
Ehrenfeucht-Fraïssé	Games	



Relational	Structures	

•  We	will	consider	language	consisting	of	relation	
symbols	only	(no	constant	or	function	symbols).	

•  A	relational	structure	A	=	(A,	R1,	…,	Rt)	consists	of		

– a	set	A	(called	the	universe	of	A)	

– a	sequence	of	relations	Ri	⊆	Ari	

•  A	and	B	are	structures	in	the	same	relational	language.	



Graphs	

•  A	graph	G	=	(V,	～)	consists	of		
– a	set	V	of	vertices		
– a	binary	relation	～	⊆	V2		(anti-reflexive	and	symmetric)	



First-Order	Logic	on	Graphs	

•  First-order	formulas	are	built	from:		
atomic	formulas	

x	=	y								x	～	y	
	via	connectives	

	￢ϕ								ϕ	∧	ψ							ϕ	∨	ψ							ϕ	➝	ψ	
	and	quantifiers	

∀x		ϕ(x)						∃x		ϕ(x)	
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adjacency	relation	
“there	is	an	edge	between	x	and	y”	



First-Order	Logic	on	Graphs	

•  First-order	formulas	are	built	from:		
atomic	formulas	

x	=	y								x	～	y	
	via	connectives	

	￢ϕ								ϕ	∧	ψ							ϕ	∨	ψ							ϕ	➝	ψ	
	and	quantifiers	

∀x		ϕ(x)						∃x		ϕ(x)	

Variables	range	over	vertices	



Definable	and	Axiomatizable	
Properties	



Definability	and	Axiomatizability	

•  Let	𝓒	be	a	class	of	graphs	(i.e.	a	graph	property)		be	a	class	of	graphs	(i.e.	a	graph	property)	

•  𝓒	is	FO-definable	if	there	is	a	single	sentence	ϕ					is	FO-definable	if	there	is	a	single	sentence	ϕ				
such	that	

G	⊨	ϕ				⇔				G	∈	𝓒	

•  𝓒	is	FO-axiomatizable	if	there	is	a	set	of	sentences	Σ		is	FO-axiomatizable	if	there	is	a	set	of	sentences	Σ	
such	that	

G	⊨	Σ				⇔				G	∈	𝓒	
	



FO-Definable	Graph	Properties	

•  “no	isolated	vertex”	(i.e.	every	vertex	has	a	neighbor)	

	 8x9y x ⇠ y
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8x8y
⇥
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•  “no	isolated	vertex”	(i.e.	every	vertex	has	a	neighbor)	
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FO-Definable	Graph	Properties	

•  “no	isolated	vertex”	(i.e.	every	vertex	has	a	neighbor)	

	

•  “diameter	is	≤	2”	

•  “3-regular”		(every	vertex	has	exact	3	neighbors)	

•  “girth	>	17”		(no	induced	cycle	of	length	≤	17)	
	

8x9y x ⇠ y

8x8y
⇥
x = y _ x ⇠ y _ 9z(x ⇠ z ^ z ⇠ y)

⇤



FO	Definable	Properties	of	Graphs	

•  But	not	every	property	of	graphs	is	FO	definable.	

•  For	example,	3-colorability	is	naturally	expressed	in	
second-order	logic	(allowing	quantification	over	sets	
and	relations).		But	cannot	be	expressed	in	first-
order	logic.	

∃R∃B∃G	(∀x	R(x)	∨	B(x)	∨	G(x))	∧	

	(R(x)	∧	R(y))	∨	
																								∀x∀y		Edge(x,y)	→	￢ 	(B(x)	∧	B(y))	∨	

	 	(G(x)	∧	G(y))	



FO	Definable	Properties	of	Graphs	

•  To	show	that	a	class	𝓒	is	first-order	definable:	simply		is	first-order	definable:	simply	
write	down	a	first-order	formula	that	defines	it.	

•  How	can	we	show	that	a	class	𝓒	is	not	first-order		is	not	first-order	
definable?	



Quantifier-Rank	&	k-Equivalence	



Quantifier-rank	

•  Quantifier-rank	of	a	formula	is	the	maximum	nesting	
depth	of	quantifiers	



Quantifier-rank	

•  Quantifier-rank	of	a	formula	is	the	maximum	nesting	
depth	of	quantifiers	

•  Rank-3	formula:	

9x
⇥
8y

⇥
E(x, y) _ 9z

⇥
E(y, z) ^ ¬(x = z)

⇤⇤⇤



Quantifier-rank	

•  Quantifier-rank	of	a	formula	is	the	maximum	nesting	
depth	of	quantifiers	

•  Inductive	definition:	
rank(x	=	y)	=	rank(R(x1,…,xr))	=	0,	

rank(￢ϕ)	=	rank(ϕ),	

rank(ϕ	∧	ψ)	=	rank(ϕ	∨	ψ)	=	max{rank(ϕ),	rank(ψ)},	

rank(∀x		ϕ(x))	=	rank(∃x		ϕ(x))	=	qr(ϕ)	+	1	



k-Equivalence	

•  Structures	A	and	B	are	k-equivalent	(denoted	A	≣k	B)	
if	they	satisfy	the	same	sentences	of	quantifier-rank	k.	

•  In	other	words,	A	≣k	B	iff	A	and	B	cannot	be	
distinguished	by	any	first-order	sentence	of	
quantifier-rank	k.	



The	Ehrenfeucht-Fraïssé	Game	



EF	Game	

•  The	k-round	Ehrenfeucht-Fraisse	game	on	structures	
A	and	B	has	two	players,	Spoiler	and	Duplicator	



EF	Game	

•  The	k-round	Ehrenfeucht-Fraisse	game	on	structures	
A	and	B	has	two	players,	Spoiler	and	Duplicator	

•  The	game	captures	the	quantifier-rank	needed	to	
distinguish	A	and	B	in	first-order	logic	

				 	Duplicator’s	goal: 	prove	A	≣k	B	

				 							Spoiler’s	goal:		 	refute	A	≣k	B	



EF	Game	

•  In	each	of	k	rounds:	
1.  	Spoiler	picks	an	element	in	either	A	or	B,	

2.  	Duplicator	picks	an	element	in	theiother	structure	

A	 B	
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EF	Game	

•  In	each	of	k	rounds:	
1.  	Spoiler	picks	an	element	in	either	A	or	B,	

2.  	Duplicator	picks	an	element	in	theiother	structure	
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Round	3:		Duplicator	



EF	Game	

•  After	k	rounds:		There	are	distinguished	elements				
a1,	…,	ak	in	A	and	b1,	…,	bk	in	B	

A	 B	
a1	

a3	

a2	
b1	

b3	

b2	



EF	Game	

•  Duplicator	is	declared	the	winner	iff	
{a1	↦	b1,	...,	ak	↦	bk}		

constitutes	a	partial	isomorphism	between	A	and	B	
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EF	Game	

•  Duplicator	is	declared	the	winner	iff	
{a1	↦	b1,	...,	ak	↦	bk}		

constitutes	a	partial	isomorphism	between	A	and	B	
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True	of	any	deterministic	zero-sum	
game	of	finite	length.	



•  In	our	example,	Spoiler	has	a	winning	strategy	in	the	
3-round	game:	

A	 B	
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•  In	our	example,	Spoiler	has	a	winning	strategy	in	the	
3-round	game:	
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•  In	our	example,	Spoiler	has	a	winning	strategy	in	the	
3-round	game:	

A	 B	

not	a	partial	isomorphism:	Spoiler	wins		



Fundamental	Theorem	of	EF	Games	

Theorem		

Duplicator	has	a	winning	strategy	in	the	k-round	EF	
game	on	A	and	B	if,	and	only	if,	A	≣k	B.	



Fundamental	Theorem	of	EF	Games	

	

•  Proof	by	induction	on	k.	

Theorem		

Duplicator	has	a	winning	strategy	in	the	k-round	EF	
game	on	A	and	B	if,	and	only	if,	A	≣k	B.	



Repertoire	of	Winning	Strategies	



Linear	orders	

•  Finite	structures	A	with	universe	{1,	…,	n}	and	binary	
relation	<	

	

•  We	say	A	is	EVEN	if	n	is	even	



Linear	orders	

Theorem	
	The	class	of	EVEN	linear	orders	is	not	FO	definable.	



Linear	orders	

Theorem	
	The	class	of	EVEN	linear	orders	is	not	FO	definable.	

Proof	
	For	arbitrary	k,	we	show	that	A	≣k	B	where																	
A	is	a	linear	order	of	even	size	2k	and	B	is	a	linear	
order	of	odd	size	2k	+	1.	

	We	prove	A	≣k	B	by	giving	a	winning	strategy	for	
Duplicator	in	the	k-round	EF	game	on	A	and	B.	



Winning	strategy	(by	picture)	
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B	
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Round	3:		Duplicator	



Winning	strategy	(by	picture)	
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A	

B	

Round	4:		Duplicator	
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Winning	strategy	(by	picture)	
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Round	5:		Duplicator	



Winning	strategy	(by	picture)	

A	

B	

•  So	far,	Duplicator	is	winning	(i.e.,	{a1	↦	b1,	...,	ak	↦	bk}	
is	a	partial	isomorphism).	
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B	

•  So	far,	Duplicator	is	winning	(i.e.,	{a1	↦	b1,	...,	ak	↦	bk}	
is	a	partial	isomorphism).	

•  However,	Duplicator	loses	after	Spoiler	plays						.	



Winning	strategy	(by	picture)	

A	

B	

•  So	far,	Duplicator	is	winning	(i.e.,	{a1	↦	b1,	...,	ak	↦	bk}	
is	a	partial	isomorphism).	

•  However,	Duplicator	loses	after	Spoiler	plays						.	



Winning	strategy	(by	picture)	

A	

B	

Duplicator’s	winning	strategy:		
in	round	j,	preserve	all	distances	between	
chosen	elements	up	to	2k−j	



Connectivity	

Corollary.		GRAPH	CONNECTIVITY	is	not	FO	definable	
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Corollary.		GRAPH	CONNECTIVITY	is	not	FO	definable	

•  If	A	is	a	linear	order	of	size	n,	let	G(A)	be	the	graph		
with	edges	{	i,	i+2	mod	n	}	for	all	a	∈	A	



Connectivity	

Corollary.		GRAPH	CONNECTIVITY	is	not	FO	definable	

•  If	A	is	a	linear	order	of	size	n,	let	G(A)	be	the	graph		
with	edges	{	i,	i+2	mod	n	}	for	all	a	∈	A	



Connectivity	∉	FO	

Corollary.	GRAPH	CONNECTIVITY	is		not	FO	definable	

•  If	A	is	a	linear	order	of	size	n,	let	G(A)	be	the	graph		
with	edges	{	i,	i+2	mod	n	}	for	all	a	∈	A	

Obs	1:		G(A)	is	connected	if	and	
only	if	n	is	odd	



Connectivity	∉	FO	

Corollary.	GRAPH	CONNECTIVITY	is		not	FO	definable	

•  If	A	is	a	linear	order	of	size	n,	let	G(A)	be	the	graph		
with	edges	{	i,	i+2	mod	n	}	for	all	a	∈	A	

Obs	2:		G(A)	is	first-order	
definable	from	A	



Connectivity	

Corollary.		GRAPH	CONNECTIVITY	is	not	FO	definable	

•  If	A	is	a	linear	order	of	size	n,	let	G(A)	be	the	graph	
with	edges	{	i,	i+2	mod	n	}	for	all	a	∈	A	

•  If	𝜑	were	a	first-order	formula	defining	GRAPH	
CONNECTIVITY,	then	by	replacing	each	sub-formula	
E(x,y)	with	a	formula	“x	and	y	have	cyclic	distance	2			
in	the	linear	order	A”,	we	could	define	EVENNESS	of	A	
(which	we	showed	is	impossible	by	the	EF	game).	



Connectivity	

Corollary.		GRAPH	CONNECTIVITY	is	not	FO	definable	

•  This	result	can	be	proved	directly	by	playing	the	EF	
game	e.g.	on	graphs	Cn	and	Cn	+	Cn	

•  The	reduction	to	EVENNESS	of	linear	orders	illustrates	
the	technique	of	a	first-order	interpretations.	



Set-powersets	

•  SetPown	is	the	structure	([n]∪	2[n],	Atoms,	Sets,	In)	
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n	elements	
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n	elements	
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2n	elements	



Set-powersets	

•  SetPown	is	the	structure	([n]∪	2[n],	Atoms,	Sets,	In)	
where		

	Atoms	=	[n]	=	{1,...,n},		
					Sets	=	powerset	of	Atoms,	
									In	=	{(i,X)	∈	Atoms	×	Sets	|	i	∈	X}.	



Set-powersets	

•  SetPown	is	the	structure	([n]∪	2[n],	Atoms,	Sets,	In)	
where		

	Atoms	=	[n]	=	{1,...,n},		
					Sets	=	powerset	of	Atoms,	
									In	=	{(i,X)	∈	Atoms	×	Sets	|	i	∈	X}.	

•  A	set-powerset	is	any	structure	A	with	relations	
{Atoms,	Sets,	In}	which	is	isomorphic	to	SetPown	for	
some	n	>	0.		It	is	said	to	be	EVEN/ODD	according	to	
the	parity	of	n.	



Set-powersets	

Obs.		The	class	of	set-powersets	is	FO	definable.	

•  We	cannot	say	(in	first-order	logic):	

		∀X	⊆	Atoms	∃S	∈		Sets	∀x	∈	Atoms,		x	∈	X	⇔	In(x,S)	

•  Instead,	we	say:	
		"⦰	∈	Sets"	∧	∀S	∈	Sets	∀x	∈	Atoms	"S	∪	{x}	∈	Sets"	

•  This	formula	exploits	finiteness	in	an	essential	way.		



Set-powersets	

Theorem	
	The	class	of	EVEN	set-powersets	is	not	FO	definable.	



Set-powersets	

Theorem	
	The	class	of	EVEN	set-powersets	is	not	FO	definable.	

Proof	
	For	every	k,	we	show	that	Duplicator	has	a	winning	
strategy	in	the	k-round	Ehrenfeucht-Fraisse	game	on	

A	=	SetPow2^k		and		B	=	SetPow2^k+1			
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At	this	point,	Spoiler	wins.	
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Duplicator	has	a	winning	strategy	
for	k	rounds	provided	both	
structures	have	≥	2k	atoms.	

Duplicator’s	winning	strategy:		
in	round	j,	preserve	the	cardinality	up	to	2k−j	of	
every	Boolean	combination	of	the	chosen	sets	
and	atoms	


