
CSC2429 / MAT1304: Circuit Complexity February 28, 2019

Lecture 7: AC0[p] lower bounds (continued)

and approximation by real polynomials

Instructor: Benjamin Rossman

Picking up from last lecture, we consider (random) polynomials over the field Fp for an arbitrary
prime p.

Definition 1. degε(f) is the minimum degree of an ε-approximating random polynomial for f , that
is, a random polynomial A ∈ Fp[x1, . . . , xn] such that PA[ A(x) 6= f(x) ] ≤ ε for every x ∈ {0, 1}n.

Last time we showed:

• degε(MODp) ≤ p− 1,

• degε(ORp),degε(ANDp) ≤ (p− 1)dlogp(1/ε)e

As a consequence:

Proposition 2. If f is computed by an AC0[p] circuit of depth d and size S, then degε(f) =
O(log(S/ε))d. In particular, deg1/4(f) = O(logS)d.

Today we will show:

Theorem 3 (Smolensky 1987). Depth-d AC0[3] circuits for XORn require size 2Ω(n1/2d).

In fact, we will prove a stronger lower bound for formulas:

Theorem 4. Depth-d AC0[3] formulas for XORn require size 2Ω(dn1/2d) (really: 2Ω(d(n1/2d−1))).

(Note that Theorem 12 implies Theorem 3, since every depth-d circuit of size S is equivalent
to a depth-d formula of size Sd−1 at most.) As a corollary, Theorem 12 gives super-polynomial
formula size lower bounds up to any depth o(log n).

1 Better approximating random polynomials for AC0[p] formulas

We first prove a lemma that improves the dependence on ε in our random approximating polyno-
mials.

Lemma 5 (Kopparty-Srinivasan). For any boolean function f , degε(f) ≤ deg1/4(f) ·O(log(1/ε))

Proof. Let A(x) be a 1/4-approximating random polynomial for f(x) of degree deg1/4(f). Let

A(1), . . . , A(t) be independent random copies of A. Let M ∈ Fp[y1, . . . , yt] be a degree-t polynomial
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such that M(y) = MAJt(y) for all y ∈ {0, 1}n. Let B(x) = M(A(1)(x), . . . , A(t)(x)). Then deg(B) =
deg(M) deg(A) = t · deg1/4(f). For any x ∈ {0, 1}n,

P
B

[ B(x) 6= f(x) ] ≤ P[ Bin(t, 1/4) ≥ 1/2 ] ≤ exp(−Ω(t))

So it suffices to choose t = O(log(1/ε)).

We restate a lemma from the previous lecture:

Lemma 6. Suppose f(x) = g(h1(x), . . . , hm(x)). Then for all δ, ε1, . . . , εm,

degδ+ε1+···+εm(f) ≤ degδ(g) ·max
i

degεi(hi).

In the application of Lemma 6 to prove Proposition 2, we set δ = ε1 = · · · = εm = ε/S for
each gate g in a circuit of size S. We optimize the setting of these parameters in our improved
approximating polynomials for formulas. We will make use of the following inequality.

Lemma 7. For all d ≥ 2 and a, b ≥ 0, we have

( 1
d−1a+ 1)d−1(b+ 1) ≤ (1

d(a+ b) + 1)d.

Proof. Let ϕ(a, b) := (RHS) − (LHS). Then

∂

∂b
ϕ(a, b) =

(
a+ b

d
+ 1

)d−1

−
(

a

d− 1
+ 1

)d−1

.

This is zero iff b = a/(d− 1). This is a minimum of the function with φ(a, a/(d− 1)) = 0.

We are ready to give the construction of approximating polynomials for formulas.

Proposition 8. If F is an AC0[p] formula of depth d and size S, then deg1/4(F ) ≤ O(1
dp logp(S))d.

Proof. By induction on d. The base case d = 0 is trivial. Suppose F = g(F1, . . . , Fm) where
g ∈ {MODp,OR,AND} and F1, . . . , Fm have depth d− 1 and sizes S1, . . . , Sm.

By Lemma 5,

deg1/4(F ) ≤ deg1/8(g) ·max
i

degSi/8S(Fi).

From last lecture, we know that deg1/8(g) = O(p) for each g ∈ {MODp,OR,AND}.
For each i, we have

degSi/8S(Fi) ≤ deg1/4(Fi) ·O(log(S/Si)) Lemma 6

≤ pd−1 ·O( 1
d−1 logp(Si))

d−1 ·O(log(S/Si)) induction hypothesis

≤ pd−1 ·O(1
d logp(S))d Lemma 7.

Choose an appropriately large constant in the big-O, we conclude that

deg1/4(F ) ≤ O(1
dp logp(S))d.
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2 Lower bound for XORn

We now use Proposition 8 to prove a lower bound on the AC0[3] formula size of XORn.

Lemma 9 (Main Lemma). Let p be a prime ≥ 3. If A ∈ Fp[x1, . . . , xn] is a degree-∆ polynomial,
then

P
x∈{0,1}n

[ A(x) = XORn(x) ] ≤ 1

2
+O

(
∆√
n

)
.

Proof. Let λ : Fp → Fp be the map λ(x) = 1−2x. We have λ(0) = 1 and λ(1) = −1; so λ(b) = (−1)b

for b ∈ {0, 1}.
For x ∈ {0, 1}n, we have

λ(x1 ⊕ · · · ⊕ xn) = (−1)x1⊕···⊕xn =
∏
i∈[n]

(−1)xi =
∏
i∈[n]

λ(xi).

So for y ∈ {1,−1}n, if we apply the inverse λ−1(yi) = (1− yi)/2 ∈ {0, 1} to each coordinate, we get

λ(XORn(λ−1(y1), . . . , λ−1(yn))) =
∏
i∈[n]

yi.

Therefore,

P
x∈{0,1}n

[
A(x) = XORn(x)

]
= P

y∈{−1,1}n

[
λ(A(λ−1(y1), . . . , λ−1(yn))) =

∏
i∈[n]

yi

]
.

Define Ã ∈ Fp[y1, . . . , yn] by

Ã(y) = λ(A(λ−1(y1), . . . , λ−1(yn))).

Clearly, deg(Ã) = deg(A) = ∆. It now suffices to show

P
y∈{1,−1}n

[
Ã(y) =

∏
i∈[n]

yi

]
≤ 1

2
+O

(
∆√
n

)
.

Let S ⊆ {1,−1}n be the set

S
def
=
{
y ∈ {1,−1}n : Ã(y) =

∏
i∈[n]

yi

}
.

Consider any function f : S → Fp. We claim that f is equivalent (over S) to a multilinear
polynomial M ∈ Fp[y1, . . . , yn] of degree at most n+∆

2 (that is, each monomial of M has the form∏
i∈I yi where |I| ≤ n+∆

2 ).

To see why, let B ∈ Fp[y1, . . . , yn] be an arbitrary polynomial that is equivalent to f over S.
First, we multi-linearize B by repeatedly substituting 1 for y2

i whenever possible until B. That
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is, for all even (odd) exponents c, replace (yi)
c with 1 (respectively yi. Let M ′ be the resulting

multilinear polynomial, which computes the same function as B over {1,−1}n.

We next transform M ′ to M by substituting each monomial
∏
i∈I yi of degree |I| > n+∆

2 with
the polynomial

Ã(y) ·
∏

j∈[n]\I

yj

of degree

deg(A) + (n− |I|) = ∆ + n− n+ ∆

2
<
n+ ∆

2
.

Note that M computes the same function as M ′ over S, since for y ∈ S we have

Ã(y) ·
∏

j∈[n]\I

yj =
∏
i∈[n]

yi ·
∏

j∈[n]\I

yj =
∏
i∈I

yi ·
∏

j∈[n]\I

y2
j =

∏
i∈I

yi.

We now have

|S| = logp(#{functions from S to Fp})
≤ logp(#{multilinear polynomials in Fp[y1, . . . , yn] of degree at most n+∆

2 })
= #{multilinear monomials of degree at most n+∆

2 }

=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n
n
2

)
︸ ︷︷ ︸

= 2n−1

+

(
n

n
2 + 1

)
+ · · ·+

(
n

n
2 + ∆

2

)
︸ ︷︷ ︸

each term has size < 2n/
√
n

.

We conclude that

P
x∈{0,1}n

[
A(x) = XORn(x)

]
= P

y∈{1,−1}n

[
Ã(y) =

∏
i∈[n]

yi

]
=
|S|
2n
≤ 1

2
+O

(
∆√
n

)
.

Theorem 10. Depth-d AC0[3] formulas for XORn require size 2Ω(d(n1/2d−1)).

Proof. Suppose XORn is computed by an AC0[3] formula of depth d and size S. By Proposition 8,
there is a polynomial A ∈ F3[x1, . . . , xn] of degree O(1

d logS + 1)2d such that

P
x∈{0,1}n

[ A(x) ≥ XORn(x) ] ≤ 3

4
.

By Lemma 9,

P
x∈{0,1}n

[ A(x) = XORn(x) ] ≤ 1

2
+
O(1

d logS + 1)d
√
n

.

It follows that S ≥ 2Ω(d(n1/2d−1)).
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As mentioned earlier, this lower bound for formulas implies a 2Ω(n1/2d) lower bound for circuits
(quantitatively the strongest known lower bound for AC0[p]). By essentially the same argument,
we can show:

Theorem 11. For all distinct primes p and q, depth-d AC0[p] circuits for MODq,n require size

2Ωp,q(n1/2d).

By an analogue of Lemma 9 for the majority function, Razborov (1987) proved a similar lower
bound for MAJn.

Theorem 12. Depth-d AC0[p] circuits for MAJn require size 2Ωp(n1/2d).

These lower bounds may also be stated as correlation bounds (a.k.a. average-case lower bounds).

For example, the argument presented here shows that depth-d AC0[3] circuit of size 2o(n
1/2d) fail to

approximate XORn on more than 1
2 + O( 1√

n
) fraction of inputs in {0, 1}n. It is an open problem

to prove a quantitatively stronger correlation bound for AC0[p].

2.1 Prime powers

So far we have considered AC0[p] for a fixed prime p. What about prime powers pk? It turns
out that AC0[pk] and AC0[p] have the same power (up to a polynomial blow-up in size and a
constant blow-up in depth). In the homework exercises, you are asked to show that the function
MOD4(x1, . . . , xn) is computable by polynomial-size constant-depth AC0[2] circuits; the similar
result for arbitrary pk and p is a straightforward generalization.

2.2 Mod-6 gates

The lower bound technique using approximating polynomials breaks down in the presence of MODm

gates where m is not a prime power (such as m = 6). Though it is widely believe that simple
functions like MAJn do not have polynomial-size constant-depth AC0[6] circuits, proving this is a
major open problem.

2.3 The class TC0

TC0 is the class of functions computable by poly-size constant-depth circuits in the basis of un-
bounded fan-in AND, OR, NOT and MAJ gates. Note that every threshold function THRk,n

(including ANDn = THRn,n and ORn = THRn,1) is a subfunction of MAJ2n+1 (by appropriately
fixing n+ 1 variables to 0’s or 1’s). Therefore, it suffices to consider circuits with only MAJ gates
and inputs labeled by literals or constants.

Recall that a symmetric function is a boolean function f : {0, 1}n → {0, 1} such that f(x) is
determined by |x|; examples are XORn, MAJn and THRk,n. It’s not difficult to show that every
symmetric function is computable by a polynomial-size depth-2 circuit consisting of two layers of
MAJ gates. It follows that TC0 contains AC[m] for every constant m.
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Recall that NC1 is the class of boolean functions computable by polynomial size DeMorgan for-
mulas. Since MAJ is computable by polynomial-size DeMorgan formulas (Valiant’s construction),
we see that TC0 ⊆ NC1. Therefore, we have the following picture of circuit classes within P/poly:

AC0 $
AC0[2]

AC0[3]
$ AC0[6] ⊆ ACC0 ⊆ TC0 ⊆ NC1 ⊆ P/poly.

Here ACC0 denote the union of classes
⋃
m AC0[m].

It is open whether AC0[6] = P/poly. Super-polynomial lower bounds for AC0[6] (moreover
ACC0) are known for explicit functions of high complexity. Ryan Williams in 2011 showed ACC0 *
NEXP (nondeterministic exponential time) via a lower bound for the NEXP-complete problem
SUCCINCT-3SAT. This result was improved to ACC0 * NQP (nondeterministic quasi-polynomial
time) by Murray and Williams in 2018.

3 Real approximating polynomials (in the `0, `∞ and `2 norms)

We have discussed approximations of boolean functions f : {0, 1}n → {0, 1} by polynomials over
finite fields. What about real polynomials A ∈ R[x1, . . . , xn]? Here are there are different norms
we may consider. Interesting things can be said about low-degree approximating polynomials in
the `0, `∞ and `2 norms:

‖f −A‖0 := |{x ∈ {0, 1}n : f(x) 6= A(x)}|,

‖f −A‖∞ := max
x∈{0,1}n

|f(x)−A(x)|,

‖f −A‖22 :=
∑

x∈{0,1}n
(f(x)−A(x))2.

(For polynomials over finite fields, only the `0-norm approximation makes sense.)

3.1 `0-approximation

Similar to approximation of ORn over Fp[x1, . . . , xn], there exist low-degree ε-approximating ran-
dom polynomials over the reals (in the `0-norm). The construction uses the following special case
of the Valiant-Vazirani Isolation Lemma.

Lemma 13. Let S0 = [n] and for j = 1, . . . , log n+ 1, let Sj be a uniform random subset of Sj−1.
Then for every nonempty subset X ⊆ [n],

P[ (∃j) (|X ∩ Sj | = 1) ] ≥ 1/6.

Proof.

P[ (∀j) |X ∩ Sj | 6= 1 ] ≤ P[ |X ∩ Slogn| ≥ 2 ] + P[ (∃j) |X ∩ Sj | ≥ 2 and |X ∩ Sj−1| = 0 ].

We have

P[ |X ∩ Slogn+1| ≥ 2 ] ≤ P[ Slogn+1 6= ∅ ] ≤ n(1/2)logn+1 ≤ 1/2.
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And we have

P[ (∃j) |X ∩ Sj | ≥ 2 and |X ∩ Sj−1| = 0 ] ≤ max
j, k≥2

P[ |X ∩ Sj−1| = 0 | |X ∩ Sj | = k and |X ∩ Sj−1| ≤ 1 ]

≤ max
k≥2

2−k

2−k + k2−k
=

1/4

1/4 + 1/2
= 1/3.

It follows that P[ (∀j) |X ∩ Sj | 6= 1 ] ≥ 1− (1/2)− (1/3) = 1/6.

Lemma 14 (Aspnes et al ’93). There exists a random polynomial A ∈ R[x1, . . . , xn] of degree
O(log(1/ε) · log(n)) such that, for every x ∈ {0, 1}n,

P
A

[ A(x) 6= ORn(x) ] ≤ ε.

Proof. Let random sets S0, . . . , Slogn+1 be as in Lemma 13. For each 0 ≤ j ≤ log n + 1, let Bj(x)
be the random degree-1 polynomial Bj(x) :=

∑
i∈Sj

xi. Let

B(x) := 1−
logn+1∏
j=0

(1−Bj(x)).

We claim that B(x) is a (1/6)-approximating random polynomial for ORn(x). To see why: if
ORn(x) = 0, then

P[ B(x) = ORn(x) ] = P[ B(x) = 0 ] = 1.

If ORn(x) = 1, then

P[ B(x) = ORn(x) ] = P[ B(x) = 0 ]

= P[ (∃j) Bj(x) = 1 ]

= P[ (∃j) |Sj ∩ {i ∈ [n] : xi = 1}| = 1 ]

≥ 1/6.

Let B(1), . . . , B(t) be independent copies of the random polynomial B where t = log5/6(1/ε),
and let A be the random polynomial

A := 1−
t∏

r=1

(1−B(r)).

We have error probability

P[ A(x) = ORn(x) ] ≤ ε.

Finally, note that A has degree log5/6(1/ε) ·O(log n) = O(log(1/ε) · log n).

We have the following corollary.

Corollary 15. If f is computed by AC0 circuit of depth d and size S, there is a real polynomial of
degree O(log(S))2d that agrees with f on all but 1

4 -fraction of inputs in {0, 1}n.

This result can be used to show:

Theorem 16. 2Ω(n1/4d) lower bound for MAJ ◦AC0 circuits computing XORn.
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3.2 `∞-approximation

The `∞-approximate degree of a boolean function f , denoted d̃eg(f), is the minimum degree of a
real polynomial f̃ ∈ R[x1, . . . , xn] such that |f(x) − f̃(x)| ≤ 1/3 for all x ∈ {0, 1}n. In Lecture 2,

we mentioned the result O(d̃eg(f)) ≤ O(
√
L(f)), which was proved via quantum query complexity.

Using this bound, Tal gives an elegant proof of the shrinkage property for DeMorgan formulas:
E[ L(f�Rp) ] = O(p2L(f) + 1).

`∞-approximate degree has also been studied for functions in AC0. It is an open question there
is any AC0 function f : {0, 1}n → {0, 1} with d̃eg(f) = Ω(n). For depth-d functions, the best

construction (of Bun and Thaler) has degree n1−1/2O(d)
; see also work of Sherstov on this question.

3.3 `2-approximation

Perhaps the most natural and well-studied polynomial approximation is under the `2-norm. Here
is again natural to consider boolean function with range {1,−1} instead of {0, 1}. For every
boolean function f : {0, 1}n → {1,−1}, there is a unique multilinear real polynomial f̃(x) =∑

I⊆[n] cI
∏
i∈I xi that agrees with f over {−1, 1}n. (Coefficients cI ∈ R are called the Fourier

coefficients of f .)

For any 0 ≤ k ≤ n, we may truncate this polynomial to its degree-k part:

f̃k(x) :=
∑

I⊆[n] : |I|≤k

cI
∏
i∈I

xi.

Among all degree-k polynomials, this polynomial f̃k minimizes the `2-distance from f over {0, 1}n.

One notable result about AC0 functions is the following:

Theorem 17 (Linial-Mansour-Nisan ’93, improvement by Tal ’17). If f is computable by an AC0

circuit of depth d+ 1 and size S, then for all k,

E
x∈{1,−1}n

[ (f(x) 6= f̃k(x))2 ] ≤ exp

(
1− k

O(logS)d

)
.

The proof involves the random restriction Rp, which interacts nicely with the Fourier coefficients
of f . A fairly straightforward proof of Theorem 17 can be derived from the switching-lemma like
bound:

Theorem 18. Suppose f is computable by an AC0 circuit of depth d + 1 and size S, and let
p = 1/O(logS)d. Then for all ` > 0,

P[ deg(f�Rp) ≥ ` ] ≤ P[ DTdepth(f�Rp) ≥ ` ] ≤ 1

2`
.

(The second inequality is Theorem 3 from Lecture 5 without additional the error term 1
S .)
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