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Abstract

We show that unbounded fan-in boolean formulas of depth d + 1 and size s have average

sensitivity O( 1
d log s)d. In particular, this gives a tight 2Ω(d(n1/d−1)) lower bound on the size of

depth d+1 formulas computing the parity function. These results strengthen the corresponding

2Ω(n1/d) and O(log s)d bounds for circuits due to H̊astad (1986) and Boppana (1997). Our proof
technique studies a random process where the Switching Lemma is applied to formulas in an
efficient manner.

1 Introduction

We consider boolean circuits with unbounded fan-in AND and OR gates and negations on inputs.
Formulas are the class of tree-like circuits in which all gates have fan-out 1. Size of circuits (including
formulas) is measured by the total number of gates. Depth is the maximum number of gates on an
input-to-output path.

Lower bounds against bounded-depth circuits were first proved in the 1980s [1, 4, 9, 5], culminat-
ing in a tight size-depth tradeoff for circuits computing the parity function. The technique, based
on random restrictions, applies more generally to boolean functions with high average sensitivity.

Theorem 1 (H̊astad [5]). Depth d+ 1 circuits computing parity have size 2Ω(n1/d).

Theorem 2 (Boppana [2]). Depth d+ 1 circuits of size s have average sensitivity O(log s)d.

In this paper, we prove stronger versions of these results for bounded-depth formulas:

Theorem 3. Depth d+ 1 formulas computing parity have size 2Ω(d(n1/d−1)).

Theorem 4. Depth d+ 1 formulas of size s have average sensitivity O(1
d log s)d.

Theorems 3 and 4 directly strengthen Theorems 1 and 2 in light of the following

Fact 5. Every depth d+ 1 circuit of size s is equivalent to a depth d+ 1 formula of size at most sd.

Theorems 1, 2, 3, 4 are asymptotically tight, since parity is computable by depth d+1 circuits
(resp. formulas) of size n2O(n1/d) (resp. 2O(d(n1/d−1))).

∗This work was carried out while the author was a research fellow at the Simons Institute for the Theory of
Computing at UC Berkeley.
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The main tool in the proof of Theorems 1 and 2 is H̊astad’s Switching Lemma [5]. The Switching
Lemma states that every small-width CNF or DNF simplifies, with high probability under a random
restriction, to a small-depth decision tree. This yields lower bounds against bounded-depth circuits
via a straightforward depth-reduction argument. In this paper we show how the Switching Lemma
can be applied more efficiently to bounded-depth formulas, though in a less straightforward manner.

In more detail: for independent uniformly distributed random σ ∈ {0, 1}n (“assignment”)
and τ ∈ [0, 1]n (“timestamp”), we consider the family of restrictions {Rσ,τp }0≤p≤1 (i.e. functions
[n] → {0, 1, ∗} representing partial assignments to input variables x1, . . . , xn) where Rσ,τp sets the
variable xi to σi if τi < p and leaves xi unset if τi ≥ p. In the usual application of the Switching
Lemma to circuits of depth d+ 1, all subcircuits of depth k+ 1 are hit with the restriction Rσ,τpk for
a fixed sequence p1 > · · · > pd (typically pk = n−k/(d+1)). In this paper we achieve sharper bounds
against formulas by hitting each subformula Φ with the restriction Rσ,τq(Φ) where the parameter q(Φ)

(= qσ,τ (Φ)) is defined inductively, according to a random process indexed by subformulas of Φ.
Our technical main theorem is a tail bound on q(Φ), viewed as a random variable determined by
σ and τ .

After preliminary definitions in §2, we state and prove our technical main theorem in §3 and §4.
As a corollaries, we derive Theorem 3 in §5 and Theorem 4 in §6. In §7 we state a further corollary
of our results on the relative power of formulas vs. circuits.

2 Preliminaries

N = {0, 1, 2, . . . }. [n] = {1, . . . , n}. exp(λ) = eλ.

2.1 Formulas

A formula is a finite rooted tree whose leafs (“inputs”) are labeled by literals (i.e. variables xi
or negated variables ¬xi) and whose non-leafs (“gates”) are labeled by AND or OR. (Gates have
unbounded fan-in.) Every formula Φ computes a boolean function on the same set of variables.

The size of a formula Φ, denoted by |Φ|, is the number of gates in Φ. (Note that every lower
bound on size is also a lower bound on leaf-size, i.e., the number of leaves in a formula.) The depth
of Φ is the maximum number of gates on an input-to-output path. Formulas of depth 0 are literals;
formulas of depth 1 are clauses (i.e. an AND or OR of literals). We are often interested in formulas
of depth ≥ 2 and speak of “depth d+ 1” where d is an arbitrary positive integer.

2.2 Boolean functions and restrictions

A restriction is a function % : [n] → {0, 1, ∗}, viewed as a partial assignment of boolean input
variables x1, . . . , xn to 0, 1 or ∗ (meaning “unset”). For a boolean function f : {0, 1}n → {0, 1}, the
restricted function f�% : {0, 1}%−1(∗) → {0, 1} is defined in the usual way. For p ∈ [0, 1], we write
Rp for the distribution on restrictions % where P[ %(i) = ∗ ] = p and P[ %(i) = 0 ] = P[ %(i) = 1 ] =
(1− p)/2 independently for all i ∈ [n].

2.3 Average sensitivity and decision-tree depth

The average sensitivity as(f) of a boolean function f is the expected number of input bits that,
when flipped, change the output of f , starting with a random input assignment.
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The decision-tree depth D(f) of f is the minimum depth of a decision tree which computes f ;
in particular, D(f) = 0 iff f is constant. Two elementary facts which we will use later (see [2]): for
every boolean function f ,

as(f) ≤ D(f) (i.e. average sensitivity is at most decision-tree depth),(1)

E
%∼Rp

[ as(f�%) ] = p·as(f) for all 0 ≤ p ≤ 1.(2)

H̊astad’s Switching Lemma relates random restrictions and decision-tree depth. We give a
somewhat nonstandard statement (the usual statement is in terms of width-k CNFs and width-`
DNFs).

Lemma 6 (Switching Lemma [5]). Let k, ` ∈ N. Suppose f is the AND or OR of an arbitrary
family {fi} of boolean functions with D(fi) ≤ k for all i. Then for all 0 ≤ p ≤ 1

2 ,

P
%∼Rp

[ D(f�%) ≥ ` ] ≤ (5pk)`.

3 A random process associated with formulas

Definition 7. Let σ ∈ {0, 1}n (“assignment”) and τ ∈ [0, 1]n (“timestamp”) be independent
uniformly distributed random variables. For 0 ≤ p ≤ 1, let Rσ,τp : [n]→ {0, 1, ∗} be the restriction

Rσ,τp (i) :=

{
σi if τi > p,

∗ if τi ≤ p.

We regard the family of restrictions {Rσ,τp }0≤p≤1 as a stochastic process where the parameter p
represents a “time” which starts at 1 and decreases to 0. At the initial time p = 1, the assignment
σ is fully masked (i.e. Rσ,τ1 is all ∗’s). As p decreases, the values of σ are gradually unmasked, until
the final time p = 0 when σ is fully revealed (i.e. Rσ,τ0 = σ). Of course, for any fixed p, Rσ,τp is
simply a random restriction with distribution Rp.

Definition 8 (Main Definition). For all formulas Φ, we define the “stopping time” qσ,τ (Φ) ∈ [0, 1]
by the following induction:

• If Φ has depth 0 (i.e. Φ is a variable or negated variable), then qσ,τ (Φ) := 1.

• If Φ is AND(Ψ1, . . . ,Ψm) or OR(Ψ1, . . . ,Ψm), then

qσ,τ (Φ) :=
pσ,τ (Φ)

14·kσ,τ (Φ)

where pσ,τ (Φ) := min
i

qσ,τ (Ψi), kσ,τ (Φ) := max{1, max
i

D(Ψi�R
σ,τ
pσ,τ (Φ))}.

For the sake of readability, we will suppress σ and τ whenever possible and simply write q(Φ),
p(Φ), k(Φ). However, the reader should keep in mind that these random variables are determined,
for all formulas Φ, by a single pair of σ of τ . (We will continue to write σ and τ when referring to
restrictions Rσ,τp .)

We view q(Φ) as the stopping time for a stochastic process indexed by formulas Φ. For Φ of
depth 0, q(Φ) is the initial time 1 (when all variables are masked). For Φ of depth ≥ 1, q(Φ) is
defined in terms of two auxiliary parameters:
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• p(Φ) is the most advanced (i.e. minimum) stopping time q(Ψ) among children Ψ of Φ.

• k(Φ) is the maximum decision-tree depth among children Ψ of Φ upon being hit with the
restriction Rσ,τp(Φ). (For technical reasons, we set k(Φ) = 1 in the event that D(Ψ�Rσ,τp(Φ)) = 0

for all Ψ.)

If Φ is an AND (resp. OR), then Φ�Rσ,τp(Φ) is a k(Φ)-CNF (resp. DNF). The choice of definition

q(Φ) = p(Φ)/14·k(Φ) allows us to apply the Switching Lemma to Φ�Rσ,τp(Φ). This is made precise

by the following lemma. (Since the dependence on σ and τ is crucial here, we use explicit notation:
qσ,τ (Φ), etc.)

Lemma 9. Let Φ be a formula of depth ≥ 1 and let q ∈ Supp(qσ,τ (Φ)) (i.e. q = qσ,τ (Φ) for some
σ ∈ {0, 1}n and τ ∈ [0, 1]n). Then for all 0 ≤ α ≤ 1 and ` ∈ N,

P
σ,τ

[
D(Φ�Rσ,ταq ) ≥ `

∣∣∣ qσ,τ (Φ) = q
]
≤
(
α

e

)`
.

Proof. Fix Φ and q as in the hypothesis of the lemma. Since Φ has depth ≥ 1, it is the AND or
OR of formulas Ψi. Let

I :=

{
(p, %, k) :

q = p/14k and there exist σ ∈ {0, 1}n and τ ∈ [0, 1]n

such that pσ,τ (Φ) = p, Rσ,τp = % and kσ,τ (Φ) = k

}
.

Note that I is nonempty and indexes a partition of the event {qσ,τ (Φ) = q} into subevents
{pσ,τ (Φ) = p, Rσ,τp = % and kσ,τ (Φ) = k}.

To prove the lemma, consider any (p, %, k) ∈ I. Conditioning on this subevent, we can view
Rσ,ταq as the composition of % and an independent random restriction θ ∼ Rα/14k. Since Φ�% is an
AND or OR of functions Ψi�% of decision-tree depth ≤ k, Lemma 6 implies

P
σ,τ

[
D(Φ�Rσ,ταq ) ≥ `

∣∣∣ pσ,τ (Φ) = p, Rσ,τp = % and kσ,τ (Φ) = k
]

= P
θ∼Rα/14k

[
D((Φ�%)�θ) ≥ `

]
≤
(

5

(
α

14k

)
k

)`
≤
(
α

e

)`
.

4 Tail bound on q(Φ)

Our technical main theorem is a tail bound on the random variable q(Φ) (= qσ,τ (Φ)) where the
randomness is over independent uniform σ ∈ {0, 1}n and τ ∈ [0, 1]n. We state the result first with
asymptotic notation.

Theorem 10. For every depth d+ 1 formula Φ and 0 < λ ≤ 1,

P
[

q(Φ) ≤ λ
]
≤ |Φ|

exp(Ω(dλ−1/d)−O(d))
.
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In order to have a useable induction hypothesis, we restate Theorem 10 with explicit constants:

Theorem 10 (more precisely). For every depth d+ 1 formula Φ and ` > 0,

P

[
q(Φ) ≤ 1

14d+1`

]
≤ |Φ| Cd

exp(e−2d`1/d)

where C = 1 +

∞∑
i=0

(
1

exp(ei−1 − (i+ 1)e−2)
+

∞∑
j=0

1

exp((j + 1)ei−1 − (i+ j + 2)e−2)

)
≈ 7.83.

Proof. We first note that the theorem is trivial if ` < ed (as the RHS is > (C/ exp(e−1))d > 1 since
C > exp(e−1)). Therefore, we assume that ` ≥ ed. We argue by induction on d.

Consider the base case d = 1 where Φ is a depth 2 formula. Note that q(Ψ) = 1/14 for each
depth 1 subformula Ψ of Φ; hence p(Φ) = 1/14. Also, each Ψ is the AND or OR of decision-trees
of depth 1; so by Lemma 6,

P
σ,τ

[
D(Ψ�Rσ,τ1/14) ≥ `

]
= P

%∼R1/14

[
D(Ψ�%) ≥ `

]
≤
(

1

e

)`
.

Since q(Φ) = p(Φ)/14·k(Φ) = 1/142·k(Φ), we have

P
[

q(Φ) ≤ 1

142`

]
= P

[
k(Φ) ≥ `

]
= P

[ ∨
Ψ

D(Ψ�Rσ,τp(Φ)) ≥ `
]

≤
∑
Ψ

P
[
D(Ψ�Rσ,τ1/14) ≥ `

]
≤ |Φ| 1

exp(`)
< |Φ| Cd

exp(e−2d`1/d)
.

For the induction step, let d ≥ 2 and assume the theorem holds for d−1. Let Φ be a formula of
depth d+ 1. Let Ψ range over depth-d subformulas of Φ. In particular, we have |Φ| = 1 +

∑
Ψ |Ψ|.

We will define a family of events denoted A and Bi (i ∈ N) and Ci,j (i, j ∈ N) and show that the
union of these events covers the event {q(Φ) ≤ 1

14d+1`
}. We will then bound the probability of each

of these events and show that the (infinite) sum of these probabilities is at most |Φ| Cd

exp(e−2d`1/d)
.

For all i ∈ N, define ki and αi by

ki := ei−1`1/d, αi :=
ki

14d`

(
=

1

14de1−i`(d−1)/d

)
.

Events A and Bi and Ci,j (i, j ∈ N) are defined as follows:

A def⇐⇒
(
p(Φ) ≤ α0

)
,

Bi
def⇐⇒

∨
Ψ

(
q(Ψ) ≤ αi+1

)
∧
(
D(Ψ�Rσ,τq(Ψ)) ≥ ki

)
,

Ci,j
def⇐⇒

∨
Ψ

(
αi+j+1 < q(Ψ) ≤ αi+j+2

)
∧
(
D(Ψ�Rσ,ταi+1

) ≥ ki
)
.
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Claim: If q(Φ) ≤ 1

14d+1`
, then A ∨

∞∨
i=0

(
Bi ∨

∞∨
j=0

Ci,j
)
.

Proof of claim: Assume q(Φ) ≤ 1/14d+1` and further assume that A does not hold. Clearly
there exists a unique i ∈ N such that αi < p(Φ) ≤ αi+1 (since αi is eventually > 1). Since
q(Φ) = p(Φ)/14·k(Φ), we have k(Φ) > αi14d` = ki. Note that ki ≥ k0 = e−1`1/d ≥ 1 (using the
assumption that ` ≥ ed). Since k(Φ) = max{1,maxΨ D(Ψ�Rσ,τp(Φ))}, it follows that there exists a Ψ

such that D(Ψ�Rσ,τp(Φ)) ≥ ki.
Fix an arbitrary choice of Ψ such that D(Ψ�Rp(Φ)) ≥ ki. There are two cases to consider: either

q(Ψ) ≤ αi+1 or αi+j+1 < q(Ψ) ≤ αi+j+2 for some j ∈ N.

• Assume q(Ψ) ≤ αi+1. In this case, we have D(Ψ�Rp(Φ)) ≤ D(Ψ�Rq(Ψ)) since p(Φ) ≤ q(Ψ).
Therefore, D(Ψ�Rσ,τq(Ψ)) ≥ ki. We conclude that Bi holds.

• Assume αi+j+1 < q(Ψ) ≤ αi+j+2 for some j ∈ N. We have D(Ψ�Rp(Φ)) ≤ D(Ψ�Rαi+1) since
p(Φ) ≤ αi+1. Therefore, D(Ψ�Rσ,ταi+1) ≥ ki. We conclude that Ci,j holds.

This concludes the proof of the claim.

To complete the proof of the theorem, we will bound the probabilities of events A, Bi and Ci,j
and take a union bound. We ignore the fact that all but finitely many of these events have zero
probability, since P[ Bi ] = 0 (resp. P[ Ci,j ] = 0) for all αi > 1 (resp. αi+j+1 > 1). Instead, we
show that P[ Bi ] is exponentially decreasing in i, while Pr[ Ci,j ] is exponentially decreasing in j
and doubly exponentially decreasing in i.

We first bound the probability of A:

P[A ] = P
[ ∨

Ψ

q(Ψ) ≤ 1

14de`(d−1)/d

]
≤
∑
Ψ

P
[

q(Ψ) ≤ 1

14de`(d−1)/d

]
≤ |Φ| Cd−1

exp(e−2(d− 1)e1/(d−1)`1/d)
(induction hypothesis)

≤ |Φ| Cd−1

exp(e−2d`1/d)
(using e1/(d−1) ≥ d

d−1).
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We next bound the probability of Bi:

P[Bi ] = P
[ ∨

Ψ

(
q(Ψ) ≤ αi+1

)
∧
(
D(Ψ�Rσ,τq(Ψ)) ≥ ki

) ]
≤
∑
Ψ

P
[

q(Ψ) ≤ αi+1

]
P
[
D(Ψ�Rσ,τq(Ψ)) ≥ ki

∣∣∣ q(Ψ) ≤ αi+1

]
≤
(

1

e

)ki∑
Ψ

P
[

q(Ψ) ≤ αi+1

]
(Lemma 9)

=
1

exp(ei−1`1/d)

∑
Ψ

P
[

q(Ψ) ≤ 1

14de−i`(d−1)/d

]
≤ 1

exp(ei−1`1/d)
|Φ| Cd−1

exp(e−2(d− 1)e−i/(d−1)`1/d)
(induction hypothesis)

≤ 1

exp(ei−1`1/d)
|Φ| Cd−1

exp(e−2(d− 1)`1/d − ie−2`1/d)
(e−i/(d−1) ≥ 1− i

d−1)

=
1

exp((ei−1 − (i+ 1)e−2)`1/d)
|Φ| Cd−1

exp(e−2d`1/d)

≤ 1

exp(ei−1 − (i+ 1)e−2)
|Φ| Cd−1

exp(e−2d`1/d)
.

The last inequality uses the assumption `1/d ≥ 1 as well as the nonnegativity of ei−1 − (i + 1)e−2

for all i ∈ N.
Finally, we bound the probability of Ci,j :

P[ Ci,j ] = P
[ ∨

Ψ

(
αi+j+1 < q(Ψ) ≤ αi+j+2

)
∧
(
D(Ψ�Rσ,ταi+1

) ≥ ki
)]

≤
∑
Ψ

P
[

q(Ψ) ≤ αi+j+2

]
P
[
D(Ψ�Rσ,ταi+1

) ≥ ki
∣∣∣ αi+j+1 < q(Ψ) ≤ αi+j+2

]
≤
(
αi+1/αi+j+1

e

)ki∑
Ψ

P
[

q(Ψ) ≤ αi+j+2

]
(Lemma 9)

=
1

exp((j + 1)ei−1`1/d)

∑
Ψ

P
[

q(Ψ) ≤ 1

14de−(i+j+1)`(d−1)/d

]
≤ 1

exp((j + 1)ei−1`1/d)
|Φ| Cd−1

exp(e−2(d− 1)e−(i+j+1)/(d−1)`1/d)
(ind. hyp.)

≤ 1

exp((j + 1)ei−1`1/d)
|Φ| Cd−1

exp(e−2(d− 1)`1/d − (i+ j + 1)e−2`1/d)

=
1

exp(((j + 1)ei−1 − (i+ j + 2)e−2)`1/d)
|Φ| Cd−1

exp(e−2d`1/d)

≤ 1

exp((j + 1)ei−1 − (i+ j + 2)e−2)
|Φ| Cd−1

exp(e−2d`1/d)
.

The last inequality uses the assumption `1/d ≥ 1 and the nonnegativity of (j+1)ei−1−(i+j+2)e−2

for all i, j ∈ N.
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We finish the proof by taking a union bound:

P
[

q(Φ) ≤ 1

14d+1`

]
≤ P[A ] +

∞∑
i=0

(
P[Bi ] +

∞∑
j=0

P[ Ci,j ]

)
≤ |Φ| Cd

exp(e−2d`1/d)
.

5 PARITY

We use the results of the last section to prove our lower bound for the parity function.

Theorem 3 (restated). Depth d+ 1 formulas computing parity require size exp(Ω(d(n1/d − 1))).

Proof. Suppose Φ is a depth d+ 1 formula computing parity. Then

P
%∼R1/n

[
Φ�% is non-constant

]
= 1−

(
1− 1

n

)n
> 1− 1

e
.

On the other hand, by Theorem 10 and Lemma 9,

P
%∼R1/n

[
Φ�% is non-constant

]
= P

σ,τ

[
D(Φ�Rσ,τ1/n) ≥ 1

]
≤ P

[
D(Φ�Rσ,τmax{1/n,q(Φ)}) ≥ 1

]
≤ P

[
q(Φ) ≤ 1/n

]
+ P

[
D(Φ�Rσ,τq(Φ)) ≥ 1

]
≤ |Φ|

exp(Ω(dn1/d)−O(d))
+

1

e
.

Therefore,

|Φ| ≥
(

1− 2

e

)
exp

(
Ω(dn1/d)−O(d)

)
.

It follows that there exist universal constants c0, c1 > 0 (determined by the constants in the Ω(·)
and O(·)) such that |Φ| ≥ exp(c0d(n1/d − 1)) in the regime d ≤ c1 lnn.

In the regime d > c1 lnn, we have d(n1/d − 1) = Θ(lnn), more precisely,

lnn < d(n1/d − 1) < c1(ec1 − 1) lnn.

Note that d(n1/d − 1) is decreasing in d and limd→∞ d(n1/d − 1) = lnn. In order to claim a tight
lower bound of exp(Ω(d(n1/d − 1))) for all d and n (in particular when d = ω(log n)), we require
an nΩ(1) lower bound on the (gate-)size of unbounded-depth formulas computing parity. A lower
bound of n follows from Khrapchenko’s classic n2 leaf-size lower bound [6], which completes our
proof. (While Khrapchenko’s bound suffices our purposes, we remark that an asymptotically tight
Ω(n2) formula (gate-)size lower bound for parity was shown by Childs, Kimmel and Kothari [3]
using quantum techniques.)

6 Average Sensitivity

Theorem 4 (restated). Depth d+ 1 formulas of size s have average sensitivity O(1
d ln s)d.
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Proof. Let Φ be a formula of depth d+1 and size s (recall that size is the number of gates). Assume
as(Φ) ≥ 1, since otherwise the theorem is trivial. We further assume that Φ has bottom fan-in ≤ s;
otherwise it is easily shown that as(Φ) = O(as(Φ′)) where Φ′ is obtained from Φ by replacing every
bottom AND (resp. OR) gate with fan-in > s with 0 (resp. 1). In particular, Φ has leaf-size ≤ s2,
so it depends on ≤ s2 distinct variables.

Letting p = 1/as(Φ) and using facts (1) and (2), we have

1 = p·as(Φ) = E
%∼Rp

[
as(Φ�%)

]
≤ E

σ,τ

[
D(Φ�Rσ,τp )

]
=

s2∑
k=1

P
σ,τ

[
D(Φ�Rσ,τp ) ≥ k

]
.

For all k ∈ N, by Theorem 10 and Lemma 9,

P
σ,τ

[
D(Φ�Rσ,τp ) ≥ k

]
≤ P

σ,τ

[
D(Φ�Rσ,τmax{p,q(Φ)}) ≥ k

]
≤ P

[
q(Φ) ≤ p

]
+ P

[
D(Φ�Rσ,τq(Φ)) ≥ k

]
≤ s

exp(Ω(d·as(Φ)1/d)−O(d))
+

1

ek
.

Combining these inequalities, we have

exp(Ω(d·as(Φ)1/d)−O(d)) ≤ s3

1−
∑∞

k=1 e−k
=

1− e−1

1− 2e−1
s3 = O(s3).

It follows that Ω(d·as(Φ)1/d) ≤ 3 ln s+O(d) and therefore as(Φ) = O(1
d ln s)d.

7 Formulas vs. Circuits

Our lower bound for parity (Theorem 3) implies a separation between the power of depth d + 1
formulas vs. circuits. We write {poly-size depth d + 1 circuits/formulas} for the non-uniform
complexity class of languages computable by nO(1)-size depth d+ 1 circuits/formulas where d(n) is
an arbitrary function of n.

Corollary 11. For all d(n) = o(log n) with limn→∞ d(n) =∞,

(3) {poly-size depth d+ 1 formulas} 6= {poly-size depth d+ 1 circuits}.

Moreover, for all d ≤ C logn
log logn (for some universal constant C > 0),

(4) {poly-size depth d+ 1 circuits} * {no(d)-size depth d+ 1 formulas}.

Separation (3) may be regarded as the depth d + 1 analogue of the conjectured separation
{poly-size formulas} 6= {poly-size circuits}, also known as NC1 6= P/poly. By Spira’s theorem [8],
every poly-size formula is equivalent to a poly-size formula of depth O(log n); thus, extending (3)
from depth o(log n) to depth O(log n) would imply NC1 6= P/poly (in fact NC1 6= AC1).

For the smaller range of d ≤ c logn
log logn , we get the stronger separation (4). In light of Fact 5, this

is the strongest possible separation between formulas and circuits of the same depth.
We remark that until recently not even the weak separation (3) was known to hold for any

super-constant d � O(1). The first progress on this question was made in [7], where (4) was shown
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to hold for all d ≤ log log log n via a lower bound for distance-log log n st-connectivity. In
fact, the lower bound of [7] implies a much stronger result: for all d ≤ log log log n,

(5) {poly-size depth d+ 1 circuits} * {no(d)-size depth logn
(log logn)3

formulas}.

It remains an open problem to push separation (5) to greater depths.
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