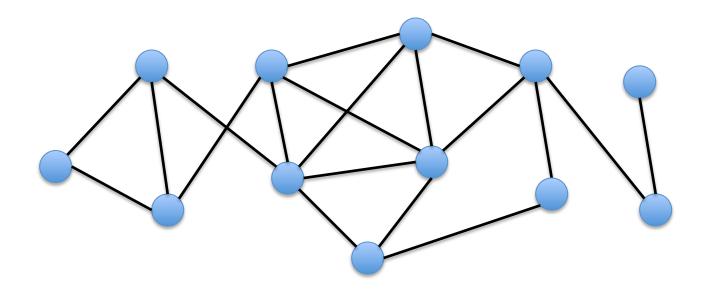
Ehrenfeucht-Fraïssé Games

Relational Structures

- We will consider language consisting of *relation symbols* only (no constant or function symbols).
- A relational structure A = (A, R₁, ..., R_t) consists of
 - a set A (called the universe of A)
 - a sequence of relations $R_i \subseteq A^{r_i}$
- A and B are structures in the same relational language.

Graphs

- A graph G = (V, ~) consists of
 - a set V of vertices
 - a binary relation $\sim \subseteq V^2$ (anti-reflexive and symmetric)



First-Order Logic on Graphs

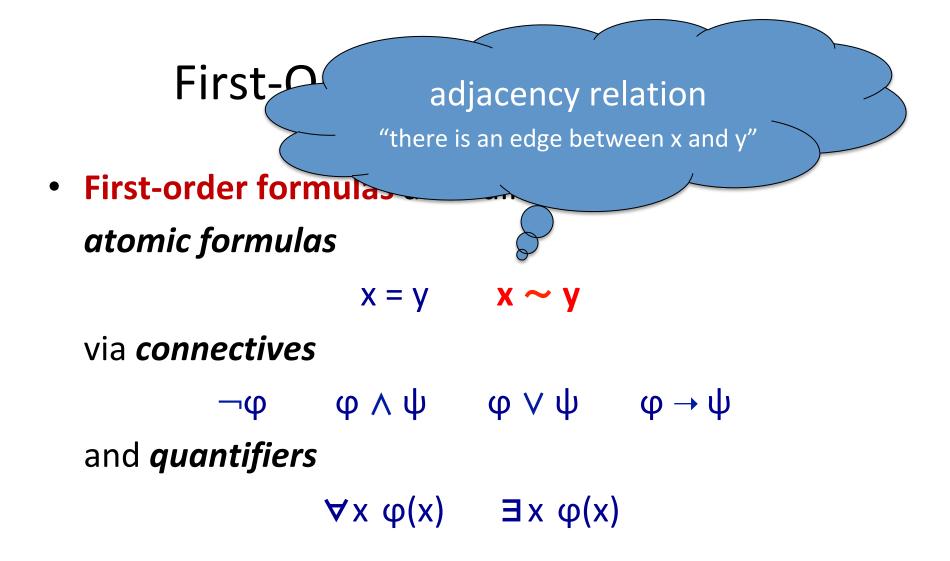
 First-order formulas are built from: atomic formulas

 $x = y \qquad x \sim y$

via *connectives*

 $\neg \phi \quad \phi \land \psi \quad \phi \lor \psi \quad \phi \rightarrow \psi$ and *quantifiers*

 $\forall x \phi(x) = \exists x \phi(x)$



First-Order Logic on Graphs

 First-order formulas are built from: atomic formulas

x = y $x \sim y$

via *connectives* $\neg \phi \quad \phi \land \psi \quad \phi \lor \psi \quad \phi \to \psi$ and quantifiers $\forall x \phi(x) = \exists x \phi(x)$ Variables range over *vertices*

Definable and Axiomatizable Properties

Definability and Axiomatizability

- Let *C* be a class of graphs (i.e. a *graph property*)
- C is FO-definable if there is a single sentence φ such that

 $G \vDash \varphi \Leftrightarrow G \in \mathcal{C}$

C is FO-axiomatizable if there is a set of sentences Σ such that

 $G \vDash \Sigma \Leftrightarrow G \in \mathcal{C}$

• "no isolated vertex" (i.e. every vertex has a neighbor)

 $\forall x \exists y \ x \sim y$

• "no isolated vertex" (i.e. every vertex has a neighbor)

 $\forall x \exists y \ x \sim y$

• "diameter is ≤ 2 "

 $\forall x \forall y \big[x = y \lor x \sim y \lor \exists z (x \sim z \land z \sim y) \big]$

• "no isolated vertex" (i.e. every vertex has a neighbor)

 $\forall x \exists y \ x \sim y$

• "diameter is ≤ 2 "

 $\forall x \forall y \big[x = y \lor x \sim y \lor \exists z (x \sim z \land z \sim y) \big]$

• "3-regular" (every vertex has exact 3 neighbors)

• "no isolated vertex" (i.e. every vertex has a neighbor)

 $\forall x \exists y \ x \sim y$

• "diameter is ≤ 2 "

 $\forall x \forall y \big[x = y \lor x \sim y \lor \exists z (x \sim z \land z \sim y) \big]$

- "3-regular" (every vertex has exact 3 neighbors)
- "girth > 17" (no induced cycle of length \leq 17)

FO Definable Properties of Graphs

- But not every property of graphs is FO definable.
- For example, 3-colorability is naturally expressed in second-order logic (allowing quantification over sets and relations). But cannot be expressed in firstorder logic.

 $\exists R \exists B \exists G (\forall x R(x) \lor B(x) \lor G(x)) \land$ $\forall x \forall y Edge(x,y) \Rightarrow \neg \begin{pmatrix} (R(x) \land R(y)) \lor \\ (B(x) \land B(y)) \lor \\ (G(x) \land G(y)) \end{pmatrix}$

FO Definable Properties of Graphs

- To show that a class *C* is first-order definable: simply write down a first-order formula that defines it.
- How can we show that a class C is not first-order definable?

Quantifier-Rank & k-Equivalence

Quantifier-rank

• **Quantifier-rank** of a formula is the maximum nesting depth of quantifiers

Quantifier-rank

- **Quantifier-rank** of a formula is the maximum nesting depth of quantifiers
- Rank-3 formula:

$$\exists x \big[\forall y \big[E(x, y) \lor \exists z \big[E(y, z) \land \neg (x = z) \big] \big] \big]$$

Quantifier-rank

- Quantifier-rank of a formula is the maximum nesting depth of quantifiers
- Inductive definition:

 $rank(x = y) = rank(R(x_1,...,x_r)) = 0,$

 $rank(\neg \phi) = rank(\phi)$,

rank($\phi \land \psi$) = rank($\phi \lor \psi$) = max{rank(ϕ), rank(ψ)}, rank($\forall x \phi(x)$) = rank($\exists x \phi(x)$) = qr(ϕ) + 1

k-Equivalence

- Structures A and B are k-equivalent (denoted $A \equiv_k B$) if they satisfy the same sentences of quantifier-rank k.
- In other words, $A \equiv_k B$ iff A and B cannot be distinguished by any first-order sentence of quantifier-rank k.

The Ehrenfeucht-Fraïssé Game

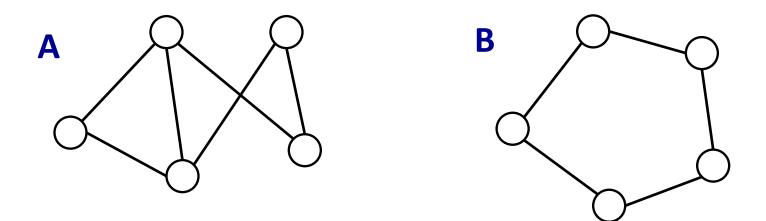
The k-round Ehrenfeucht-Fraisse game on structures
 A and B has two players, Spoiler and Duplicator

- The k-round Ehrenfeucht-Fraisse game on structures
 A and B has two players, Spoiler and Duplicator
- The game captures the <u>quantifier-rank</u> needed to distinguish A and B in first-order logic

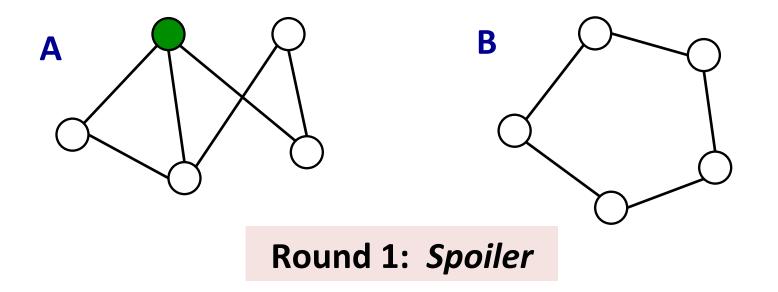
Duplicator's goal: prove $A \equiv_k B$

Spoiler's goal: refute $\mathbf{A} \equiv_{\mathbf{k}} \mathbf{B}$

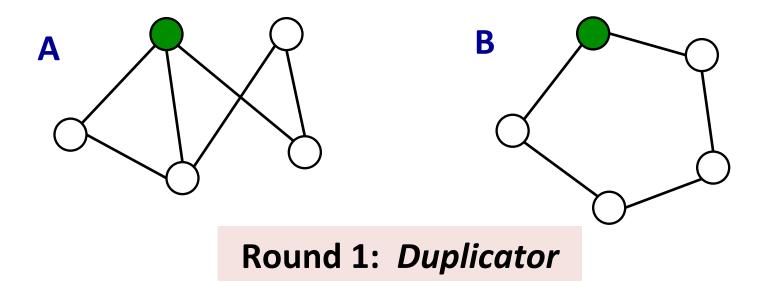
- In each of k rounds:
 - 1. *Spoiler* picks an element in either **A** or **B**,
 - 2. *Duplicator* picks an element in the other structure



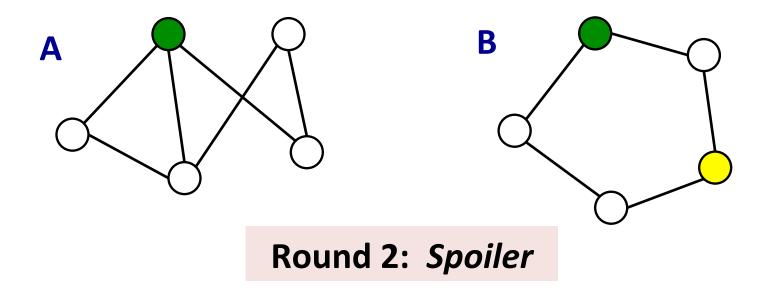
- In each of k rounds:
 - 1. *Spoiler* picks an element in either **A** or **B**,
 - 2. *Duplicator* picks an element in the other structure



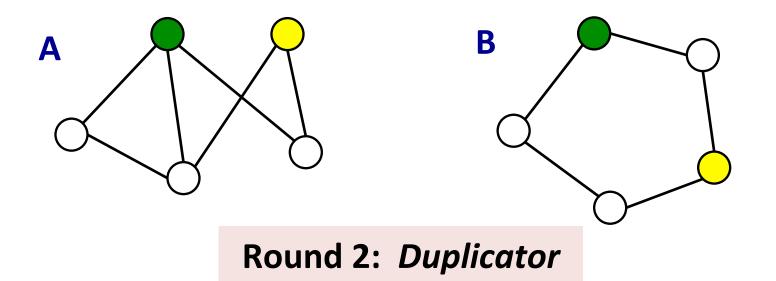
- In each of k rounds:
 - 1. *Spoiler* picks an element in either **A** or **B**,
 - 2. *Duplicator* picks an element in the other structure



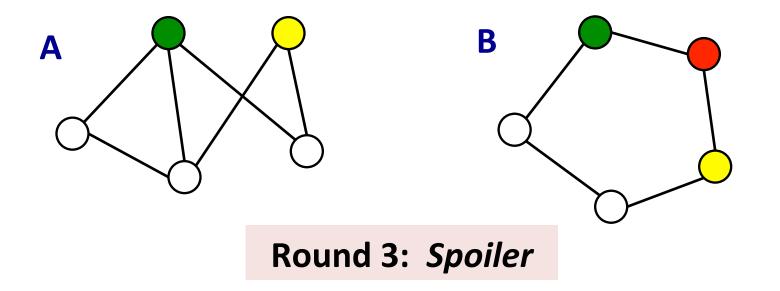
- In each of k rounds:
 - 1. *Spoiler* picks an element in either **A** or **B**,
 - 2. *Duplicator* picks an element in the other structure



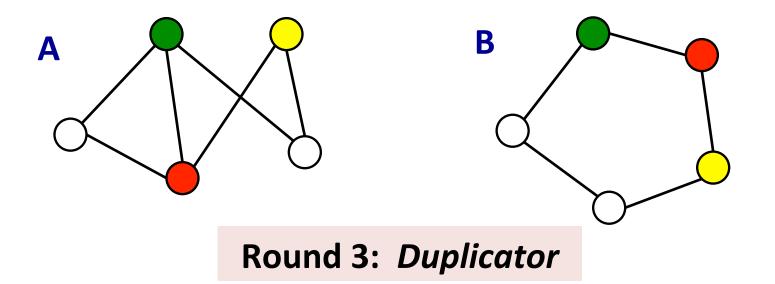
- In each of k rounds:
 - 1. *Spoiler* picks an element in either **A** or **B**,
 - 2. *Duplicator* picks an element in the other structure



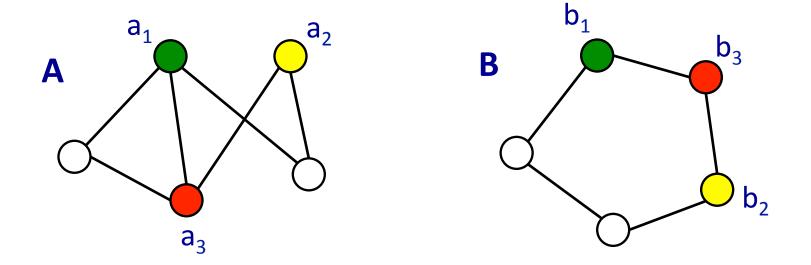
- In each of k rounds:
 - 1. *Spoiler* picks an element in either **A** or **B**,
 - 2. *Duplicator* picks an element in the other structure



- In each of k rounds:
 - 1. *Spoiler* picks an element in either **A** or **B**,
 - 2. *Duplicator* picks an element in the other structure



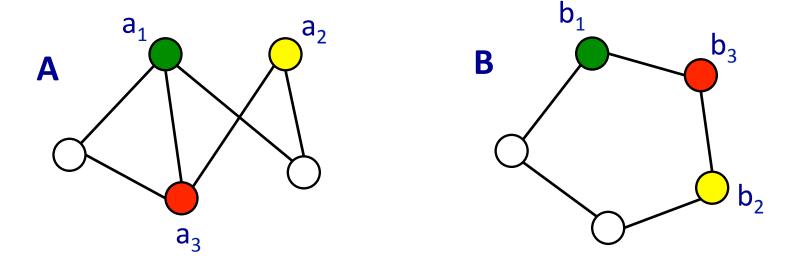
<u>After k rounds</u>: There are distinguished elements
 a₁, ..., a_k in **A** and b₁, ..., b_k in **B**

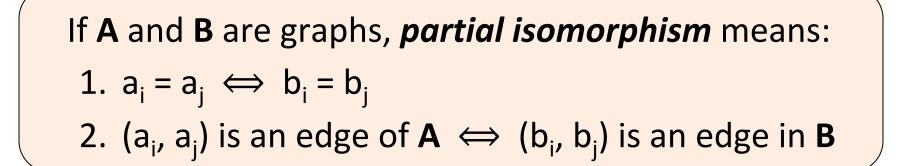


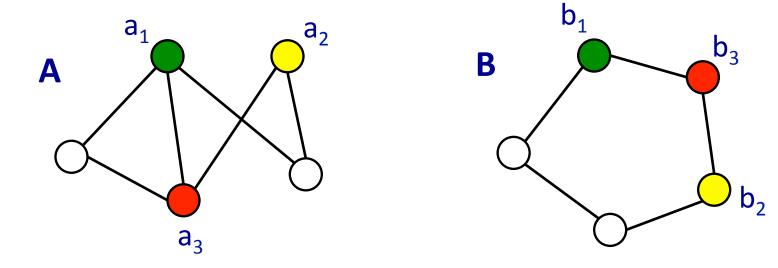
• **Duplicator** is declared the winner <u>iff</u>

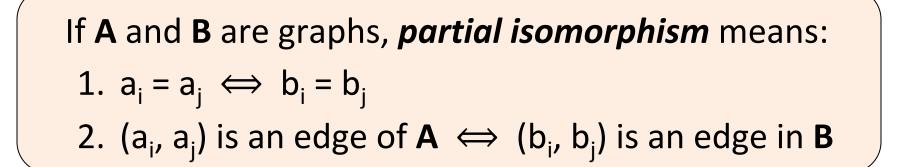
$$\{a_1 \mapsto b_1, \, ..., \, a_k \mapsto b_k\}$$

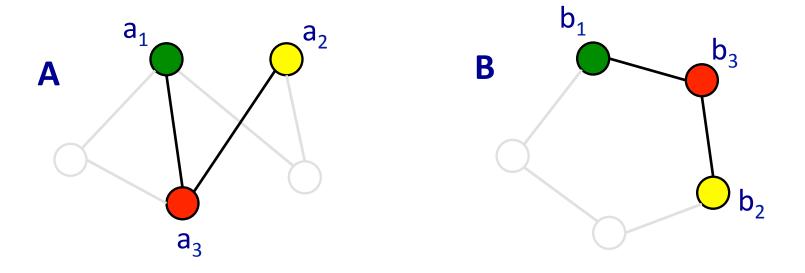
constitutes a partial isomorphism between A and B

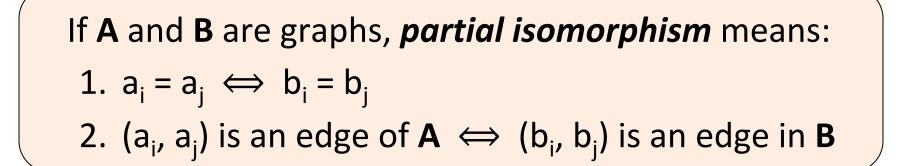


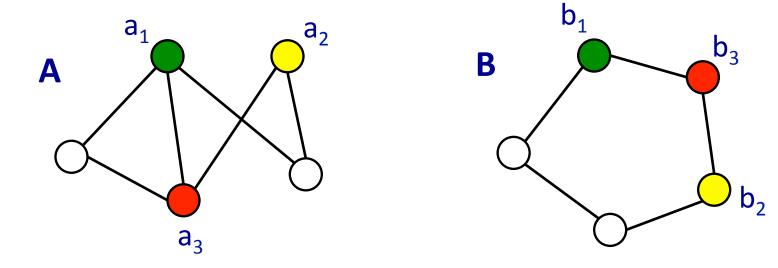








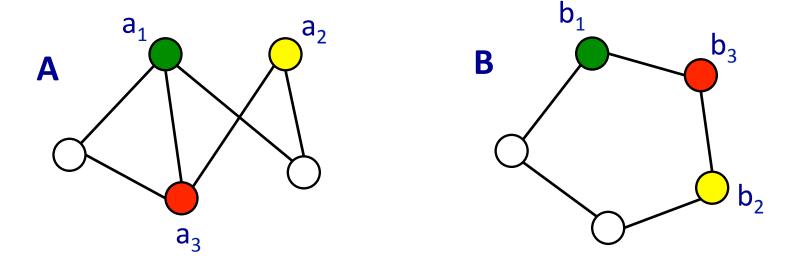




• **Duplicator** is declared the winner <u>iff</u>

$$\{a_1 \mapsto b_1, \, ..., \, a_k \mapsto b_k\}$$

constitutes a partial isomorphism between A and B



• **Duplicator** is declared the winner <u>iff</u>

$$\{a_1 \mapsto b_1, ..., a_k \mapsto b_k\}$$

constitutes a **partial isomorphism** between **A** and **B**

Spoiler wins otherwise (<u>iff</u> {a₁ → b₁, ..., a_k → b_k} is not a partial isomorphism)

EF Game

• **Duplicator** is declared the winner <u>iff</u>

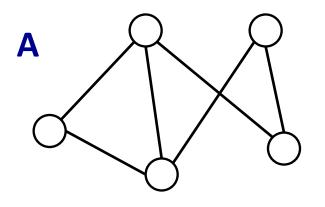
$$\{a_1 \mapsto b_1, ..., a_k \mapsto b_k\}$$

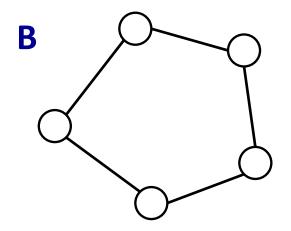
constitutes a partial isomorphism between A and B

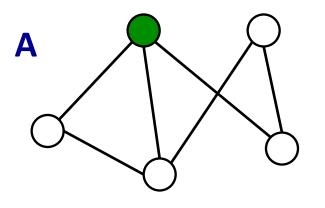
- Spoiler wins otherwise (<u>iff</u> {a₁ → b₁, ..., a_k → b_k} is not a partial isomorphism)
- <u>Fact</u>: There exists a *winning strategy* for one of the two players.

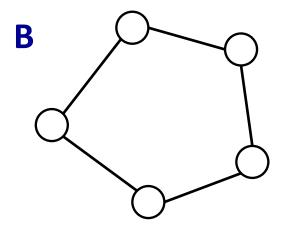
EF Game

Duplica+ True of any deterministic zero-sum game of finite length. {} is not a norphism partial i • Fact: There exists a *winning strategy* for one of the two players.

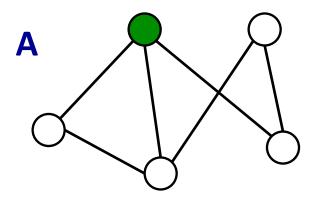


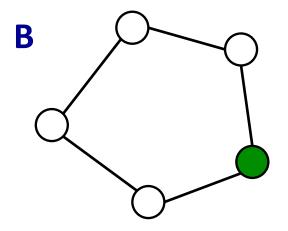




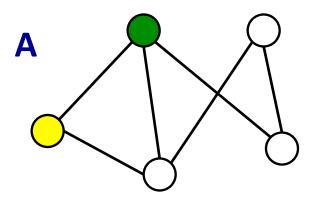


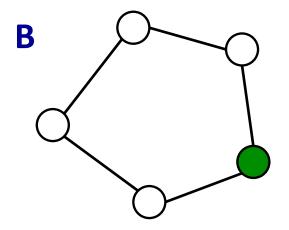
Round 1: Spoiler



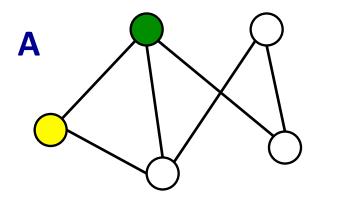


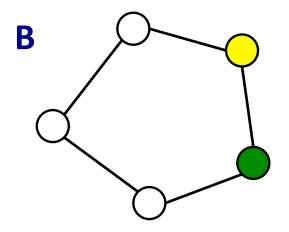
Round 1: Duplicator



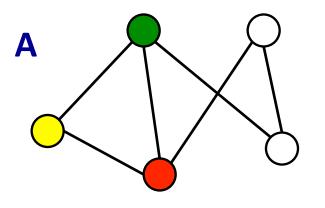


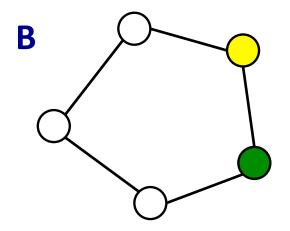
Round 2: Spoiler



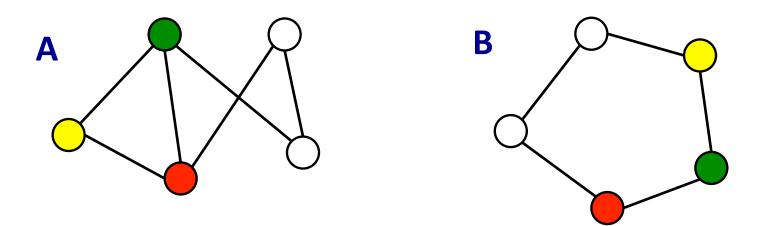


Round 2: Duplicator

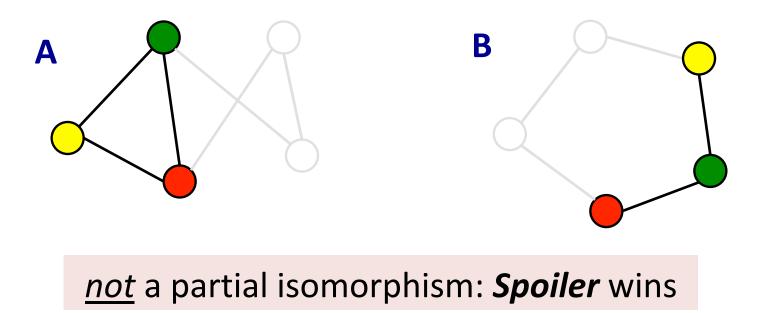




Round 2: Spoiler



Round 3: Duplicator



Fundamental Theorem of EF Games

<u>Theorem</u>

Duplicator has a winning strategy in the k-round EF game on **A** and **B** if, and only if, $\mathbf{A} \equiv_k \mathbf{B}$.

Fundamental Theorem of EF Games

<u>Theorem</u>

Duplicator has a winning strategy in the k-round EF game on **A** and **B** if, and only if, $\mathbf{A} \equiv_k \mathbf{B}$.

• Proof by induction on k.

Repertoire of Winning Strategies

Linear orders

 Finite structures A with universe {1, ..., n} and binary relation <

• We say **A** is EVEN if **n** is even

Linear orders

<u>Theorem</u>

The class of EVEN linear orders is not FO definable.

Linear orders

<u>Theorem</u>

The class of EVEN linear orders is not FO definable.

<u>Proof</u>

For arbitrary k, we show that $A \equiv_k B$ where A is a linear order of even size 2^k and B is a linear order of odd size $2^k + 1$.

We prove $\mathbf{A} \equiv_{\mathbf{k}} \mathbf{B}$ by giving a winning strategy for **Duplicator** in the k-round EF game on \mathbf{A} and \mathbf{B} .

Round 1: Spoiler

Round 1: Duplicator

Round 2: Spoiler

Round 2: Duplicator

Round 3: Spoiler

Round 3: Duplicator

Round 4: Spoiler

Round 4: Duplicator

Round 5: Spoiler

Round 5: Duplicator

- - So far, *Duplicator* is *winning* (i.e., {a₁ → b₁, ..., a_k → b_k} is a partial isomorphism).

- - So far, *Duplicator* is *winning* (i.e., {a₁ → b₁, ..., a_k → b_k} is a partial isomorphism).
 - However, *Duplicator loses* after *Spoiler* plays O.

- - So far, *Duplicator* is *winning* (i.e., {a₁ → b₁, ..., a_k → b_k} is a partial isomorphism).
 - However, *Duplicator loses* after *Spoiler* plays O.

Duplicator's winning strategy:

in round **j**, preserve all distances between chosen elements up to 2^{k-j}

Connectivity

Corollary. GRAPH CONNECTIVITY is *not* FO definable

Connectivity

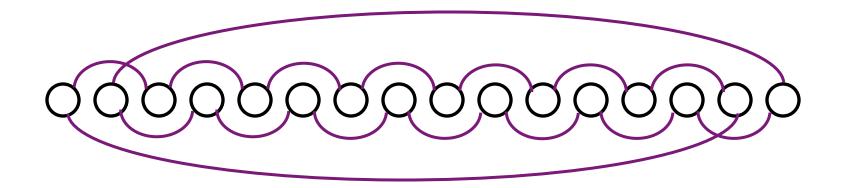
Corollary. GRAPH CONNECTIVITY is *not* FO definable

 If A is a linear order of size n, let G(A) be the graph with edges { i, i+2 mod n } for all a ∈ A

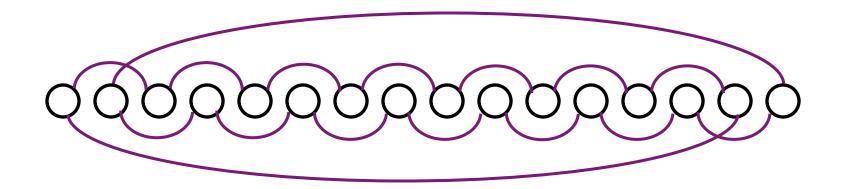
Connectivity

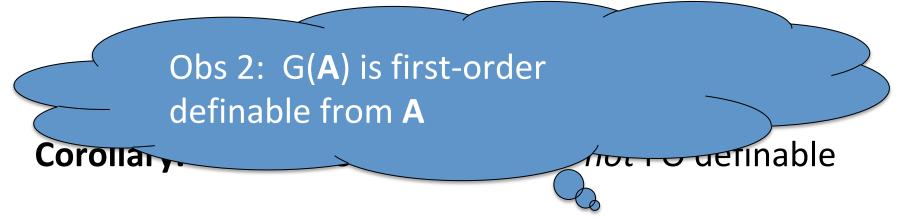
Corollary. GRAPH CONNECTIVITY is *not* FO definable

 If A is a linear order of size n, let G(A) be the graph with edges { i, i+2 mod n } for all a ∈ A

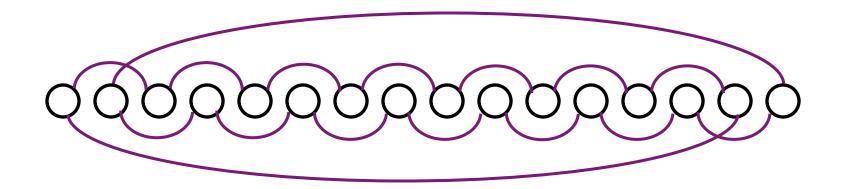


 If A is a linear order of size n, let G(A) be the graph with edges { i, i+2 mod n } for all a ∈ A





 If A is a linear order of size n, let G(A) be the graph with edges { i, i+2 mod n } for all a ∈ A



Connectivity

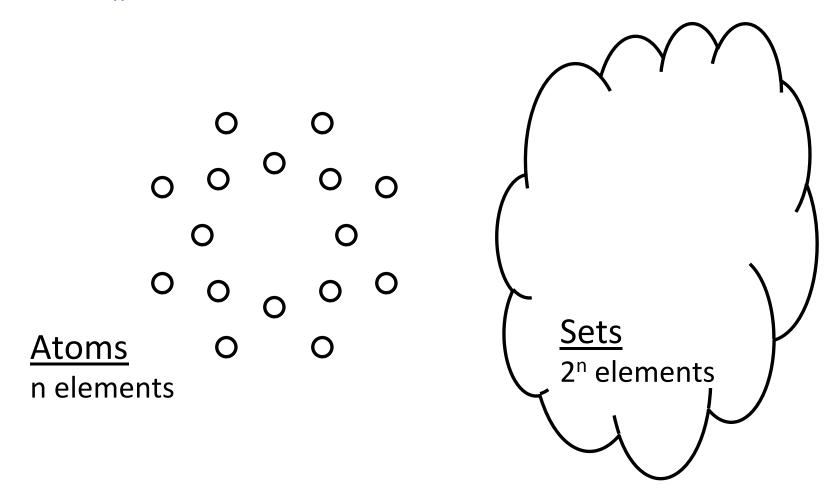
Corollary. GRAPH CONNECTIVITY is *not* FO definable

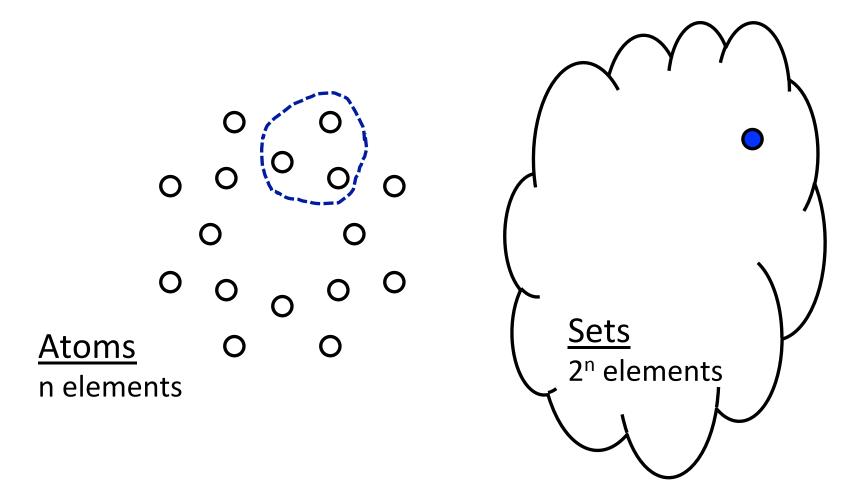
- If A is a linear order of size n, let G(A) be the graph with edges { i, i+2 mod n } for all a ∈ A
- If φ were a first-order formula defining GRAPH CONNECTIVITY, then by replacing each sub-formula E(x,y) with a formula "x and y have cyclic distance 2 in the linear order A", we could define EVENNESS of A (which we showed is impossible by the EF game).

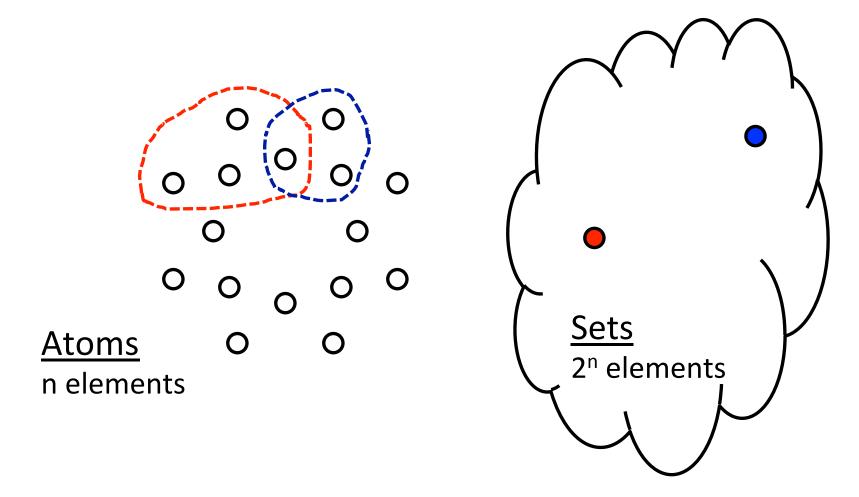
Connectivity

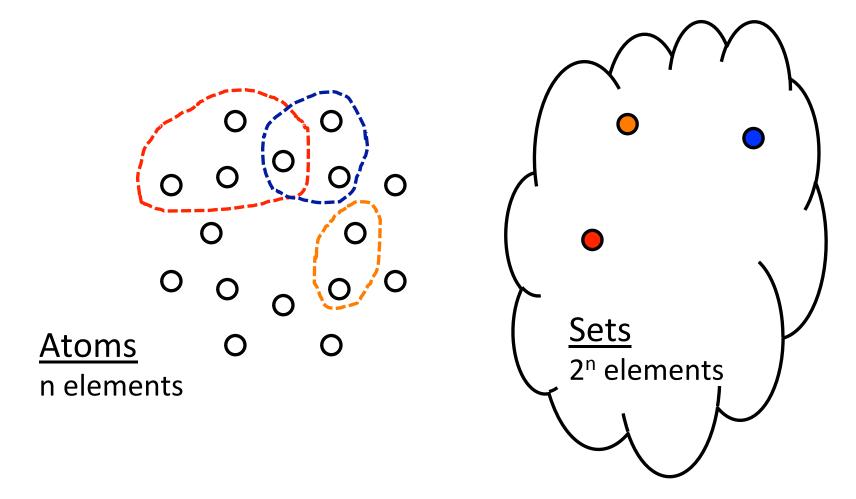
Corollary. GRAPH CONNECTIVITY is *not* FO definable

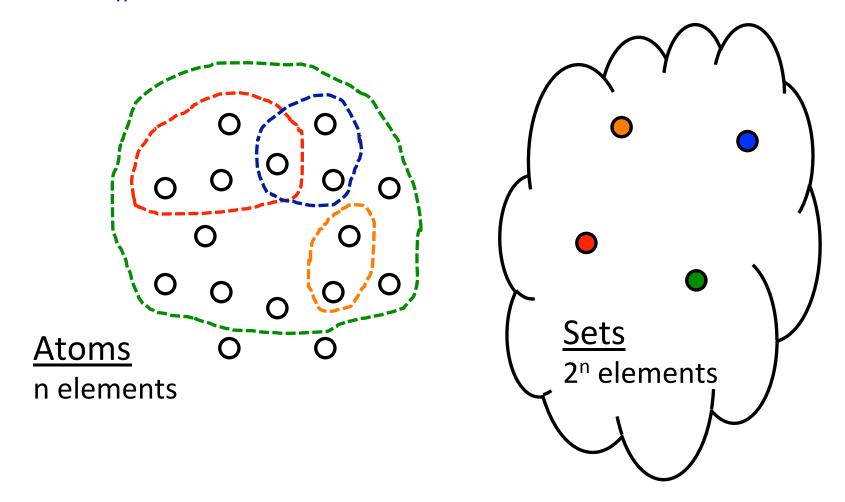
- This result can be proved directly by playing the EF game e.g. on graphs C_n and C_n + C_n
- The reduction to EVENNESS of linear orders illustrates the technique of a *first-order interpretations*.











SetPow_n is the structure ([n] ∪ 2^[n], <u>Atoms</u>, <u>Sets</u>, <u>In</u>) where

 $\underline{\text{Atoms}} = [n] = \{1, ..., n\},\$ $\underline{\text{Sets}} = \text{powerset of }\underline{\text{Atoms}},\$ $\underline{\text{In}} = \{(i, X) \in \underline{\text{Atoms}} \times \underline{\text{Sets}} \mid i \in X\}.$

SetPow_n is the structure ([n] ∪ 2^[n], <u>Atoms</u>, <u>Sets</u>, <u>In</u>) where

 $\underline{\text{Atoms}} = [n] = \{1, ..., n\},\$ $\underline{\text{Sets}} = \text{powerset of } \underline{\text{Atoms}},\$ $\underline{\text{In}} = \{(i, X) \in \underline{\text{Atoms}} \times \underline{\text{Sets}} \mid i \in X\}.$

A set-powerset is any structure A with relations
 {Atoms, Sets, In} which is isomorphic to SetPow_n for
 some n > 0. It is said to be EVEN/ODD according to
 the parity of n.

Obs. The class of set-powersets is FO definable.

- We cannot say (in first-order logic): $\forall X \subseteq Atoms \exists S \in Sets \forall x \in Atoms, x \in X \Leftrightarrow ln(x,S)$
- Instead, we say:

 $" \otimes \in \underline{Sets}" \land \forall S \in \underline{Sets} \forall x \in \underline{Atoms} "S \cup \{x\} \in \underline{Sets}"$

• This formula exploits *finiteness* in an essential way.

Theorem

The class of EVEN set-powersets is <u>not</u> FO definable.

Theorem

The class of EVEN set-powersets is not FO definable.

<u>Proof</u>

For every k, we show that **Duplicator** has a winning strategy in the k-round Ehrenfeucht-Fraisse game on

 $A = SetPow_{2^k}$ and $B = SetPow_{2^{k+1}}$

