 1$. Let $T = (x_i, T_0, T_1)$

be a DT of depth k. Then

$$\mathbb{P}[D(T \upharpoonright \mathbf{R}_p) \ge \ell] = \mathbb{P}[\mathbf{R}_p(x_i) = * \text{ and } D(T \upharpoonright \mathbf{R}_p) \ge \ell]$$

$$+ \mathbb{P}[\mathbf{R}_p(x_i) = 0 \text{ and } D(T \upharpoonright \mathbf{R}_p) \ge \ell] + \mathbb{P}[\mathbf{R}_p(x_i) = 1 \text{ and } D(T \upharpoonright \mathbf{R}_p) \ge \ell]$$

$$= p \mathbb{P}[D(T_0 \upharpoonright \mathbf{R}_p) \ge \ell - 1 \text{ or } D(T_1 \upharpoonright \mathbf{R}_p) \ge \ell - 1]$$

$$+ \frac{1 - p}{2} \left(\mathbb{P}[D(T_0 \upharpoonright \mathbf{R}_p) \ge \ell] + \mathbb{P}[D(T_1 \upharpoonright \mathbf{R}_p) \ge \ell] \right)$$

$$\le p \left(\mathbb{P}[D(T_0 \upharpoonright \mathbf{R}_p) \ge \ell - 1] + \mathbb{P}[D(T_1 \upharpoonright \mathbf{R}_p) \ge \ell - 1] \right)$$

$$+ \frac{1 - p}{2} \left(\mathbb{P}[D(T_0 \upharpoonright \mathbf{R}_p) \ge \ell] + \mathbb{P}[D(T_1 \upharpoonright \mathbf{R}_p) \ge \ell] \right)$$

$$\le 2p(2p)^{\ell - 1} \binom{k - 1}{\ell - 1} + (2p)^{\ell} \binom{k - 1}{\ell}$$

$$= (2p)^{\ell} \binom{k}{\ell}.$$

Håstad's Switching Lemma (1986) gives a similar bound for k-DNF and k-CNF formulas (i.e., OR's or AND's of depth-k decision trees). Instead of $O(pk/\ell)^{\ell}$, we get a bound $O(pk)^{\ell}$.

Theorem 2 (Switching Lemma). If f is a k-DNF or k-CNF, then

$$\mathbb{P}[\mathcal{D}(f | \mathbf{R}_p) \ge \ell] \le (5pk)^{\ell}.$$

Proof. The proof we give uses Razborov's labeling argument and differs slightly from Håstad's original proof (based on conditional probabilities). See http://users.math.cas.cz/~thapen/switching.pdf and https://homes.cs.washington.edu/~beame/papers/primer.ps for a nice exposition.

Fix $k, \ell \geq 1$ and $p \in [0, 1]$ and suppose $f = OR(C_1, \ldots, C_m)$ where each clause C_j is an AND of $\leq k$ literals. (In particular, we fix an ordering of clauses C_1, \ldots, C_m .) Let $Vars(C_j) \subseteq [n]$ denote the set of variables occurring in C_j , that is, $Vars(C_j) = \{i : x_i \text{ or } \overline{x_i} \text{ occurs in } C_j\}$.

For every restriction $\rho : [n] \to \{0, 1, *\}$, we define a decision tree $T(f, \rho)$ called the "canonical decision tree of $f \upharpoonright \rho$ ". This is defined as follows. If ρ fixes every clause to 0, then $T(f, \rho)$ outputs 0. Otherwise, let C_j be the first clause not fixed to 0 by ρ and proceed as follows:

- If C_j is fixed to 1 by ρ (i.e. every literal is set to 1), then $T(f, \rho)$ outputs 1.
- If C_j is not fixed to 1 by ρ (i.e. no literal is set to 0 and at least one literal has value *), then $T(f, \rho)$ queries all free variables in C_j and proceeds as the decision tree $T(f, \rho\pi)$ where
 - $\pi \in \{0,1\}^{\operatorname{Vars}(C_j) \cap \operatorname{Stars}(\rho)}$ is the assignment to the queried variables of C_j ,

•
$$\rho\pi \in \{0, 1, *\}^n$$
 is the combined restriction with $(\rho\pi)_i = \begin{cases} \pi_i & \text{if } i \in \operatorname{Vars}(C_j) \cap \operatorname{Stars}(\rho), \\ \rho_i & \text{otherwise.} \end{cases}$

Clearly the depth of $T(f, \mathbf{R}_p)$ is an upper bound on $\mathcal{D}(f \upharpoonright R_p)$. Therefore, it suffices to show

(1)
$$\mathbb{P}[\operatorname{depth}(T(f, \mathbf{R}_p)) \ge \ell] \le (16pk)^{\ell}$$

Let's name this bad event

BAD
$$\stackrel{\text{def}}{=} \{ \rho : \operatorname{depth}(T(f, \rho)) \ge \ell \}.$$

To prove (1), we will associate each $\rho \in BAD$ with a restriction $\hat{\rho}$ (not necessarily in BAD) such that

- (i) $|\text{Stars}(\hat{\rho})| = |\text{Stars}(\rho)| \ell$,
- (ii) the function $\rho \mapsto \hat{\rho}$ is at most $(4k)^{\ell}$ -to-1, that is, for every restriction σ , we have $\#\{\rho \in BAD : \hat{\rho} = \sigma\} \le (4k)^{\ell}$.

Note that property (i) implies $\mathbb{P}[\mathbf{R}_p = \rho] = \left(\frac{2p}{1-p}\right)^{\ell} \mathbb{P}[\mathbf{R}_p = \hat{\rho}]$. (This follows from the observation that $\mathbb{P}[\mathbf{R}_p = \sigma] = p^{|\operatorname{Stars}(\sigma)|} \left(\frac{1-p}{2}\right)^{|\operatorname{Nonstars}(\sigma)|}$ for all restrictions σ .) Without loss of generality, we may assume that $p \leq 1/2$ (since the Theorem is trivial if $p \leq 1/16$). Therefore, we have

(2)
$$\mathbb{P}[\mathbf{R}_p = \rho] \le (4p)^{\ell} \mathbb{P}[\mathbf{R}_p = \widehat{\rho}].$$

Assuming we have a function $\rho \mapsto \hat{\rho}$ satisfying (i) and (ii), we obtain inequality (1) as follows:

$$\mathbb{P}[\mathbf{R}_{p} \in \text{BAD}] = \sum_{\rho \in \text{BAD}} \mathbb{P}[\mathbf{R}_{p} = \rho]$$

$$\leq (4p)^{\ell} \sum_{\rho \in \text{BAD}} \mathbb{P}[\mathbf{R}_{p} = \widehat{\rho}] \quad (\text{by } (2))$$

$$= (4p)^{\ell} \sum_{\sigma:[n] \to \{0,1,*\}} \mathbb{P}[\mathbf{R}_{p} = \sigma] \cdot \#\{\rho \in \text{BAD} : \widehat{\rho} = \sigma\}$$

$$\leq (16pk)^{\ell} \sum_{\sigma:[n] \to \{0,1,*\}} \mathbb{P}[\mathbf{R}_{p} = \sigma] \quad (\text{by } (\text{ii}))$$

$$= (16pk)^{\ell}.$$

Definition of $\hat{\rho}$. It remains to define the function $\rho \mapsto \hat{\rho}$ and show that it satisfies (i) and (ii). Consider any $\rho \in BAD$. By definition, the decision tree $T(f, \rho)$ contains a path of length $\geq \ell$. Fix any such "long path" in $T(f, \rho)$. Let $Q \subseteq [n]$, $|Q| = \ell$, consist of the first ℓ variables queries on this path, and let $\pi : Q \to \{0, 1\}$ be the corresponding assignment of these variables.

By definition of $T(f,\rho)$, there exists a partition $Q = Q_1 \uplus \cdots \uplus Q_t$ and clauses C_{j_1}, \ldots, C_{j_t} $(1 \le j_1 < \cdots < j_t \le m)$ where C_{j_i} is responsible for queries Q_i in the process defining $T(f,\rho)$. Let $\pi_i : Q_i \to \{0,1\}$ denote the corresponding sub-assignment of π . In addition:

• let $a_i \in \{0,1\}^k$ be the characteristic function of Q_i among variables of C_{j_i} ,

- let $b_i \in \{0,1\}^{|Q_i|}$ encode π_i (under the order in which variables occur in C_{j_i}),
- let $\widehat{\pi}_i: Q_i \to \{0, 1\}$ be the unique assignment to Q_i such that $C_i \upharpoonright \rho \pi_1 \cdots \pi_{i-1} \widehat{\pi}_i \neq 0$.

Finally, we define $\hat{\rho}$ by

$$\widehat{\rho} \stackrel{\text{def}}{=} \rho \widehat{\pi}_1 \cdots \widehat{\pi}_t$$

Property (i) clearly holds, since $\hat{\rho}$ fills in exactly ℓ stars of ρ . As for property (ii), we establish that $\rho \mapsto \hat{\rho}$ is at most $(4k)^{\ell}$ -to-1 over BAD by showing:

- (ii-a) the function $\rho \mapsto (\hat{\rho}, a, b)$ is 1-to-1 over BAD,
- (ii-b) the pair (a, b) (i.e. the string $(a_1, \ldots, a_t, b_1, \ldots, b_t)$) takes at most $(4k)^{\ell}$ possible values over $\rho \in BAD$.

To see that (ii-a) holds, we describe a procedure for inverting $\rho \mapsto (\hat{\rho}, a, b)$ over BAD. Given $(\hat{\rho}, a, b)$:

- Note that C_{j_1} is the first clause of f with the property that $C_{j_1} | \hat{\rho} \neq 0$. Therefore, $\hat{\rho}$ gives knowledge of C_{j_1} , and a_1, b_1 then give knowledge of Q_1, π_1 . This allows us to determine $\rho \pi_1 \hat{\pi}_2 \cdots \hat{\pi}_t$.
- Next (if $|Q_1| < \ell$), note that C_{j_2} the first clause of f with the property that $C_{j_2} \upharpoonright \rho \pi_1 \widehat{\pi}_2 \cdots \widehat{\pi}_t \not\equiv 0$. Via a_2, b_2 , we now have knowledge of Q_2, π_2 . This allows us to determine $\rho \pi_1 \pi_2 \widehat{\pi}_3 \cdots \widehat{\pi}_t$.
- This process continues until we have learned $Q_1, \ldots, Q_t, \pi_1, \ldots, \pi_t$ and $\rho \pi_1 \cdots \pi_t$, as which point we know ρ .

Finally, to show (ii-b), we note that each (a_1, \ldots, a_t) is an element of $(\{0, 1\}^k)^t$ where $|a_1|, \ldots, |a_t| \ge 1$ and $|a_1| + \cdots + |a_t| = \ell$. The number of such sequences is at most $(2k)^\ell$. The possibilities for (b_1, \ldots, b_t) , given each (a_1, \ldots, a_t) , contribute another 2^ℓ factor.

2 Lower bounds for XOR_n

Using the Switching Lemma, we able to prove tight lower bounds for the depth d + 1 circuit size (as well as the depth d + 1 formulas size) of XOR_n.

Theorem 3. Let C be an AC⁰ circuit of depth d + 1 and size S. Let $p = \frac{1}{10(20 \log S)^d}$. Then

$$\mathbb{P}\left[D(C \upharpoonright \mathbf{R}_p) \ge \ell \right] \le \frac{1}{2^{\ell}} + \frac{1}{S}$$

Proof. Let $p_1 = 1/10$ and let ρ_1 be a p_1 -random restriction over the variables of C. Note that each bottom-level gate g of C is an AND or OR of literals, hence a 1-CNF or 1-DNF. Therefore, by the Switching Lemma, $\mathbb{P}[D(g | \rho_1) > 2 \log S] \leq (5p_1)^{2 \log S} \leq 1/S^2$.

For $i \in \{2, \ldots, d+1\}$, let $p_i = p_{i-1}/20 \log S$ and let ρ_i be a p_i -random restriction over the stars of ρ_{i-1} . For each gate $g = \text{AND}/\text{OR}(g_1, \ldots, g_m)$ of depth $i \leq d$, if we condition on $D(g_j \upharpoonright \rho_1 \ldots \rho_{i-1}) \leq 2 \log S$ for all $j \in [m]$ (in which case g is a $2 \log S$ -CNF/DNF), then by the Switching Lemma $D(g \upharpoonright \rho_1 \ldots \rho_i) \leq 2 \log S$ except with probability $(5p_i \cdot 2 \log S)^{2 \log S} = 2^{-2 \log S} = 1/S^2$.

It follows that, except with probability 1/S, we have $D(g \upharpoonright \rho_1 \dots \rho_d) \leq 2 \log S$ for all gates g below the output gate of C. If we condition on this event, then by the Switching Lemma $D(C \upharpoonright \rho_1 \dots \rho_{d+1}) \leq \ell$ except with probability $(5p_{d+1} \cdot 2 \log S)^\ell = 2^{-\ell}$. The proof is completed by noting that $\rho_1 \dots \rho_{d+1}$ in aggregate is a $p_1 \cdots p_{d+1}$ -random restriction and that $p_1 \cdots p_{d+1} = 1/10(20 \log S)^d$. \Box

Corollary 4. $C_{d+1}(\text{XOR}_n) = 2^{\Omega(n^{1/d})}$

Proof. Let $S = \mathcal{C}_{d+1}(\text{XOR}_n)$ and let $p = \frac{1}{10^{d+1}(2\log S)^d}$. We have

$$\mathbb{P}[D(\mathrm{XOR}_n | R_p) \ge 1] \le \frac{1}{2} + \frac{1}{S}.$$

Assuming $S \ge 4$ (without loss of generality), it follows that

$$\mathbb{P}[D(\mathrm{XOR}_n \restriction R_p) = 0] \ge \frac{1}{4}.$$

Since $\mathbb{P}[D(XOR_n \upharpoonright R_p) = 0] = \mathbb{P}[Bin(n, p) = 0]$, it follows that p = O(1/n) and hence

$$\frac{1}{10^{d+1} (2\log S)^d} = \Omega(n).$$

We conclude that $S = 2^{\Omega(n^{1/d})}$.

Exercise. Show $C_d(MAJ_n) = 2^{\Omega(n^{1/d})}$ by reduction to XOR_n.

3 Lower Bounds for $AC^0[p]$ by the Polynomial Method (Razborov'87, Smolensky'87)

We work over the field \mathbb{F}_p for an arbitrary prime p.

Recall that $AC^0[p]$ circuits and formulas have inputs labeled by literals and unbounded fan-in AND,OR,MOD_p gates where $MOD_p(x_1, \ldots, x_n) = 1 \iff x_1 + \cdots + x_n = 0 \mod p$.

Г			l
L			I
ι			l

Definition 5. Let $A \in \mathbb{F}_p[x_1, \ldots, x_n]$ be a random polynomial (i.e. a random variable over $\mathbb{F}_p[x_1, \ldots, x_n]$).

The *degree* of a random polynomial $A \in \mathbb{F}_p[x_1, \ldots, x_n]$ is the maximum degree of a polynomial in the support of A.

The ε -approximate degree of $f : \{0,1\}^n \to \{0,1\}$, denoted deg $_{\varepsilon}(F)$, is the minimum degree of a random polynomial $A \in \mathbb{F}_p[x_1, \ldots, x_n]$ such that $\mathbb{P}_A[f(x) \neq A(x)] \leq \varepsilon$ for every $x \in \{0,1\}^n$.

Lemma 6. There exists a non-random polynomial $a \in \mathbb{F}_p[x_1, \ldots, x_n]$ of depth $\deg_{\varepsilon}(f)$ such that $\mathbb{P}_{x \in \{0,1\}^n}[a(x) \neq f(x)] \leq \varepsilon$.

Proof. Let A be an ε -approximating polynomial for f. By Markov's inequality

$$\mathbb{P}_{A}\left[\mathbb{P}_{x\in\{0,1\}^{n}}\left[A(x)\neq f(x)\right] > \varepsilon\right] < \frac{\mathbb{E}_{A}\left[\mathbb{P}_{x\in\{0,1\}^{n}}\left[A(x)\neq f(x)\right]\right]}{\varepsilon} < 1.$$

Therefore, there exists $a \in \text{Supp}(A)$ such that $\mathbb{P}_{x \in \{0,1\}^n}[a(x) \neq f(x)] \leq \varepsilon$.

Lemma 7. Suppose $f(x) = g(h_1(x), \ldots, h_m(x))$. Then for all $\delta, \varepsilon_1, \ldots, \varepsilon_m$,

$$\deg_{\delta+\varepsilon_1+\cdots+\varepsilon_m}(f) \le \deg_{\delta}(g) \cdot \max_i \deg_{\varepsilon_i}(h_i).$$

Proof. Let $A_g \in \mathbb{F}_p[y_1, \ldots, y_m]$ be a δ -approx random poly for g and let $A_{h_i} \in \mathbb{F}_p[x_1, \ldots, x_n]$ be ε_i -approx random polys for h_i . Let $A_f(x) := A_g(A_{h_1}(x), \ldots, A_{h_m}(x))$. Then $\deg(A_f) = \deg(A_g) + \max_i \deg(A_{h_i})$. And

$$\mathbb{P}_{A_f}[A_f(x) \neq f(x)] \le \mathbb{P}_{A_g, A_{h_1}, \dots, A_{h_m}} \left[\bigvee_i (A_{h_i}(x) \neq h_i(x)) \lor A_g(x) \neq g(x) \right] \le \delta + \sum_i \varepsilon_i. \quad \Box$$

We use this lemma together with bounds on $MOD_{p,n}$ and OR_n and AND_n to obtain bounds on \deg_{ε} for $AC^0[p]$ circuits and formulas.

Lemma 8. For all ε and n, we have $\deg_{\varepsilon}(MOD_{p,n}) \leq p-1$.

<u>Note</u>: This bound does not depend on ε or n.

Proof. For all $x \in \{0,1\}^n$, we have $\text{MOD}_p(x_1,\ldots,x_n) = 1 - (x_1 + \cdots + x_n)^{p-1}$ by Fermat's Little Theorem. Therefore, $\deg_{\varepsilon}(\text{MOD}_{p,n}) \leq \deg_0(\text{MOD}_{p,n}) \leq p-1$.

Lemma 9. $\deg_{\varepsilon}(OR_n) \le p(\log_p(1/\varepsilon) + 1)$

<u>Note</u>: Again, bound does not depend on the fan-in n.

Proof. Fix any $x \in \{0,1\}^n$. For random $\lambda \in \mathbb{F}_p^n$, we have

$$\mathbb{P}_{\lambda}\left[\text{ OR}(x) \neq (\lambda_1 x_1 + \dots + \lambda_n x_n)^{p-1} \right] = \begin{cases} 0 & \text{if } x = (0, \dots, 0), \\ 1/p & \text{if } x \neq (0, \dots, 0). \end{cases}$$

Therefore, for independent random $\lambda^{(1)}, \ldots, \lambda^{(t)} \in \mathbb{F}_p^n$

$$\mathbb{P}_{\lambda^{(1)},\dots,\lambda^{(t)}}\left[\operatorname{OR}(x) \neq 1 - \prod_{i=1}^{t} \left(1 - (\lambda_1^{(i)} x_1 + \dots + \lambda_n^{(i)} x_n)^{p-1} \right) \right] \le 1/p^t.$$

Thus, OR(x) is approximated with error $1/p^t$ on every $x \in \{0,1\}^n$ by a random polynomial of degree t(p-1).

For error ε , we take $t = \lceil \log_p(1/\varepsilon) \rceil$ and get degree $t(p-1) \le (p-1)(\log_p(1/\varepsilon) + 1)$.

Corollary 10. $\deg_{\varepsilon}(AND_n) \leq p(\log_p(1/\varepsilon) + 1)$

Theorem 11. If C is an $AC^0[p]$ circuit of depth d and size S, then $\deg_{1/4}(C) \leq O(p \log_p(S))^d$.

Proof. Replace each AND/OR/MOD_p gate $g : \{0,1\}^m \to \{0,1\}$ with an 1/4S-approximating polynomial $A_g \in \mathbb{F}_p[y_1, \ldots, y_m]$ of degree $O(p \log_p(S/4)) = O(p \log_p(S))$. The resulting random polynomial has degree $O(p \log_p(S))^d$ and approximates C with error at most $S \cdot (1/4S) = 1/4$. \Box

Next lecture we will use this theorem to show:

Theorem 12. Depth-d $AC^{0}[3]$ circuits for XOR_n require size $2^{\Omega(n^{1/2d})}$.