CSC2429 / MAT1304: Circuit Complexity February 28, 2019

Lecture 7: ACY[p] lower bounds (continued)
and approximation by real polynomials

Instructor: Benjamin Rossman

Picking up from last lecture, we consider (random) polynomials over the field F, for an arbitrary
prime p.

Definition 1. deg.(f) is the minimum degree of an e-approximating random polynomial for f, that
is, a random polynomial A € Fp[z1,...,xy] such that P4[ A(z) # f(z) | < e for every z € {0,1}".

Last time we showed:

e deg (MOD,) <p-—-1,

e deg.(OR,), deg. (ANDy) < (p — 1)[log,(1/¢)]

As a consequence:

Proposition 2. If f is computed by an ACO[p] circuit of depth d and size S, then deg.(f) =
O(log(S/e))?. In particular, degy /4(f) = O(log S)d.

Today we will show:

Theorem 3 (Smolensky 1987). Depth-d ACY[3] circuits for XOR,, require size 22(n'/2%)

In fact, we will prove a stronger lower bound for formulas:

Theorem 4. Depth-d ACY[3] formulas for XOR,, require size 90 (dn'/24) (really: ZQ(d("l/M_l))).

(Note that Theorem 12 implies Theorem 3, since every depth-d circuit of size S is equivalent
to a depth-d formula of size S?~! at most.) As a corollary, Theorem 12 gives super-polynomial
formula size lower bounds up to any depth o(logn).

1 Better approximating random polynomials for AC'[p] formulas

We first prove a lemma that improves the dependence on ¢ in our random approximating polyno-
mials.

Lemma 5 (Kopparty-Srinivasan). For any boolean function f, deg.(f) < degy,4(f) - O(log(1/¢))

Proof. Let A(z) be a 1/4-approximating random polynomial for f(z) of degree deg/4(f). Let
AWM A® be independent random copies of A. Let M € Fyly1, ...,y be a degree-t polynomial



such that M (y) = MAJ;(y) for all y € {0,1}". Let B(z) = M(AM(z),..., A®(z)). Then deg(B) =
deg(M) deg(A) =t - degy 4(f). For any z € {0,1}",

B[ B(x) # f(z) ] < P[ Bin(t,1/4) > 1/2 ] < exp(~Q(1))
So it suffices to choose t = O(log(1/¢)). O
We restate a lemma from the previous lecture:
Lemma 6. Suppose f(x) = g(hi(x),..., hp(z)). Then for all 6,e1,...,em,

degs e 4te,, () < degs(g) - max deg,, (hi)-

In the application of Lemma 6 to prove Proposition 2, we set 6 = ¢; = -+ = g, = ¢/ for
each gate ¢ in a circuit of size S. We optimize the setting of these parameters in our improved
approximating polynomials for formulas. We will make use of the following inequality.

Lemma 7. For all d > 2 and a,b > 0, we have
(FA5a+ D)Mo +1) < (S(a+b) + 1%
Proof. Let ¢(a,b) := (RHS) — (LHS). Then
] a+b N\ a -1
2 o(a,b) = 1) (-2 41) .
a7 t) ( d *) (d—1+>

This is zero iff b = a/(d — 1). This is a minimum of the function with ¢(a,a/(d —1)) = 0. O

We are ready to give the construction of approximating polynomials for formulas.

Proposition 8. If F is an AC[p] formula of depth d and size S, then degy /4 (F) < O(4p logp(S))d.

Proof. By induction on d. The base case d = 0 is trivial. Suppose F = g(F1,...,F,,) where
g € {MOD,, OR, AND} and F1,..., Fy, have depth d — 1 and sizes Si,. .., Sp.

By Lemma 5,

degy/4(F) < degys(g) - maxdegs, j35(F7)-

From last lecture, we know that deg,; 5(g) = O(p) for each g € {MOD,,, OR, AND}.

For each i, we have

degsi/ss(Fi) < deg1/4(Fi) -O(log(S/S;)) Lemma 6
<pt o4 logp(Si))d*1 -O(log(S/5S;)) induction hypothesis
<pit. O(} logp(S))d Lemma 7.

Choose an appropriately large constant in the big-O, we conclude that

deg1/4(F) < O(%P 10gp(5))d- O

2



2 Lower bound for XOR,,

We now use Proposition 8 to prove a lower bound on the AC?[3] formula size of XOR,,.

Lemma 9 (Main Lemma). Let p be a prime > 3. If A € Fy[x1,...,2,] is a degree-A polynomial,
then

1 A
B LA) = XOR,(x) | < 5 +0 (ﬁ> |

Proof. Let A : F, — F, be the map A(z) = 1—2z. We have A\(0) = 1 and A\(1) = —1; 50 A\(b) = (—1)°
for b € {0,1}.

For z € {0,1}", we have

)\(331 ® - @xn) _ (_1):1:1€9~--€an _ H (_1)561‘ — H )\(331)
]

i€[n] i€[n

So for y € {1, =1}, if we apply the inverse A~ (y;) = (1 —1v;)/2 € {0, 1} to each coordinate, we get

AXORZ (A (1), A ) = [T v

i€[n]
Therefore,
P A(z) = XOR,, = P AAL oA = .
el | AW @) = B [AA0T w27 ) = [T ]

i€ln]
Define A € Fplyi,...,yn] by
Aly) = MAN (1), - A7 ()
Clearly, deg(A) = deg(A) = A. It now suffices to show

ye{lI,Pfl}n [Z(y) - H} Yi ] < %‘f‘ 0 <ﬁﬁ> )

i€n
Let S C {1, —1}" be the set

s {yeft -1 AW = ] u}-
i€[n]

Consider any function f : S — F,. We claim that f is equivalent (over S) to a multilinear
polynomial M € Fplyi,...,y,] of degree at most % (that is, each monomial of M has the form
[Lic; vi where |[I| < %)

To see why, let B € Fyly1,...,ys] be an arbitrary polynomial that is equivalent to f over S.
First, we multi-linearize B by repeatedly substituting 1 for y? whenever possible until B. That



is, for all even (odd) exponents ¢, replace (y;)¢ with 1 (respectively y;. Let M’ be the resulting
multilinear polynomial, which computes the same function as B over {1, —1}".

We next transform M’ to M by substituting each monomial [],.; v; of degree |I| > % with
the polynomial

IT v
JEmMNI

of degree
n+A n+A

<
2 2
Note that M computes the same function as M’ over S, since for y € S we have

H Yi = H%' H Yi= Hyi' H y?:Hyi.

JeR\I i€[n] jemNI iel jemN\I iel

deg(A)+(n—1I])=A+n—

‘We now have

|S| = log,,(#{functions from S to IF,})
< log, (#{multilinear polynomials in Fy[y1,...,ys] of degree at most A1)

= #{multilinear monomials of degree at most %}

—(§)+(T)+'“+(§>+ <zil>+”'+<3:%>

=2on-t each term has size < 2"/y/n
We conclude that
!S | - ( A >
P A(x) = XOR,, = P i | = ol—]).
ze{0,1}m |: (I’) (I’) } ye{l,—1}n [ zg]y ] 2 + \/ﬁ

Theorem 10. Depth-d AC°[3] formulas for XOR,, require size 20(d(n!/24-1))

Proof. Suppose XOR,, is computed by an AC?[3] formula of depth d and size S. By Proposition 8,
there is a polynomial A € F3[zq,...,z,] of degree O(é log S + 1)? such that

o [A) 2 XOR, (@) ] <

=]

By Lemma 9,

1
P _
:):6{0,1}"[ ( 2

It follows that § > 2(d(n'/??=1)), O



As mentioned earlier, this lower bound for formulas implies a 29 Jower bound for circuits

(quantitatively the strongest known lower bound for AC°[p]). By essentially the same argument,
we can show:

Theorem 11. For all distinct primes p and q, depth-d AC°[p] circuits for MOD,,, require size
QQP,q(nl/Qd) i

By an analogue of Lemma 9 for the majority function, Razborov (1987) proved a similar lower
bound for MAJ,,.

1/2d)

Theorem 12. Depth-d AC°[p] circuits for MAJ,, require size 2%»("

These lower bounds may also be stated as correlation bounds (a.k.a. average-case lower bounds).
For example, the argument presented here shows that depth-d AC°[3] circuit of size 20002 fail to

approximate XOR,, on more than % + O( ﬁ) fraction of inputs in {0,1}". It is an open problem

to prove a quantitatively stronger correlation bound for AC[p].

2.1 Prime powers

So far we have considered AC[p] for a fixed prime p. What about prime powers p*? It turns
out that AC°[p¥] and AC®[p] have the same power (up to a polynomial blow-up in size and a
constant blow-up in depth). In the homework exercises, you are asked to show that the function
MODy(z1,...,r,) is computable by polynomial-size constant-depth AC°[2] circuits; the similar
result for arbitrary p* and p is a straightforward generalization.

2.2 Mod-6 gates

The lower bound technique using approximating polynomials breaks down in the presence of MOD,,
gates where m is not a prime power (such as m = 6). Though it is widely believe that simple
functions like MAJ,, do not have polynomial-size constant-depth AC°[6] circuits, proving this is a
major open problem.

2.3 The class TCY

TCY is the class of functions computable by poly-size constant-depth circuits in the basis of un-
bounded fan-in AND, OR, NOT and MAJ gates. Note that every threshold function THRy
(including AND,, = THR,, ,, and OR,, = THR,, 1) is a subfunction of MAJ, 1 (by appropriately
fixing n + 1 variables to 0’s or 1’s). Therefore, it suffices to consider circuits with only MAJ gates
and inputs labeled by literals or constants.

Recall that a symmetric function is a boolean function f : {0,1}" — {0, 1} such that f(x) is
determined by |z|; examples are XOR,,, MAJ,, and THRy, ,,. It’s not difficult to show that every
symmetric function is computable by a polynomial-size depth-2 circuit consisting of two layers of
MAJ gates. It follows that TC? contains AC[m] for every constant m.



Recall that NC! is the class of boolean functions computable by polynomial size DeMorgan for-
mulas. Since MAJ is computable by polynomial-size DeMorgan formulas (Valiant’s construction),
we see that TC? C NC!. Therefore, we have the following picture of circuit classes within P /poly:

ACY[2]
ACY C
@ Z A3

Here ACC? denote the union of classes | J,, AC?[m].

It is open whether ACY[6] = P/poly. Super-polynomial lower bounds for AC°[6] (moreover
ACCY) are known for explicit functions of high complexity. Ryan Williams in 2011 showed ACC® ¢
NEXP (nondeterministic exponential time) via a lower bound for the NEXP-complete problem
SUCCINCT-3SAT. This result was improved to ACC® ¢ NQP (nondeterministic quasi-polynomial
time) by Murray and Williams in 2018.

¢ ACY6] € ACCY C TC? C NC' C P/poly.

3 Real approximating polynomials (in the /y, /., and ¢/, norms)

We have discussed approximations of boolean functions f : {0,1}" — {0,1} by polynomials over
finite fields. What about real polynomials A € R[x1,...,z,]? Here are there are different norms
we may consider. Interesting things can be said about low-degree approximating polynomials in
the ¢y, £~ and f5 norms:

If = Allo := {z € {0, 1}" : f(z) # A(2)}],

If = Alloo := o |f(x) = A()],

IfF =A== Y (flz) - A@))*

z€{0,1}7

(For polynomials over finite fields, only the ¢p-norm approximation makes sense.)

3.1 /y-approximation

Similar to approximation of OR,, over Fy[z1,...,xy], there exist low-degree e-approximating ran-
dom polynomials over the reals (in the fy-norm). The construction uses the following special case
of the Valiant-Vazirani Isolation Lemma.

Lemma 13. Let So = [n] and for j =1,...,logn+1, let S; be a uniform random subset of S;_1.
Then for every nonempty subset X C [n],

P[(3j) (IX NSl =1)]=>1/6.

Proof.
P[(Vj) [X NS #1] <P[[X N Swgn| >2]+P[(Fj) [X NS >2and [ XNS;1|=0].
We have
P[|X N Siogni1] > 2] < P[ Sipgni1 # 0] < n(1/2)8"+ < 1/2.



And we have

IP[ <3j) ’XﬁSj‘ > 2 and ’XﬂSj_l‘ :()] < m]€2i>X2IP[ ’XﬂSj_l‘ =0 ’ \XﬂSj]:kand ’XﬁSj_l‘ Sl]
), K=

< 72716 _ o4 1/3
SUEX ok y gk T o141 Y
It follows that P[ (Vj) [X NS;| #1]>1—-(1/2) - (1/3) =1/6. O
Lemma 14 (Aspnes et al '93). There exists a random polynomial A € Rlxi,...,x,] of degree

O(log(1/e) -log(n)) such that, for every x € {0,1}",
P[ A(z) # ORy(z) ] < <.

Proof. Let random sets S, ..., Siognt+1 be as in Lemma 13. For each 0 < j <logn + 1, let Bj(x)
be the random degree-1 polynomial Bj(z) := ziesj x;. Let

logn+1

B(z):=1- [] (1- Bj)).

J=0

We claim that B(z) is a (1/6)-approximating random polynomial for OR,(x). To see why: if
OR,,(z) = 0, then

Let B, ..., B® be independent copies of the random polynomial B where t = log; s6(1/e),
and let A be the random polynomial

t

A=1-]Ja-B").

r=1

We have error probability
P[ A(x) =OR,(z) | < e
Finally, note that A has degree logs5(1/¢) - O(logn) = O(log(1/¢) - logn). O

We have the following corollary.

Corollary 15. If f is computed by AC? circuit of depth d and size S, there is a real polynomial of
degree O(log(9))?? that agrees with f on all but % fraction of inputs in {0,1}".

This result can be used to show:

Theorem 16. 22""*Y) lower bound for MAJ o ACO circuits computing XOR,,.



3.2 [ -approximation

The l-approzimate degree of a boolean function f, denoted aé-g/( f), is the minimum degree of a
real polynomial f € Rxy,...,zy] such that |f(x) — f(z)| < 1/3 for all z € {0,1}". In Lecture 2,
we mentioned the result O(&Eé( 1) < O(/L(f)), which was proved via quantum query complexity.
Using this bound, Tal gives an elegant proof of the shrinkage property for DeMorgan formulas:
E[ L(fIRp) ] = OW*L(f) +1).

{~o-approximate degree has also been studied for functions in ACP. Tt is an open question there
is any ACO function f : {0,1}" — {0,1} with deg(f) = Q(n). For depth-d functions, the best

1—-1/20(d)

construction (of Bun and Thaler) has degree n ; see also work of Sherstov on this question.

3.3 /y-approximation

Perhaps the most natural and well-studied polynomial approximation is under the fo-norm. Here
is again natural to consider boolean function with range {1, -1} instead of {0,1}. For every
boolean function f : {0,1}" — {1,—1}, there is a unique multilinear real polynomial f(x) =
>_rcn €1 [ ;e @i that agrees with f over {—1,1}". (Coefficients ¢; € R are called the Fourier
coefficients of f.)

For any 0 < k < n, we may truncate this polynomial to its degree-k part:
fr(z) = Z cIHxZ-.
IC]: |[I|1<k i€l
Among all degree-k polynomials, this polynomial ﬁ minimizes the fo-distance from f over {0, 1}".
One notable result about AC? functions is the following:

Theorem 17 (Linial-Mansour-Nisan ’93, improvement by Tal '17). If f is computable by an AC®
circuit of depth d + 1 and size S, then for all k,

~ k
[(f(2) # Fu())? ] < exp (1 - W)

ze{l,—-1}"
The proof involves the random restriction R,,, which interacts nicely with the Fourier coefficients

of f. A fairly straightforward proof of Theorem 17 can be derived from the switching-lemma like
bound:

Theorem 18. Suppose f is computable by an ACC circuit of depth d + 1 and size S, and let
p=1/0(log S)¢. Then for all £ >0,

1

IP[ deg(erp) > 14 ] < IP[ DTdcpth(erp) > 14 ] < 2@'

Ul
N

(The second inequality is Theorem 3 from Lecture 5 without additional the error term



