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Abstract

Previous work of the author [39] showed that the Homomorphism Preservation Theorem
of classical model theory remains valid when its statement is restricted to finite structures.
In this paper, we give a new proof of this result via a reduction to lower bounds in circuit
complexity, specifically on the AC0 formula size of the colored subgraph isomorphism problem.
Formally, we show the following: if a first-order sentence Φ of quantifier-rank k is preserved under
homomorphisms on finite structures, then it is equivalent on finite structures to an existential-
positive sentence Ψ of quantifier-rank kO(1). Quantitatively, this improves the result of [39],
where the upper bound on the quantifier-rank of Ψ is a non-elementary function of k.
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1 Introduction

Preservation theorems are a family of results in classical model theory that equate semantic and
syntactic properties of first-order formulas. A prominent example — and the subject of this paper —
is the Homomorphism Preservation Theorem, which states that a first-order sentence is preserved
under homomorphisms if, and only if, it is equivalent to an existential-positive sentence. (Definitions
for the various terms in this theorem are given in Section 3.) Two related classical preservation
theorems are the  Loś-Tarski Theorem (preserved under embedding homomorphisms ⇔ equivalent
to an existential sentence) and Lyndon’s Theorem (preserved under surjective homomorphism ⇔
equivalent to a positive sentence).

In all classical preservation theorems, the “syntactic property⇒ semantic property” direction is
straightforward, while the “semantic property ⇒ syntactic property” direction is typically proved
by an application of the Compactness Theorem.1 In order to use compactness, it is essential that
the semantic property (i.e. preservation under a certain relationship between structures) holds with
respect to all structures, that is, both finite and infinite. One may also ask about the status of
classical preservation theorems relative to a class of structures C . So long as compactness holds in
C (for example, whenever C is first-order axiomatizable), so too will all of the classical preservation
theorems. The situation is less clear when C is the class of finite structures (or a subclass thereof),
as the Compactness Theorem is easily seen to be false when restricted to finite structures.2

The program of classifying theorems in classical model theory according to their validity over
finite structures was a major line of research, initiated by Gurevich [20], in the area known as finite
model theory (see [15, 17, 28]). The status of preservation theorems in particular was systematically
investigated in [3, 38]. Given the failure of the Compactness Theorem on finite structures, it
is not surprising that nearly all of the classical preservation theorems become false when their
statements are restricted to finite structures. A counterexample of Tait [44] from 1959 showed that
the  Loś-Tarski Theorem is false over finite structures, while Ajtai and Gurevich [1] in 1987 gave the
demise of Lyndon’s Theorem via a stronger result in circuit complexity. Namely, they showed that
Monotone ∩ AC0 6= Monotone-AC0, that is, there is a (semantically) monotone Boolean function
that is computable by AC0 circuits, but not by (syntactically) monotone AC0 circuits. The failure of
Lyndon’s theorem on finite structures follows via the descriptive complexity correspondence between
AC0 and first-order logic. (See [26] about the nexus between logics and complexity classes.)

Given the failure of both the  Loś-Tarski and Lyndon Theorems, it might be expected that the
Homomorphism Preservation Theorem also fails over finite structures (as it seems to live at the
intersection of  Loś-Tarski and Lyndon). On the contrary, however, previous work of the author [39]
showed that the Homomorphism Preservation Theorem remains valid over finite structures. The
technique of [39] is model-theoretic: its starting point is a new compactness-free proof of the classical
theorem, which is then adapted to finite structures. (A summary of the argument is included in
Section 8.) In the present paper, we give a completely different proof of this result — and moreover
obtain a quantitative improvement — via a reduction to lower bounds in circuit complexity. In
particular, we rely on a recent result (of independent interest) that the AC0 formula size of the
colored G-subgraph isomorphism problem is nΩ(tree-depth(G)ε) for an absolute constant ε > 0.

1The Compactness Theorem states that a first-order theory T (i.e. set of first-order sentences) is consistent (i.e.
there exists a structure A which satisfies every sentence in T ) if every finite sub-theory of T is consistent. (See [24]
for background and proofs of various preservation/amalgamation/interpolation theorems in classical model theory.)

2Consider the theory T = {Φn : n ∈ N} where Φn expresses “there exist ≥ n distinct elements”. Every finite
sub-theory of T has a finite model, but T itself does not.
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Related Work. Prior to [39], the status of the Homomorphism Preservation Theorem on finite
structures was investigated by Feder and Vardi [16], Gräedel and Rosen [18], and Rosen [37],
who resolved special cases of the question for restricted classes of first-order sentences. Another
special case is due to Atserias [7] in the context of CSP dualities. (See [39] for a discussion of
these results.) A different — and incomparable — line of results [6, 14, 31] proves versions of the
Homomorphism Preservation Theorems restricted to various sparse classes of finite structures (see
Ch. 10 of [33], as well as [8] related to the  Loś-Tarski Theorem). See Stolboushkin [43] for an
alternative counterexample showing that Lyndon’s Theorem fails on finite structures, which is
simpler than Ajtai and Gurevich [1] (but doesn’t extend to show Monotone-AC0 6= Monotone ∩
AC0).

Outline. The rest of the paper is organized as follows. Because our narrative jumps between logic,
graph theory and circuit complexity, for readability sake the various preliminaries — which may be
familiar (at least in part) to many readers — are presented in separate sections as needed throughout
the paper. In Section 2, we review basic definitions related to structures, homomorphisms, and
first-order logic. In Section 3, we formally state the various preservation theorems discussed in the
introduction, including our main result (Theorem 6). Section 4 includes the necessary background
on circuit complexity (AC0 and monotone projections) and graph theory (tree-width, tree-depth,
and minor-monotonicity). In Section 5, we introduce the colored G-subgraph isomorphism problem
and state the known bounds on its complexity for AC0 circuits and AC0 formulas. Section 6 states
a needed lemma from descriptive complexity (FO = AC0) and a result connecting quantifier-rank
to tree-depth. In Section 7, we prove our main result (Theorem 6) via a reduction to lower bounds
for colored G-subgraph isomorphism. (After all the preliminaries, the reduction itself is relatively
simple.) For comparison sake, the previous model-theoretic proof technique of [39] is summarized
in Section 8. We conclude in Section 9 with a brief discussion of syntax vs. semantics in circuit
complexity.

2 Preliminaries, I

2.1 Structures and Homomorphisms

Throughout this paper, let σ be a fixed finite relational signature, that is, a list of relation symbols
R(r) (where r ∈ N denotes the arity of R). A structure A consists of a set A (called the unvierse of
A) together with interpretations RA ⊆ Ar for each relation symbol R(r) in σ. A priori, structures
may be finite or infinite.

A homomorphism from a structure A to a structure B is a map f : A → B such that
(a1, . . . , ar) ∈ RA =⇒ (f(a1), . . . , f(ar)) ∈ RB for every R(r) ∈ σ and (a1, . . . , ar) ∈ Ar. No-
tation A → B asserts the existence of a homomorphism from A to B.

A homomorphism f : A → B is an embedding if f is one-to-one and satisfies (a1, . . . , ar) ∈
RA ⇐⇒ (f(a1), . . . , f(ar)) ∈ RB for every R(r) ∈ σ and (a1, . . . , ar) ∈ Ar.

2.2 First-Order Logic

First-order formulas (in the relational signature σ) are constructed out of atomic formulas (of the
form x1 = x2 or R(x1, . . . , xr) where R(r) ∈ σ and xi’s are variables) via boolean connectives (ϕ∧ψ,
ϕ∨ψ, and ¬ϕ) and universal and existential quantification (∀x ϕ(x) and ∃x ϕ(x)). For a structure
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A and a first-order formula ϕ(x1, . . . , xk) and a tuple of elements ~a ∈ Ak, notation A |= ϕ(~a) is the
statement that A satisfies ϕ with ~a instantiating the free variables ~x. First-order formulas with no
free variables are called sentences and represented by capital Greek letters Φ and Ψ.

A first-order sentence (or formula) is said to be:

• positive if it does not contain any negations (that is, it has no sub-formula of the form ¬ϕ),

• existential if it contains only existential quantifiers (that is, it has no universal quantifiers)
and has no negations outside the scope of any quantifier, and

• existential-positive if it is both existential and positive.

Two important parameters first-order sentences are quantifier-rank and variable-width. Quantifier-
rank is the maximum nesting depth of quantifiers. Variable-width is the maximum number of free
variables in a sub-formula. As we will see in Section 6, under the descriptive complexity charac-
terization of first-order logic in terms of AC0 circuits, variable-width corresponds to AC0 circuit
size and quantifier-rank corresponds to AC0 formula size (or, more accurately, AC0 formula depth
when fan-in is restricted to O(n)).

Note that first-order sentences are not assumed to be in prenex form. For example, the formula
(∃x P (x)) ∨ (∃y ¬Q(y)) is existential (but not positive) and has quantifier-rank 1 and variable-
width 1.

3 The Homomorphism Preservation Theorem

Definition 1. A first-order sentence Φ is preserved under homomorphisms [on finite structures] if
(A |= Φ and A → B) =⇒ B |= Φ for all [finite] structures A and B. The notions of preserved under
embeddings and preserved under surjective homomorphisms are defined similarly.

We now formally state the three classical preservations mentioned in the introduction.

Theorem 2 ( Loś-Tarski / Lyndon / Homomorphism Preservation Theorems [29]).

A first-order sentence is preserved under [embedding / surjective / all ] homomorphisms if, and only
if, it is equivalent to an [existential / positive / existential-positive] sentence.

As discussed in the introduction,  Loś-Tarski and Lyndon’s Theorems become false when re-
stricted to finite structures.

Theorem 3 (Failure of  Loś-Tarski and Lyndon Theorems on Finite Structures [1, 44]).

There exists a first-order sentence that is preserved under [embedding / surjective] homomorphisms
on finite structures, but is not equivalent on finite structures to any [existential / positive] sentence.

In contrast, the Homomorphism Preservation Theorem remains valid over finite structures.

Theorem 4 (Homomorphism Preservation Theorem on Finite Structures [39]).

If a first-order sentence of quantifier-rank k is preserved under homomorphisms on finite structures,
then it is equivalent on finite structures to an existential-positive sentence of quantifier-rank β(k),
for some computable function β : N→ N.
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We will refer to β : N → N in Theorem 4 as the “quantifier-rank blow-up”. (Formally, there
is one computable function βσ : N → N for each finite relational signature σ.) We remark that
the upper bound on β(k) given by the proof of Theorem 4 is a non-elementary function of k (i.e.
it is grows faster than any bounded-height tower of exponentials). In contrast, a second result in
[39] shows that the optimal bound β(k) = k holds in the classical Homomorphism Preservation
Theorem.

Theorem 5 (“Equi-rank” Homomorphism Preservation Theorem [39]).

If a first-order sentence of quantifier-rank k is preserved under homomorphism, then it is equivalent
to an existential-positive sentence of quantifier-rank k.

Due to reliance on the Compactness Theorem, the original proof of the classical Homomorphism
Preservation Theorem gives no computable upper bound whatsoever on the quantifier-rank blow-
up. Theorem 5 is proved by a constructive, compactness-free argument (see Section 8). In [39] I
conjectured that this stronger “equi-rank” theorem is valid over finite structures. However, new
techniques were clearly needed to improve the non-elementary upper bound on β(k).

The main result of the present paper is a completely new proof of Theorem 4, which moreover
gives a polynomial upper bound on β(k).

Theorem 6 (“Poly-rank” Homomorphism Preservation Theorem on Finite Structures).

If a first-order sentence of quantifier-rank k is preserved under homomorphisms on finite structures,
then it is equivalent on finite structures to an existential-positive sentence of quantifier-rank kO(1).

The proof of Theorem 6 involves a reduction to the AC0 formula size of SUBG, the colored
G-subgraph isomorphism problem. This reduction transforms lower bounds on the AC0 formula
size of SUBG into upper bounds on the quantifier-rank blow-up β(k) in Theorem 4. In Section
7.1, we derive an exponential upper bound β(k) ≤ 2O(k) from an existing lower bound of [41]
on the AC0 formula size of SUBPk (also known as the distance-k connectivity problem). Two
further steps, described in Section 7.2, are required for the polynomial upper bound β(k) ≤ kO(1)

of Theorem 6. The first is a new result in graph minor theory from [25] (joint work with Ken-
ichi Kawarabayashi), which gives a “polynomial excluded-minor approximation” of tree-depth,
analogous to the Polynomial Grid-Minor Theorem of Chekuri and Chuzhoy [12]. The second
ingredient, in a forthcoming paper of the author [42], is a lower bound on AC0 formula size of
SUBG in the special case where G is complete binary tree.

4 Preliminaries, II

4.1 Circuit Complexity

We consider Boolean circuits with unbounded fan-in AND and OR gates and negations on inputs.
That is, inputs are labelled by variables xi or negated variables xi (where i comes from some finite
index set, typically {1, . . . , n}). We measure size by the number of gates and depth by the maximum
number of gates on an input-to-output path. Boolean circuits with fan-out 1 (i.e. tree-like Boolean
circuits) are called Boolean formulas. (Boolean formulas are precisely the same as quantifier-free
first-order formulas.)

The depth-d circuit/formula size of a Boolean function f is the minimum size of a depth-d
circuit/formula that computes f . AC0 refers to constant-depth, poly(n)-size sequences of Boolean
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circuits/formula on poly(n) variables. For a sequence (fn) of Boolean functions on poly(n) variables
and a constant c > 0, we say that “(fn) has AC0 circuit/formula size O(nc) (resp. Ω(nc))” if for
some d (resp. for all d), the depth-d circuit/formula size of fn is Od(n

c) (resp. Ωd(n
c)) for all n.

One slightly unusual complexity measure (which arises in the descriptive complexity correspon-
dence between AC0 and first-order logic in Section 6) is fan-in n depth, that is, the minimum depth
required to compute a Boolean function by AC0 circuits with fan-in restricted to n. Note that AC0

formula size lower bounds imply fan-in n depth lower bounds: if f has AC0 formula size ω(nc), then
its fan-in n formula depth is at least c (for sufficiently large n). (This follows from the observation
that every depth-d formula with fan-in n is equivalent to a depth-d formula of size at most nd.)

4.2 Monotone Projections

Definition 7 (Monotone-Projection Reductions). For Boolean functions f : {0, 1}I → {0, 1} and
g : {0, 1}J → {0, 1}, a monotone-projection reduction from f to g is a map ρ : J → I ∪ {0, 1} such
that f(x) = g(ρ∗(x)) for all x ∈ {0, 1}I where ρ∗(x) ∈ {0, 1}J is defined by

(ρ∗(x))j =


xi if ρ(j) = i ∈ I,
0 if ρ(j) = 0,

1 if ρ(j) = 1.

(Properly speaking, the “reduction” from f to g is the map ρ∗ : {0, 1}I → {0, 1}J induced by ρ.)
Notation f ≤mp g denotes the existence of a monotone-projection reduction from f to g.

When describing monotone-projection reductions later in this paper, it will be natural to speak
in terms of indexed sets of Boolean variables {Xi}i∈I and {Yj}j∈J , rather than sets I and J
themselves. Thus, a monotone-projection reduction ρ : J → I ∪ {0, 1} associates each variable Yj
with either a constant (0 or 1) or some variable Xi.

Note that ≤mp is a partial order on Boolean functions. This is the simplest kind of reduction
in complexity theory. It has the nice property that every standard complexity measure on Boolean
functions is monotone under ≤mp. For instance, letting Ld(f) denote the depth-d formula size of
f , we have f ≤mp g =⇒ Ld(f) ≤ Ld(g).

4.3 Tree-Width and Tree-Depth

Graphs in this paper are finite simple graphs. (In contrast to the previous discussion of infinite
structures, we assume finiteness whenever we speak of graphs.) Formally, a graph G is a pair
(V (G), E(G)) where V (G) is a finite set and E(G) ⊆

(
V (G)

2

)
is a set of unordered pairs of vertices.

Four specific graphs that arise in this paper: for k ≥ 1, let Kk denote the complete graph of
order k, let Pk denote the path of order k, let Bk denote the complete binary tree of height k (where
every leaf-to-root path has order k), and let Gridk×k denote the k × k grid graph. (In the case
k = 1, all four of these graphs are a single vertex.)

We recall the definitions of two structural parameters, tree-width and tree-depth, which play an
important role in this paper. A tree decomposition of a graph G consists of a tree T and a family
W = {Wt}t∈V (T ) of sets Wt ⊆ V (G) satisfying

•
⋃
t∈V (T )Wt = V (G) and every edge of G has both ends in some Wt, and
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• if t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then Wt ∩Wt′′ ⊆Wt′ .

The tree-width of G, denoted tw(G), is the minimum of maxt∈V (T ) |Wt| − 1 over all tree decompo-
sitions (T,W) of G.

The tree-depth of G, denoted td(G), is the minimum height of a rooted forest F such that
V (F ) = V (G) and every edge of G has both ends in some branch in F (i.e. for every {v, w} ∈
E(G), vertices v and w have an ancestor-descendant relationship in F ). There is also an inductive
characterization of tree-depth: if G has connected components G1, . . . , Gt, then

td(G) =


1 if |V (G)| = 1,

1 + min
v∈V (G)

td(G− v) if t = 1 and |V (G)| > 1,

max
i∈{1,...,t}

td(Gi) if t > 1.

These two structural parameters, tree-width and tree-depth, are related by inequalities:

(1) tw(G) ≤ td(G)− 1 ≤ tw(G) · log |V (G)|.

Tree-depth is also related the length of the longest path in G, denoted lp(G):

(2) log(lp(G) + 1) ≤ td(G) ≤ lp(G).

(See Ch. 6 of [33] for background on tree-depth and proofs of these inequalities.)

Graph parameters tw(·) and td(·), as well as lp(·), are easily seen to be monotone under
the graph-minor relation. A reminder what this means: recall that a graph H is a minor of a
graph G, denoted H � G, if H can be obtained from G by a sequence of edge contractions and
vertex/edge deletions. A graph parameter f : {graphs} → N is said to be minor-monotone if
H � G =⇒ f(H) ≤ f(G) for all graphs H and G.

5 The Colored G-Subgraph Isomorphism Problem

In this section, we introduce the colored G-subgraph isomorphism problem and state the known
upper and lower bounds on its complexity with respect to AC0 circuits and formulas.

Definition 8. For a graph G and n ∈ N, the blow-up G↑n is the graph defined by

V (G↑n) = V (G)× [n],

E(G↑n) =
{
{(v, a), (w, b)} : {v, w} ∈ E(G), a, b ∈ [n]

}
.

For α ∈ [n]V (G), let G(α) denote the subgraph of G↑n defined by

V (G(α)) =
{

(v, αv) : v ∈ V (G)
}
,

E(G(α)) =
{
{(v, αv), (w,αw)} : {v, w} ∈ E(G)

}
.

(Note that each G(α) is an isomorphic copy of G.)

Definition 9. For any fixed graph G, the colored G-subgraph isomorphism problem asks, given a
subgraph X ⊆ G↑n, to determine whether or not there exists α ∈ [n]V (G) such that G(α) ⊆ X. For
complexity purposes, we view this problem as a Boolean function SUBG,n : {0, 1}|E(G)|·n2 → {0, 1}
with variables {Xe}e∈E(G↑n). We write SUBG for the sequence of Boolean functions {SUBG,n}n∈N.
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5.1 Minor-Monotonicity

The following observation appears in [27].

Proposition 10. If H is a minor of G, then SUBH ≤mp SUBG (i.e. SUBH,n ≤mp SUBG,n for all
n ∈ N).

Proof. By transitivity of ≤mp, it suffices to consider the two cases where H is obtained from G via
deleting or contracting a single edge {v, w} ∈ E(G). In both cases, the monotone projection maps
each variable X{(v′,a),(w′,b)} of SUBG with {v′, w′} 6= {v, w′} to the correspond variable Y{(v′,a),(w′,b)}
of SUBH . In the deletion case, we set the variable X{(v,a),(w,b)} to the constant 1 for all a, b ∈ [n].
In the contraction case, we set X{(v,a),(w,b)} to 1 if a = b and to 0 if a 6= b. (This “planted perfect
matching” has the effect of gluing the v-fibre and the w-fibre for instances of SUBH .)

Proposition 10 implies that the graph parameter G 7→ µ(SUBG) is minor-monotone for any
standard complexity measure µ : {Boolean functions} → N (e.g. depth-d AC0 formula size). It also
implies:

Corollary 11. For all graphs G, SUBPtd(G)
≤mp SUBG.

Proof. Recall that td(G) ≤ lp(G) by inequality (2). That is, every graph G contains a path of
length td(G).3 Since subgraphs are minors, we have Ptd(G) � G and therefore SUBPtd(G)

≤mp

SUBG by Proposition 10.

5.2 Upper Bounds

The obvious “brute-force” way of solving SUBG has running time O(n|V (G)|): given an input
X ⊆ G↑n, check if G(α) ⊆ X for each α ∈ [n]V (G). A better upper bound comes from tree-
width: based on an optimal tree-decomposition (T,W), there is a dynamic-programming algorithm
with running time ntw(G)+O(1) [34]. This algorithm can be implemented by AC0 circuits of size
ntw(G)+O(1) and depth O(|V (G)|).4

Unlike circuits, formulas cannot faithfully implement dynamic-programming algorithms. The
fastest known formulas for SUBG are tied to tree-depth: based on a minimum-height rooted forest
F witnessing td(G), there are AC0 formulas of size ntd(G)+O(1) solving SUBG (which come from
AC0 circuits of depth td(G) +O(1) and fan-in O(n)). For future reference, these upper bounds are
stated in the following proposition.5

Proposition 12. For all graphs G, SUBG is solvable by AC0 circuits of size ntw(G)+O(1), as well
as by AC0 formulas of size ntd(G)+O(1).

3This fact is straightforward to prove. Consider the case that G is connected. Starting at any vertex of G,
constructed a rooted tree T by a depth-first search. Observe that for every edge {v, w} ∈ E(G), it must be the case
that v and w lie in a common branch of T . Therefore, the height of T is an upper bound on td(G). On the other
hand, note that each root-to-leaf branch of T is a path in G. Therefore, the height of T is a lower bound on lp(G).

4It may be possible to achieve running times of nδ·tw(G)+O(1) for constants δ < 1 using fast matrix multiplication
algorithms (cp. [46]). However, these algorithms appear to require logarithmic-depth circuits. For unrestricted
Boolean circuits, no upper bound better than nO(tw(G)) is known, and in fact Marx [30] has shown that the Strong
Exponential Time Hypothesis rules out circuits smaller than nO(tw(G)/ log tw(G)).

5For the uncolored G-subgraph isomorphism graph, one gets essentially the same upper bounds via a reduction
to SUBG using the “color-coding” technique of Alon, Yuster and Zwick [4]. Amano [5] observed that this uncolored-
to-colored reduction can be implemented by AC0 circuits.
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5.3 Lower Bounds: AC0 Circuit Size

Previous work of the author [40] showed that the AC0 circuit size of SUBKk (a.k.a. the (colored)
k-CLIQUE problem) is nΩ(k) for every k ∈ N. Generalizing the technique of [40], Amano [5] gave
a lower bound on the AC0 circuit size of SUBG for arbitrary graphs G. In particular, he showed
that the AC0 circuit size of SUBGridk×k is nΩ(k). This result, combined with the recent Polynomial
Grid-Minor Theorem6 of Chekuri and Chuznoy [12], implies that the AC0 circuit size of SUBG is
nΩ(tw(G)ε) for an absolute constant ε > 0. An even stronger lower bound was subsequently proved
by Li, Razborov and Rossman [27] (without appealing to the Polynomial Grid-Minor Theorem).

Theorem 13. For all graphs G, the AC0 circuit size of SUBG is nΩ(tw(G)/ log tw(G)).

This result is nearly tight, as it matches the upper bound of Proposition 12 up to theO(log tw(G))
factor in the exponent.

5.4 Lower Bounds: AC0 Formula Size

For the main result of this paper (Theorem 6), we require a lower bound on the AC0 formula size
of SUBG (or in fact on the fan-in O(n) depth of SUBG). Since formulas are a subclass of circuits,
Theorem 13 implies that the AC0 formula size of SUBG is at least nΩ(tw(G)/ log tw(G)). However,
this does not match the ntd(G)+O(1) lower bound of Proposition 12, since td(G) may be larger than
tw(G) (by up to a log |V (G)| factor). In particular, the path Pk has tree-width 1 and tree-depth
dlog(k + 1)e. Although Theorem 13 gives no non-trivial lower bound on the AC0 formula size of
SUBPk , a nearly optimal lower bound was proved in different work of the author [41]:

Theorem 14. The AC0 formula size of SUBPk is nΩ(log k). More precisely, the depth-d formula
size of SUBPk,n is nΩ(log k) for all k, d, n ∈ N with k ≤ log logn and d ≤ logn

(log logn)3 .

Via the relationship between AC0 formula size and fan-in O(n) circuit depth, Theorem 14
implies:

Corollary 15. Circuits with fan-in O(n) computing SUBPk have depth Ω(log k).

Remark 16. We mention a few other lower bounds related to Corollary 15. A recent paper of
Chen, Oliveira, Servedio and Tan [13] gives a nearly optimal size-depth trade-off for AC0 circuits

computing SUBPk . Namely, they prove that the depth-d circuit size of SUBPk,n is nΩ(d−1k1/(d−1))

for all k ≤ n1/5. (This result is incomparable to Theorem 14.) As a corollary, this shows that
circuits with fan-in O(n) computing SUBPk have depth Ω(log k/ log log k) (a slightly weaker bound
than Corollary 15). Previous size-depth trade-offs due to Beame, Impagliazzo and Pitassi [9] and
Ajtai [2] imply lower bounds of Ω(log log k) and Ω(log∗ k) respectively on the fan-in O(n) depth of
SUBPk .

In Section 7.1, we use Corollary 15 (together with Corollary 11) to prove a weak version of
our main result, Theorem 6, with an exponential upper bound β(k) ≤ 2O(k) on the quantifier-rank
blow-up. We remark that the lower bound of Chen et al. implies a slightly weaker upper bound of
kO(k), while the very first non-trivial lower bound of Ajtai implies a non-elementary upper bound
on β(k) (similar to the original proof of Theorem 4). For the polynomial upper bound β(k) ≤ kO(1),
we require a stronger nΩ(td(G)ε) lower bound on the AC0 formula size of SUBG for arbitrary graphs
G, as we explain in Section 7.2.

6This states every graph G of tree-width k contains an Ω(kε)×Ω(kε) grid minor for an absolute constant ε > 0.
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6 Preliminaries, III

In this section, we state a few needed lemmas on the relationship between first-order logic and AC0

formula size. As before, let σ be a fixed finite relational signature. However, we now stipulate
that all structures in Sections 6 and 7 are finite. That is, we drop the adjective “finite”
everywhere since it is assumed. Asymptotic notation in these sections (O(·), etc.) implicitly depends
on σ (although, essentially without loss of generality, it suffices to prove our results in the special
case σ = {R(2)} of a single binary relation).

6.1 Descriptive Complexity: FO = AC0

Definition 17 (Gaifman Graphs, Encodings, MODELΦ).

• For a structure A, we denote by Gaif(A) the Gaifman graph of A. This is the graph whose
vertex set is the universe of A and whose edges are pairs {v, w} such that v 6= w and v, w
appear together in a tuple of any relation of A.

• If A has universe [n], then we denote by Enc(A) ∈ {0, 1}n̂ the standard bit-string encoding of
A where n̂ =

∑
R(t)∈σ n

t (= nOσ(1)). That is, each bit of Enc(A) is the indicator for a tuple
of some relation of A. (Note that Enc(·) is a bijection between structures with universe [n]
and strings in {0, 1}n̂.)

• For a first-order sentence Φ and n ∈ N, let MODELΦ,n : {0, 1}n̂ → {0, 1} be the Boolean
function defined, for structures A with universe [n], by

MODELΦ,n(Enc(A)) = 1
def⇐⇒ A |= Φ.

We write MODELΦ for the sequence of Boolean functions {MODELΦ,n}n∈N.

The next lemma gives one-half of the descriptive complexity correspondence between first-order
logic and AC0:

Lemma 18 (“FO ⊆ AC0”). For all 1 ≤ w ≤ k, if Φ is a first-order sentence of quantifier-rank
k and variable-width w, then MODELΦ is computable by AC0 circuits of depth k and fan-in O(n)
and size O(nw). These circuits are equivalent with AC0 formulas of depth k and size O(nk).

(To be completely precise, each of these O(·) terms is really Oσ,k(·), that is, with constants that
depend on k as well as the signature σ.) We remark that Lemma 18 has a converse (“AC0 ⊆ FO”)
with respect to both the uniform and non-uniform versions of AC0. We omit the statement of these
results, since the description of AC0 circuits via first-order sentences is not needed in this paper
(see [26] for details).

6.2 Retracts, Cores, Hom-Preserved Classes

The last bit of required background concerns homomorphism-preserved classes of structures. We
begin by defining the key notions of homomorphic equivalence and cores.

Definition 19 (Homomorphic Equivalence, (Co-)Retracts, Cores).

• Recall notation A → B denoting the existence of a homomorphism from A to B.

11



• Structures A and B are homomorphically equivalent, denoted A� B, if A → B and B → A.

• We write A ⊇→ B and say that B is a retract of A and A is a co-retract of B if: (1) B is a
substructure of A and (2) there exists a homomorphism A → B that fixes B pointwise (a.k.a.

a retraction). (Note that A ⊇→ B implies A� B.)

• A structure A is a core if it has no proper retract (that is, A ⊇→ B =⇒ A = B).

The next lemma states a few basic properties of cores (see [22, 23]).

Lemma 20.

(a) Every �-equivalence class contains a unique core up to isomorphism. (That is, every struc-
ture A is homomorphically equivalent to a unique core.)

(b) For every k, there are only finitely many non-isomorphic cores of tree-depth k. (This number
depends on the signature σ.)

(c) (As an aside:) If a graph G is a core, then the colored and uncolored G-subgraph isomorphism
problems are equivalent under linear-size monotone-projection reductions (see [19, 27]).

Definition 21 (Hom-Preserved Classes, Minimal Cores).

• We say that a class of structures C (i.e. a class of finite structures) is hom-preserved if,
whenever A ∈ C and A → B, we have B ∈ C .

• For a hom-preserved class C , let MinCores(C ) be the set of M ∈ C with the property that
for all structures A, if A ∈ C and A →M, then M is isomorphic to a retract of A.

The next lemma states the essential properties of MinCores(C ) (see [39]).

Lemma 22. The following hold for any hom-preserved class C :

(a) A ∈ C if, and only if, there exists M∈ MinCores(C ) such that M→A.

(b) Every structure in MinCores(C ) is, indeed, a core.

(c) Every homomorphism between structures in MinCores(C ) is an isomorphism.

(d) C is definable (i.e. within the class of all finite structures) by an existential-positive sentence
of quantifier-rank k if, and only if, td(Gaif(M)) ≤ k for all M∈ MinCores(C ).

(e) C is definable by an existential-positive sentence of variable-width w if, and only if, MinCores(C )
contains finitely many non-isomorphic structures and tw(Gaif(M)) ≤ w for every M ∈
MinCores(C ).

Since Lemma 22(d) in particular plays a key role in the next section, we briefly sketch the proof.
In one direction: Suppose C is defined by an existential-positive sentence Φ of quantifier-rank k.
It is easy to show (by a syntactic argument) that Φ is equivalent to a disjunction Ψ1 ∨ · · · ∨Ψt of
primitive-positive sentences Ψi (i.e. existential-positive sentences that involve conjunctions ∧ but
no disjunctions ∨), each with quantifier-rank at most k. For each Ψi, there is a corresponding
structure Ai with the property that B |= Ψi ⇔ Ai → B and moreover the tree-depth of Ai is at
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most the quantifier-rank of Ψi (and hence at most k). Thus, C is generated by A1, . . . ,At and
hence MinCores(C ) consists of finitely many cores, each of tree-depth at most k (coming from the
minimal elements among A1, . . . ,At in the homomorphism order).

For the reverse direction: Start with the assumption that all structures in MinCores(C ) have
tree-depth at most k. By Lemma 20(b), MinCores(C ) contains finitely many non-isomorphic
structures M1, . . . ,Mt. For each Mi, let Ψi be the corresponding primitive-positive sentence of
quantifier-rank at most k. Then C is defined by the existential-positive sentence Ψ1 ∨ · · · ∨Ψt.

7 Proof of Theorem 6

In this section, we finally prove our main result, the “Poly-rank” Homomorphism Preservation
Theorem on Finite Structures (Theorem 6, stated in Section 3). We begin in Section 7.1 by proving
a weaker version of the result with an exponential upper bound β(k) ≤ 2O(k). In Section 7.2, we
describe the improvement to β(k) ≤ kO(1), which involves new results from circuit complexity and
graph minor theory.

7.1 Preliminary Bound: β(k) ≤ 2O(k)

For simplicity sake, we will assume that σ consists of binary relations only. At the end of this
subsection, we explain how to extend the argument to arbitrary σ.

Let Φ be a first-order sentence of quantifier-rank k, let C be the set of finite models of Φ, and
assume that C is hom-preserved (that is, Φ is preserved under homomorphisms on finite structures).
Our goal is to show that Φ is equivalent to an existential-positive sentence of quantifier-rank 2O(k).
By Lemma 22(d), it suffices to show that td(Gaif(M)) ≤ 2O(k) for all M∈ MinCores(C ).

Consider any M ∈ MinCores(C ). Let G be the Gaifman graph of M, and let m be the size of
the universe ofM. (Note that m = |V (G)|.) The following claim is key to showing td(G) ≤ 2O(k).

Claim 23. For all n ∈ N, there exists a monotone-projection reduction SUBG,n ≤mp MODELΦ,mn.

In order to define this monotone-projection reduction, let us identify [mn] with the set V (G↑n)
(= V (G)× [n]). Variables Xe of SUBG,n are indexed by potential edges e ∈ E(G↑n) in a subgraph
X ⊆ G↑n. Variables Yi of MODELΦ,mn are indexed by the set

I :=
{

(R, (v, a), (w, b)) : R(2) ∈ σ, (v, a), (w, b) ∈ V (G↑n)
}
.

(That is, I is the set of potential 2-tuples of relations of structures with universe V (G↑n).) Define
the monotone projection ρ : {Yi}i∈I → {Xe}e∈E(G↑n) ∪ {0, 1} by

ρ : Y(R,(v,a),(w,b)) 7→


X{(v,a),(w,b)} if (v, w) ∈ RM and v 6= w,

1 if (v, w) ∈ RM and v = w,

0 otherwise.

We must show that the corresponding map

ρ∗ : {subgraphs of G↑n} → {structures with universe V (G↑n)}

is in fact a reduction from SUBG,n to MODELΦ,mn. That is, we must show that for any X ⊆ G↑n,

(3) SUBG,n(X) = 1 ⇐⇒ MODELΦ,mn(ρ∗(X)) = 1.
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For the =⇒ direction of (3): Assume SUBG,n(X) = 1. Then G(α) ⊆ X for some α ∈ [n]V (G).
The definition of ρ ensures that the map v 7→ (v, αv) is a homomorphism from M to the structure
ρ∗(X).7 Since C is hom-preserved, it follows that ρ∗(X) ∈ C and therefore MODELΦ,mn(ρ∗(X)) =
1.

For the⇐= direction of (3): Assume MODELΦ,mn(ρ∗(X)) = 1, that is, ρ∗(X) ∈ C . By Lemma
22(a) there exist N ∈ MinCores(C ) and a homomorphism γ : N → ρ∗(X). The definition of ρ
ensures that the map π : (v, i) 7→ v is a homomorphism from ρ∗(X) to M.8 The composition π ◦ γ
is a homomorphism from N toM. By Lemma 22(c), it is an isomorphism. Therefore, without loss
of generality, we may assume that M = N and π ◦ γ is the identity map on the universe V (G) of
M. This means that π(v) ∈ {(v, a) : a ∈ [n]} for all v ∈ V (G). We may now define α ∈ [n]V (G) as
the unique element such that γ : v 7→ (v, αv) for all v ∈ V (G). From the definition of ρ and the
fact that G = Gaif(M), we infer that G(α) ⊆ X.9 We conclude that SUBG,n(X) = 1, finishing the
proof of Claim 23.

We proceed to show that td(G) ≤ 2O(k). By Corollary 11, we have SUBPtd(G),n ≤mp SUBG,n.
By Claim 23 and transitivity of ≤mp, it follows that SUBPtd(G),n ≤mp MODELΦ,kn. There-
fore, µ(SUBPtd(G),n) ≤ µ(MODELΦ,kn) for every standard complexity measure µ : {Boolean
functions} → N (in particular, depth-k formula size). By Lemma 18 (the simulation of first-
order logic by AC0), there exist depth-k formulas of size O((mn)k) which compute MODELΦ,mn.
Therefore, there exist depth-k formulas of size O((mn)k) which compute SUBPtd(G),n. On the other

hand, by Theorem 14, the depth-k formula size of SUBPtd(G),n is nΩ(log td(G)) for all sufficiently

large n such that k < log log n. Therefore, we have nΩ(log td(G)) ≤ O((mn)k) for all sufficiently large
n. Since m (= |V (G)|) is constant, it follows that k ≥ Ω(log td(G)), that is, td(G) ≤ 2O(k). This
completes the proof that β(k) ≤ 2O(k) for binary signatures σ.

Remark 24. In this argument, as an alternative to depth-k formula size, we may instead consider
fan-in O(n) depth (i.e. fan-in cn depth for a sufficiently large constant c) and appeal to Corollary
15 instead of Theorem 14.

Finally, we explain how to adapt the above argument when σ is an arbitrary finite relational
signature. Here the variables of MODELΦ,kn are indexed by the set{

(R, (v1, a1), . . . , (vt, at)) : R(t) ∈ σ, (v1, a1), . . . , (vt, at) ∈ V (G)× [n]
}

7To see why, suppose we have (v, w) ∈ RM for some R(2) ∈ σ. We must show that ((v, αv), (w,αw)) ∈ Rρ
∗(X).

First, consider the case that v 6= w. The assumption G(α) ⊆ X implies that {(v, αv), (w,αw)} ∈ E(X). Since
ρ maps the variable Y(R,(v,αv),(w,αw)) to the variable X{(v,αv),(w,αw)} (which has value 1 for X), it follows that

((v, αv), (w,αw)) ∈ Rρ
∗(X). Finally, consider the case that v = w. In this case, ρ maps the variable Y(R,(v,αv),(w,αw))

to the constant 1. So again we have ((v, αv), (w,αw)) ∈ Rρ
∗(X).

8In fact, this holds for every X ⊆ G↑n independent of the assumption that MODELΦ,mn(ρ∗(X)) = 1. This
follows from the observation that π is (in particular) a homomorphism from ρ∗(G↑n) to M. To see why, consider

any ((v, a), (w, b)) ∈ Rρ
∗(G↑n) (corresponding to Y(R,(v,a),(w,b)) = 1). It must be the case that (v, w) ∈ RM, since the

contrary assumption (v, w) /∈ RM would mean that ρ maps the variable Y(R,(v,a),(w,b)) to 0.
9Consider an edge {(v, αv), (w,αv)} ∈ E(G(α)). By definition of G(α), we have {v, w} ∈ E(G). Since G =

Gaif(M), there exists a relation R(2) ∈ σ such that (v, w) ∈ RM or (w, v) ∈ RM. Without loss of generality,
assume (v, w) ∈ RM. Since γ :M→ ρ∗(X) is a homomorphism, we have (γ(v), γ(w)) = ((v, αv), (w,αw)) ∈ Rρ

∗(X).
Since (v, w) ∈ RM and v 6= w, the monotone projection ρ maps Y(R,(v,αv),(w,αw)) to X{(v,αv),(w,αw)}. It follows that

{(v, αv), (w,αw)} ∈ E(X). Therefore, G(α) is a subgraph of X.
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and the reduction {subgraphs of G↑n} → {structures with universe V (G↑n)} is defined by

Y(R,(v1,a1),...,(vt,at)) 7→

{∧
1≤i<j≤t : vi 6=vj X{(vi,ai),(vj ,aj)} if (v1, . . . , vt) ∈ RM,

0 otherwise.

(By convention,
∧
i∈∅Xi = 1.) Note that this reduction is not a monotone projection, as we are

mapping each Y -variable to a conjunction of X-variables. This reduction is, however, computed by
a single layer of constant fan-in AND gates. Therefore, under this reduction, any Boolean formula
computing MODELΦ,kn is converted to a Boolean formula computing SUBG,n with an increase of
1 in depth and a constant factor increase in size. Other than this change, the rest of the argument
is identical to the case of binary signatures.

7.2 Improvement to β(k) ≤ kO(1)

The upper bound β(k) ≤ 2O(k) in the previous section relies on the exponential approximation of
tree-depth in terms of the longest path, that is, log(lp(G) + 1) ≤ td(G) ≤ lp(G) (inequality (2)).
To achieve a polynomial upper bound on β(k), we require a polynomial approximation of tree-depth
in terms of a few manageable classes “excluded minors”. This realization led to a conjecture of the
author, which was soon proved in joint work with Ken-ichi Kawarabayashi [25].

Theorem 25. Every graph G of tree-depth k satisfies one (or more) of the following conditions
for ` = Ω̃(k1/5):

(i) tw(G) ≥ `,

(ii) G contains a path of length 2`, or

(iii) G contains a B`-minor.

This result is analogous to the Polynomial Grid-Minor Theorem [12], which can be used to
replace condition (i) with the condition that G contains an Ω(kε)×Ω(kε) grid minor for an absolute
constant ε > 0. In cases (i) and (ii), Theorems 13 and 14 respectively imply that SUBG has AC0

formula size nΩ̃(td(G)1/5). This leaves only case (iii), where forthcoming work of the author [42]
shows the following (via a generalization of the “pathset complexity” framework of [41]).

Theorem 26. The AC0 formula size of SUBBk is nΩ(kε) for an absolute constant ε > 0.

Together Theorems 25 and 26 imply:

Theorem 27. For all graphs G, the AC0 formula complexity of SUBG is nΩ(td(G)ε) for an absolute
constant ε > 0.

Plugging Theorem 27 into the argument in the previous subsection directly yields the polynomial
upper bound β(k) ≤ kO(1) of Theorem 4. (In fact, we get β(k) ≤ k1/ε for the constant ε > 0 of
Theorem 27.)
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8 Comparison with the Method in (R. 2008)

In this section, for the sake of comparison, we summarize the model-theoretic approach of the
original proof of Theorem 4 in [39]. The starting point in [39] is a new compactness-free proof
of the classical Homomorphism Preservation Theorem, which moreover yields the stronger “equi-
rank” version (Theorem 5). The proof is based on an operation mapping each structure A to an
infinite co-retract Γ(A). (We drop the assumption of the last two sections that structures are finite
by default.) In order to state the key property of this operation, we introduce notation A ≡FO(k) B
(resp. A ≡∃+FO(k) B) denoting the statement that A and B satisfy the same first-order sentences
(resp. existential-positive sentences) of quantifier-rank k.

Theorem 28. There is an operation Γ : {structures} → {structures} associating every structure A
with a co-retract Γ(A)

⊇→ A such that, for all structures A and B and k ∈ N,

A ≡∃+FO(k) B =⇒ Γ(A) ≡FO(k) Γ(B).

There is a straightforward proof that Theorem 28 implies Theorem 5 (see [39]). The structure
Γ(A) is the Fräısse limit of the class of co-finite co-retracts of A (that is, structures A′ such that

A′ ⊇→ A and A′ \ A is finite). We remark that Γ(A) is infinite, even when A is finite. For this
reason, Theorem 28 says nothing in the setting of finite structures.

The Homomorphism Preservation Theorem on Finite Structures (Theorem 4) is proved in [39]
by considering a sequence of finitary “approximations” of Γ(A). (This is somewhat analogous to
sense in which large random graph G(n, 1/2) “approximate” the infinite Rado graph.)

Theorem 29. There is a computable function β : N → N and a sequence {Γk}k∈N of operations
Γk : {finite structures} → {finite structures} associating every finite structure A with a sequence

{Γk(A)}k∈N of finite co-retracts Γk(A)
⊇→ A such that, for all finite structures A and B and k ∈ N,

A ≡∃+FO(β(k)) B =⇒ Γk(A) ≡FO(k) Γk(B).

Theorem 4 follows directly from Theorem 29, inheriting the same quantifier-rank blow-up β(k).
The proof of Theorem 29 in [39] implies a non-elementary upper bound on β(k). While the present
paper improves the upper bound β(k) ≤ kO(1) in Theorem 4, we remark that this it does not imply
any improvement to β(k) in Theorem 29.

9 Syntax vs. Semantics in Circuit Complexity

We conclude this paper by stating some consequences of our results in circuit complexity. Let
HomPreserved denote the class of all homomorphism-preserved graph properties (for example, {G :
girth(G) ≤ 20 or clique-number(G) ≥ 10}). This is a semantic class, akin to the class Monotone of
all monotone languages. The new proof in this paper of the Homomorphism Preservation Theorem
on Finite Structures using AC0 lower bounds is easily to imply the following “Homomorphism
Preservation Theorem for (non-uniform) AC0”:

HomPreserved ∩AC0 = ∃+FO (⊆ {poly-size monotone DNFs}).

In other words, every homomorphism-preserved graph property in AC0 is definable (among finite
graphs) by an existential-positive first-order sentence and, therefore, also by a polynomial-size
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monotone DNF (moreover, with constant bottom fan-in). As a consequence, for every integer
d ≥ 2, we get a collapse of the AC0 depth hierarchy with respect to homomorphism-preserved
properties:

HomPreserved ∩AC0[depth d] = HomPreserved ∩AC0[depth d+ 1].

In contrast, it is known that AC0[depth d] 6= AC0[depth d + 1] by the Depth Hierarchy Theorem
[21].

These results have an opposite nature to the “syntactic monotonicity 6= semantic monotonic-
ity” counterexamples of Ajtai and Gurevich [1] and Razborov [35] (as well as Tardos [45]), which
respectively show that

Monotone ∩AC0 6= Monotone-AC0 and Monotone ∩ P 6= Monotone-P.

In light of the results of this paper, I feel that questions of syntax vs. semantics in circuit complexity
are worth re-examining. For instance, so far as I know, there is no known separation between the
uniform average-case monotone vs. non-monotone complexity of any monotone function in any well-
studied class of Boolean circuits (AC0, NC1, etc.) It is plausible that syntactic monotonicity =
semantic monotonicity in the average-case. Evidence for this viewpoint comes from the considering
the slice distribution (that is, the uniform distribution on inputs of Hamming weight exactly bn/2c).
With respect to the slice distribution, it is known that monotone and non-monotone complexity
are equivalent within a poly(n) factor by a classic result of Berkowitz [11].

As for an even stronger “Homomorphism Preservation Theorem” in circuit complexity, we can
state the following: if for every k, SUBPk requires unbounded-depth formula size nΩ(log k) (which is
widely conjectured to be true) or even nωk→∞(1), then HomPreserved ∩ NC1 = ∃+FO. Therefore,
I strongly believe in a “Homomorphism Preservation Theorem for NC1”. On the other hand,
the homomorphism-preserved property of being 2-colorable a.k.a. non-bipartite (= {G : Ck →
G for any odd k}) is in Logspace (this follows from Reingold’s theorem [36]), yet it is not ∃+FO-
definable. Therefore, we may assert that HomPreserved ∩ Logspace 6= ∃+FO.
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